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Abstract

Recent empirical studies show that the estimated Markowitz mean-variance port-

folios oftentimes perform rather poorly when there are more than several assets in the

investment universe. In this article, we argue that such disappointing performance can

be largely attributed to the estimation error incurred in sample mean-variance portfo-

lios, and therefore could be improved by utilizing more efficient estimating strategies.

In particular, we show that this “Markowitz optimization enigma” (Michaud, 1998)

could be resolved by carefully balancing the tradeoff between the estimation error and

systematic error through the so-called subspace mean-variance analysis. In addition to

the consistent improvement observed on real and simulated data sets, we prove that,

under an approximate factor model, it is possible to use this strategy to construct

portfolio rules whose performance closely resemble that of theoretical mean-variance

efficient portfolios in a large market.

Keywords: Approximate factor model, asymptotic efficiency, beta pricing model, estima-

tion error, mean-variance analysis, Sharpe ratio. (JEL G11)

† This research was supported in part by NSF CAREER Award DMS-1321692 and FRG Grant DMS-

1265202.

§ Address for correspondence: Department of Statistics, University of Wisconsin-Madison, Madison, WI

53706. (Email: myuan@stat.wisc.edu).

1



1 Introduction

Although the importance of diversification in investment has long been recognized (see, e.g.,

Rubinstein, 2006), how to optimally allocate wealth across a universe of risky assets in a

principled way remained elusive until the seminal work of Markowitz (1952; 1959). See also

Roy (1952). The mean-variance efficient portfolios derived from such analysis are determined

by the mean and variance of the returns of the underlying assets. In practice, both moments

need to be estimated from historical data, by either the usual sample moments or more

sophisticated estimators. Examples include Barry (1974), Brown (1976), Bawa, Brown and

Klein (1979), Jobson, Korkie, and Ratti (1979), Jobson and Korkie (1980), Jorion (1985;

1986), McKinlay and Pastor (2000), Goldfarb and Iyengar (2003), Ledoit and Wolf (2004),

Garlappi, Uppal, and Wang (2007), and Kan and Zhou (2007) among many others. See also

Brandt (2010) for a recent review of the developments.

The practical merits of these estimated mean-variance efficient portfolio strategies, how-

ever, have come under close scrutiny in recent years. In a thought provoking article,

DeMiguel, Garlappi and Uppal (2009) demonstrated through extensive empirical studies

that neither the sample moment based efficient portfolios nor their many sophisticated ex-

tensions perform well in a realistic setting where there are more than several assets in the

market. Moreover, all of these mean-variance analysis inspired portfolio rules fail to outper-

form on a consistent basis the näıve diversification which simply assigns an equal weight to

each of the assets. Similar observations were also made by Michaud (1998), Benartzi and

Thaler (2001), Behr, Güttler and Miebs (2008), and Duchin and Levy (2009) among many

others.

The lackluster performance of these estimated mean-variance efficient portfolio rules can

be attributed to the estimation error associated with the estimated moments from historical

data. The impact of estimation error on the estimated efficient portfolio is well documented

even in the classical case when there are only several assets. See, e.g., Jobson and Korkie

(1980). Such a problem oftentimes can be alleviated with a larger estimation window.

Classical large sample theory suggests that when the number of assets is small and the

historical data are abundant, the mean and variance of the returns can be consistently

estimated. This property can be readily translated into the nearness between the theoretical

mean-variance efficient portfolio and its estimates by means of the usual delta method,

2



and in turn, the approximate optimality of the estimated mean-variance efficient portfolio

rules. The effect of estimation error, however, quickly grows out of control when the number

of assets increases; and an unrealistic amount of historical data are needed in order for

the aforementioned large sample theory to be relevant. For example, as pointed out by

DeMiguel, Garlappi and Uppal (2009), for the estimated mean-variance efficient portfolios

to outperform the näıve diversification, i.e, to have a higher Sharpe ratio, we will need around

3000 months worth of historical data even for an investment universe of 25 assets. In other

words, when the market is not small one cannot realistically expect to have enough historical

data to do better than näıve diversification.

These findings inevitably cast doubts on the practical value of the mean-variance effi-

cient portfolios. Mindful of such challenges, many researchers have opted for other portfo-

lios that are traditionally perceived as suboptimal in the pursuit of a higher Sharpe ratio.

Examples include minimum variance portfolio (Jorion, 1985; 1986), short-sell constrained

minimum variance portfolios (Jagannathan and Ma, 2003), the equally weighted diversifica-

tion (DeMiguel, Garlappi and Uppal, 2009), and other modifications to the mean-variance

portfolio rule (see, e.g., Pesaran and Zaffaroni, 2010; and Antoine, 2012). The empirical suc-

cesses of these supposedly suboptimal portfolios undoubtedly further fuel the debate about

the meaning of optimality of the mean-variance analysis; or as Michaud (1998) put it –

“Is ‘optimized’ optimal?” We shall argue in this article that the answer is affirmative, and

the “optimized” can be optimal after all. The disappointing performance of the estimated

efficient portfolios reported earlier merely reflects our inability to accurately estimate the

moments of asset returns in a large market, which does not necessarily prevent us from

constructing a feasible yet efficient portfolio rule.

In particular, we show that the optimal Sharpe ratio could be achieved through the so-

called subspace mean-variance analysis. Instead of seeking the optimal allocation of wealth

across the whole universe, the subspace mean-variance analysis restricts investment in a set

of portfolios including, for example, portfolios corresponding to the leading eigenvectors of

the covariance matrix of asset returns, and determines the optimal investment with such

restrictions in the usual Markowitz fashion. The resulting subspace mean-variance efficient

portfolios can then be estimated in the same fashion as the global mean-variance efficient

portfolios. We argue that the loss of efficiency in restricting the investment options, referred
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to as systematic error hereafter, can be compensated through reduced estimation error.

We demonstrate on both real and simulated data sets, that the two sources of errors can

be balanced to yield performance consistently superior to both näıve diversification and

estimated global mean-variance portfolio.

More specifically, we study the performance of the estimated subspace mean-variance

portfolio when restricting investment in the leading principle components of the sample

covariance matrix of historical returns. To further explain the empirical successes, we inves-

tigate the econometric properties of the sample subspace mean-variance efficient portfolios.

Our analysis makes use of the notion that asset returns are driven by systematic risks repre-

sented by marketwide factors, a widely held belief that is corroborated by numerous studies

(see, e.g., Connor, Goldberg and Korajczyk, 2010). Mainstream asset pricing models such as

the capital asset pricing model (CAPM, for short; Sharpe, 1964), the intertemporal CAPM

(Merton, 1973), and the arbitrage pricing theory (APT, for short; Ross, 1976) are all based

on such principles. A fairly general framework to characterize these factor structures is the

approximate factor model of Chamberlain and Rothchild (1983). Within this framework, we

show that in a large market, the estimation error can be well-controlled using the proposed

strategy. More specifically, we show that estimated subspace mean-variance portfolio is

asymptotically efficient in that its Sharpe ratio approaches that of the global mean-variance

portfolio as the estimation window and the size of the market increase.

The rest of this paper is organized as follows. Section 2 introduces the concept of sub-

space mean-variance analysis and explains how the resulting portfolios can be estimated in

practice. In Section 3, we study the econometric properties of the estimated subspace mean-

variance efficient portfolios and establish their asymptotic efficiency in a large market. These

theoretical analyses are further supported by numerical experiments presented in Section 4.

We close with some concluding remarks and discussions in Section 5.

2 Subspace Mean-Variance Analysis

Let r ∈ RN be the return of N risky assets in excess of a risk-free rate. Then the Markowitz

mean-variance efficient portfolio is given as the solution to

min
w∈RN

{γ
2
wTΣw −wTE

}
, (1)
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where E ∈ RN and Σ ∈ RN×N are the mean and variance of r respectively, and γ is the

coefficient of relative risk aversion. The solution of (1), denoted by,

wmv =
1

γ
Σ−1E, (2)

gives the optimal proportion of wealth that should be invested among the risky assets. It

is well-known that the mean-variance efficient portfolio wmv achieves the highest possible

Sharpe ratio. Recall that the Sharpe ratio of a portfolio allocation w ∈ RN is given by

s(w) =
wTE

(wTΣw)1/2
,

so that for any w,

s(w) ≤ s(wmv) = (ETΣ−1E)1/2. (3)

Obviously investors cannot hold the mean-variance portfolio in practice because neither

E nor Σ is known in advance. Therefore, wmv can only serve as a gold standard, and the goal

is instead to construct feasible portfolio rules that can reproduce its level of performance.

The most common strategy towards this goal is to first estimate E and Σ from historical

return data, typically by their sample counterparts; and then plug the estimates in (2) to

give an estimated mean-variance portfolio. More specifically, let rt, t = 1, 2, . . . , T be the

excess returns of month t. Then the estimated mean-variance portfolio is:

ŵmv =
1

γ
Σ̂−1Ê,

where Ê and Σ̂ are the sample moments:

Ê =
1

T

T∑
t=1

rt, and Σ̂ =
1

T − 1

T∑
t=1

(rt − r̄t)(rt − r̄t)
T.

In the case when Σ̂ is singular, for example when N ≥ T , its Moore-Penrose inverse can be

used in place of Σ̂−1 in defining ŵmv.

The sample mean-variance portfolio ŵmv works fairly well when the number of assets

is small whereas the estimation window is large. By law of large numbers, both Ê and Σ̂

are consistent in that they converge to the respective true moments when the estimation

window is large enough. The consistency of the moment estimators can be translated to the

resulting estimated portfolio allocation ŵmv using the usual delta method, leading to

s(ŵmv) →p s(wmv), (4)
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as the estimation window enlarges. In other words, the estimated portfolio is asymptotically

efficient. The practical importance of (4) is also clear as it suggests that, even though the

mean-variance portfolio itself typically is not practically available, there are feasible portfolio

rules capable of reaching similar level of performance for large enough estimation window.

The plug-in tactics for constructing portfolio rules, however, quickly falter as the size of

market grows as many have observed empirically. The suboptimal performance of estimated

mean-variance portfolios can be attributed to the estimation error associated with the es-

timated moments (e.g., Merton, 1980). Although a classical and straightforward problem

when the number of assets is small, estimating the mean and covariance matrix in a large

market with relatively limited amount of data is notoriously difficult. As the number of

parameters involved in the mean and covariances of the asset returns increases with the

size of the market, an unrealistic amount of historical data are often needed to yield any

meaningful moment estimator. As a result, the sample mean-variance portfolio may perform

rather poorly in a large investment universe. More specifically, the following theorem shows

that when the number of assets N is much larger than the estimation window T , the sample

mean-variance portfolio may become useless in that its Sharpe ratio can be arbitrarily small.

Theorem 1. Assume that the excess returns rt, t = 1, 2, . . . , T are independently and nor-

mally distributed with mean E and covariance Σ. Then the Sharpe ratio of the sample

mean-variance portfolio satisfies

s(ŵmv)

s(wmv)
= Op(

√
T/N).

In particular, with a fixed estimation window, the relative efficiency of the sample mean-

variance portfolio converges to zero in probability as the number of assets increases.

To overcome this challenge, we propose here to trade the optimality of the mean-variance

portfolio with estimability, an idea reminiscent of the all-important bias-variance tradeoff in

statistics.

More specifically, instead of searching through all possible investment options, we consider

restricting investment in a carefully chosen linear subspace. From a mathematical point of

view, this means that we restrict the asset allocation vector w to be in a linear subspace P
of RN . Efficient wealth allocation within P can be determined by Markowitz style analysis,
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i.e., by solving the following optimization problem similar to (1):

min
w∈P

{γ
2
wTΣw −wTE

}
. (5)

Similar to the usual mean-variance analysis, the solution of (5) can be expressed explicitly.

Proposition 1. Let P be a d dimensional linear subspace of RN . Then the solution of (5)

is given by

wP
mv :=

1

γ
PP
(
PT
PΣPP

)−1
PT
PE, (6)

where PP is a N × d matrix whose columns are an orthonormal basis of P.

We note that the expression (6) is invariant to the choice of PP , or equivalently the basis

of P . We shall in what follows refer to wP
mv as the subspace mean-variance portfolio. Same

as the global mean-variance portfolio wmv, the subspace mean-variance portfolio cannot be

implemented in practice because it still depends on the unknown mean and covariances of

asset returns. We shall consider instead the estimated subspace mean-variance portfolio:

ŵP
mv =

1

γ
PP

(
PT
P Σ̂PP

)−1

PT
P Ê.

Recall that Ê and Σ̂ are the sample mean and covariance matrix respectively.

Both näıve diversification and sample mean-variance portfolio can be viewed as special

cases of the estimated subspace mean-variance portfolio with different choices of P . In

particular, näıve diversification corresponds to the choice of a one dimensional linear subspace

P = {a1 : a ∈ R} whereas the sample mean-variance portfolio can be identified with

P = RN . What is of interest here are, however, linear subspaces between these two extreme

choices. Let ŵP
mv be the estimated subspace mean-variance within linear subspace P . Its

“suboptimality” can be measured by

s(wmv)− s(ŵP
mv) =

[
s(wP

mv)− s(ŵP
mv)
]
+
[
s(wmv)− s(wP

mv)
]
. (7)

We shall refer to the two terms on the right hand side of (7) as estimation error and sys-

tematic error respectively because the first term measures the loss of optimality due to the

estimated moments whereas the second term corresponds to the deficiency caused by restrict-

ing ourselves to a smaller investment space. Typically, as the dimension dim(P) increases,

estimation error increases since there are more parameters to be estimated; whereas the

7



systematic error decreases since there are less missed investment opportunities. As a result,

improved performance could be achieved by balancing the tradeoff between the two sources

of errors. Such a tradeoff can be illustrated by Figure 1.

dim(P)

E
rr

or

Suboptimality
Estimation Error
Systematic Error

Figure 1: Illustration of tradeoff between estimation error and systematic error in subspace

mean-variance analysis.

The choice of subspace P clearly plays an important role in the proposed strategy. In

principle, we can choose any of our favorite portfolio rules and form P as the linear subspace

spanned by these rules. For example, one can choose P to be the linear subspace spanned by

the leading eigenvectors of the second moment E(rr⊤) as suggested by Carrasco and Noumon

(2013), or the Fama-French factors, leading to a strategy similar to those adopted by Fan,

Fan and Lv (2008) among others. The more specific choice we made here is motivated by

our understanding of the approximate factor model, a fairly general framework commonly

used to describe the belief that the individual returns are driven by marketwide factors. As

our econometric analysis from Section 3 reveals, when it comes to portfolio selection in a

large market, there is little loss in restricting investment in the eigenportfolios, i.e., portfolios

corresponding to the leading eigenvectors of the covariance matrix of the asset returns. In

other words, we can take P to be the linear space spanned by the first d eigenvectors of Σ.
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From Proposition 1, by taking PP = [η1, . . . , ηd], the subspace mean-variance portfolio is

1

γ

d∑
k=1

θ−1
k ηkη

T
kE,

where θ1 ≥ θ2 ≥ . . . are the eigenvalues of Σ, and ηks are their respective eigenvectors.

Of course, P is not known in advance and can be naturally estimated by the linear space

spanned by the first d eigenvectors of the sample covariance matrix Σ̂, denoted by P̂ . The

corresponding estimated subspace mean variance portfolio is then given by

ŵd =
1

γ

d∑
k=1

θ̂−1
k η̂kη̂

T
k Ê,

where θ̂1 ≥ θ̂2 ≥ . . . are the eigenvalues of Σ̂, and η̂ks are their corresponding eigenvectors.

We shall now show that, in the context of the approximate factor model, ŵd can achieve a

Sharpe ratio similar to that of the global mean-variance portfolio whenever d is appropriately

chosen.

3 Econometric Properties

In this section, we study the econometric properties of the estimated subspace mean-variance

portfolio rules ŵd. In particular, we show here that it can achieve asymptotically the same

level of performance as the global mean-variance portfolio in a large market. Following

the most commonly used asset pricing models such as the CAPM and APT among others,

we assume that the systematic risks are represented by a small number of marketwide fac-

tors and expected returns on individual securities are linear functions of their standardized

covariances, or betas, with these factors.

Recall that rt = (r1t, . . . , rNt)
T is the excess return of time t. It is assumed to follow the

following approximate factor model:

rjt = Ej + βj1f1t + . . .+ βjKfKt + εjt, j = 1, . . . , N ; t = 1, . . . , T, (8)

where ft = (f1t, . . . , fKt)
T is a vector of common factors, βj = (βj1, . . . , βjK)

T is a vector of

factor loadings associated with the jth asset, and εjt is the idiosyncratic component of rjt

satisfying E(εjt|ft) = 0. The factors may be unobserved with mean zero and variance Σf .
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Without loss of generality, we assume that Σf is strictly positive definite so that there is no

redundancy among the factors. The idiosyncratic risks have a variance Σε. As a result, the

covariance matrix of rt is Σ = BΣfB
T + Σε where B is a N ×K matrix whose jth row is

βT
j .

Let

Ej = αj + βj1µ
f
1 + . . .+ βjKµ

f
K , j = 1, 2, . . . , N, (9)

where α = (α1, . . . , αN)
T is the so-called Jensen’s alpha (Jensen, 1968), and µf

k is the risk

premium of the kth factor, that is, the excess return of an asset whose beta for the kth factor

is one and zero otherwise. Without loss of generality, we shall assume that the risk premium

µf
k > 0. Exact arbitrage pricing dictates that the pricing error α = 0. Assuming that

there is no cross-sectional dependence, i.e., Σε is diagonal, Huberman (1982) showed that no-

arbitrage implies that αTα is bounded. Similar results were also established by Chamberlain

and Rothschild (1983) who relaxed the assumption of uncorrelated idiosyncratic noise. Such

an asymptotic APT model has been studied extensively in the literature and there are

ample evidences that they provide an adequate portrait of the real-world market (see, e.g.,

Zhang, 2009). Although our method of portfolio construction does not rely on the validity

of the asymptotic APT, for brevity, in what follows we shall assume it holds nonetheless

because of its popularity. In addition, we shall also consider the following assumptions for

the approximate factor model (8).

Assumption A (Factors) The factors have finite fourth moments such that there exists a

positive constant C1 <∞ satisfying

max
1≤k≤K

Ef 4
kt ≤ C1.

Assumption B (Factors Loadings) There is a strictly positive definite matrix ΣB such

that

BTB/N → ΣB as N → ∞.

Assumption C (Idiosyncratic Risks) The covariance matrix of ϵt = (ε1t, . . . , εNt)
T, Σε

has eigenvalues bounded away from both zero and infinity. Moreover, the idiosyncratic risks
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have finite fourth moments such that there exists a positive constant C2 <∞ satisfying

max
1≤j≤N

Eε4jt ≤ C2.

These assumptions are fairly general and met by multi-factor asset pricing models ap-

peared in the literature (see, e.g., Bai and Ng, 2002). We emphasize that we do not require

the normality of either the factors or idiosyncratic risks. In addition, cross-sectional depen-

dence and heterogeneity are allowed for the idiosyncratic risks.

Within the framework of the approximate factor model, it is convenient to explain how

the proposed portfolio rule ŵd works. It is instructive to consider the special case when

there is no pricing error, i.e., α = 0; and the idiosyncratic noise εjts are uncorrelated and

with a common variance σ2
ε , i.e., Σε = σ2

εI. By Sherman-Morrison-Woodbury identity, the

global mean-variance portfolio can be given by

wmv =
1

γ
Σ−1E

=
1

γ

(
BΣfB

T + σ2
εI
)−1

Bµf

=
1

γ

(
1

σ2
ε

I − 1

σ2
ε

B
(
σ2
εΣ

−1
f +BTB

)−1
BT

)
Bµf

=
1

γ
B

[
1

σ2
ε

µf −
1

σ2
ε

(
σ2
εΣ

−1
f +BTB

)−1
BTBµf

]
Clearly, wmv belongs to the linear subspace spanned by the column vectors of B, which in

this case also coincides with the linear space spanned by the first K eigenvectors of Σ. In

other words, there is no loss of efficiency in restricting investment in the eigenportfolios. For

the more general approximate factor model, such a relationship no longer holds, but as we

shall see, the efficiency of ŵd remains.

Note that ŵd relies on the historical data which we shall allow for temporal dependence

for the factors and idiosyncratic risks. As a result, the factors could be either static or

dynamic (see, e.g., Forni, Hallin, Lippi and Reichlin, 2000; and Forni and Lippi, 2001).

More specifically, we shall assume that the factors satisfy the following condition.
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Assumption D The factors f1, . . . , fT are weakly dependent in that there exists a positive

constant C3 <∞ satisfying

max
1≤k1,k2≤K

E

{
T∑
t=1

(
fk1tfk2t − Σf

k1k2

)2}
≤ C3T

where Σf
k1k2

is the (k1, k2)th entry of Σf .

Assumption E The idiosyncratic risks ϵ1, . . . , ϵT are weakly dependent in that there exists

a positive constant C4 <∞ satisfying

max
1≤j1,j2≤N

E

{
T∑
t=1

(
εj1tεj2t − Σε

j1j2

)2} ≤ C4T

where Σε
j1j2

is the (j1, j2)th entry of Σε.

Assumption F The factors and idiosyncratic risks are jointly weakly dependent in that

there exists a positive constant C5 <∞ satisfying

max
1≤j≤N
1≤k≤K

E

(
T∑
t=1

ε2jtf
2
kt

)
≤ C5T.

We are now in position to state our main result whose proof is relegated to the appendix.

Theorem 2. Let d = K be fixed and finity. Then under asymptotic APT model satisfying

Assumptions A-F,

s2(ŵd) = s2(wmv) +Op(T
−1/2 +N−1/2).

As suggested by Theorem 2, when the market is large and the estimation window is long,

the Sharpe ratio of ŵd will approximately equal to that of wmv, so long as d = K. It is

worth noting that the principal components generally differ from the common factors in a

linear factor model. But Theorem 2 shows that, as far as portfolio selection is concerned, the

principal components may serve the same purpose as the common factors in a large market.

The number of factors K, of course, is typically unknown in practice. But they can be

consistently estimated from the historical data as well. In particular, Bai and Ng (2002)
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develop a class of criteria for estimating K when both N and T are large. One possible

choice, as they suggested, is to estimate K by

d̂ = argmin
1≤k≤kmax

{
log

(∑
j>k

θ̂2k

)
+
k(N + T )

NT
log

(
NT

N + T

)}
, (10)

where kmax is a prespecified maximum possible number of factors, and θ̂s are the eigenvalues

of Σ̂. Following Bai and Ng (2002), we shall set kmax = 8 in the numerical experiments.

Under some regularity conditions, Bai and Ng (2002) showed that when both N and T are

large, P{d̂ = K} → 1. As a corollary to Theorem 2, we have

Corollary 3. For any d̂ such that P{d̂ = K} → 1 as N, T → ∞, under the asymptotic APT

model satisfying Assumptions A-F,

s2(ŵd̂) = s2(wmv) +Op(T
−1/2 +N−1/2).

Typically K is relatively small, and the numerical illustrations in the next section suggest

that fairly good and robust performance can be achieved generally for a wide range of choices

of d.

4 Experimental Studies

In this section, we evaluate the performance of the portfolio selection rules introduced in the

previous section on both simulated and real data sets.

4.1 Simulation Results

For illustration purposes, we begin with a simulation study. Our simulation setup is similar

to MacKinlay and Pastor (2000), DeMiguel, Garlappi, and Uppal (2009), and Tu and Zhou

(2011) among others. More specifically, we simulated the monthly returns of N risky assets

from a three-factor model. To investigate the effects of market size, we considered N = 25

or 100. Following Tu and Zhou (2011), we simulated the three factors from a multivariate

normal distribution with mean and covariances calibrated from July 1963 to August 2007

monthly data on the market portfolio, the Fama-Frenchs size and book-to-market portfolios

respectively (available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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data_library.html). The factor loadings of the risky assets were randomly sampled from a

uniform distribution between 0.9 and 1.2 for the market βs, -0.3 and 1.4 for the size portfolio

βs, -0.5 and 0.9 for the book-to-market portfolio βs. In addition, the residual variance-

covariance matrix Σε is taken to be diagonal, with the diagonal elements sampled from a

uniform distribution between 0.10 and 0.30 to yield an average cross-sectional volatility of

20%. To appreciate how the length of estimation window may affect the performance of

portfolio rules, we considered T = 60, 120, or 240 months.

First we examine the effect of the d = dim(P) on the corresponding estimated subspace

mean-variance portfolio. To this end, we computed the proposed portfolio rules ŵd with

d = 1, 2, . . . for each simulated datasets. The Sharpe ratio of ŵd was then calculated. We

report in Figure 2 the results averaged over 1000 runs.

The effect of the systematic error and estimation error is clear from this exercise. When

d = 1 or 2, the leading eigenportfolios fail to capture all market-wide factors and as a result,

incur non-negligible systematic error. On the other hand when d > 3, the systematic error

is fairly small whereas the estimation error becomes increasingly prominent as d increases.

The ideal balance between systematic error and estimation error is achieved when d = 3.

These observations confirm the econometric analysis presented earlier.

For contrast, in each plot of Figure 2, the Sharpe ratio of the näıve diversification is also

reported, as represented by the gray horizontal lines. It is worth noticing that although the

optimal tradeoff between the two sources of error is achieved when d = 3, for a wide range

of choices for d, the proposed subspace mean-variance portfolio can still produce significant

improvement over the näıve diversification.

To further illustrate the practical merits of the proposed methodology, we now consider

the performance of ŵd with d estimated using d̂ defined in (10). For each simulation run,

d̂ may take a different value. But typically d̂ = 3 which occured 953 out of the 1000

runs. Figure 3 reports the comparison between the estimated subspace mean-variance port-

folio, sample mean-variance portfolio and the näıve diversification along with the true yet in

practice infeasible mean-variance efficient portfolio. It is clear that the estimated subspace

mean-variance portfolio consistently outperforms the näıve diversification.

Another desirable feature of the estimated subspace mean-variance portfolio is its stabil-

ity. Estimated mean-variance portfolios based on plug-in principle often produce extremely
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Figure 2: Simulation results from a three-factor model. For each combination of market size

N = 25 or 100, and estimation window T = 60, 120 or 240 months, the relative efficiency,

measured by the ratio between the Sharp ratio relative to that of the true (infeasible in

practice) mean-variance portfolio, of ŵd is reported here for different choices of d. The

results are averaged over 1000 simulated datasets for each plot. The gray horizontal lines

correspond the averaged relative efficiency for the näıve diversification.
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Figure 3: Simulation results based on three factor model: Data were simulated from a

three factor model. Sharpe ratio of the true mean-variance portfolio (circles), estimated

subspace mean-variance portfolio (triangles), sample mean-variance portfolio (pluses), and

näıve portfolio rule (crosses) are presented for different estimating window size and market

size. Note that the true mean-variance portfolio is not feasible and it is added for reference

only.
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large long and short positions that fluctuate substantially over time. As noted by Black and

Litterman (1992), “when investors have tried to use quantitative models to help optimize the

critical allocation decision, the unreasonable nature of the results has often thwarted their

efforts.” This problem can be alleviated when we restrict our investment in a low dimen-

sional subspace. To demonstrate such advantage of the estimated subspace mean-variance

portfolio, we look at a typical example with 100 assets and T = 120 months historical data.

Figure 4 depicts the holdings of the risky asset in comparison with those of the sample

mean-variance portfolio and true population mean-variance portfolio.

It is clear that holdings of the estimated subspace mean-variance portfolio is much more

stable than those of the sample mean-variance portfolio and they track very well with the

optimal holdings represented by the population mean-variance portfolio. To further assess

the stability, we evaluated the amount of monthly rebalancing required by both portfolio

rules. Let wt and wt+1 be the portfolio weights with 100 assets constructed at Month t and

t+ 1 respectively. Then rebalancing cost at Month t+ 1 can be naturally measured by

Turnovert :=
N∑
j=1

|wt+1,j −wt,j|.

Figure 5 provides the box plots of Turnovert occurred in a 50 year period when the estimating

window is 120 months and 240 months respectively, which again suggests that the subspace

mean-variance portfolio is much more stable than usual sample mean-variance portfolio.

4.2 Empirical Illustrations

We now study the empirical performance of the proposed portfolio rules. The data set used

in our analysis is the Fama-French 25 (5×5) and 100 (10×10) portfolios formed on size and

book-to-market, each containing equal-weighted returns for the intersections of size portfolios

and book-to-market portfolios (available at http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html). Following DeMiguel, Garlappi and Uppal (2007), we use

a rolling-window approach to monthly returns collected over a fifty year period, from January

1961 to December 2010. More specifically, for any given estimation window T , we determine

the risky asset holdings at time t using mean and covariances estimated using rt−T , . . . , rt−1.

We record the returns of a portfolio rule over the fifty year period and compute its Sharpe

ratio by taking the ratio of the average of these recorded returns over their sample standard
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Figure 4: Stability – The left panel compares the holdings of the estimated mean-variance

portfolio, represented by the circles, and subspace mean-variance portfolio, represented by

the crosses. The right panel compares the holdings of the estimated subspace mean-variance

portfolio with those of the true global mean-variance portfolio.
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Figure 5: Rebalancing cost – Boxplots of the monthly rebalancing cost for the subspace

mean-variance portfolio and sample mean-variance portfolio with 100 assets over a period

of 50 years. The left panel corresponds to an estimating window of 120 months whereas

the right panel 240 months.The Y-axes in both panels are in log scale for better contrast

between the two portfolio rules.
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deviation. We report in Figure 6 the Sharpe ratio computed in this fashion for different

choices of estimation window and d for N = 25 and 100.

The horizontal lines in the figure correspond to the Sharpe ratio for the estimated sub-

space mean-variance with dim(P) determined by the information criterion given in (10). Not

surprisingly, the pattern now becomes more profound than the simulation results presented

earlier, which could be a result of the small-firm effect, calendar effects, momentum, and

other anomalies often reported in the literature. At each time t, we calibrated d using the

information criterion (10) as before. Typical choices of d are between five and seven, and

d̂ = 5 occurs nearly 50% of the time.

To demonstrate the merits of the subspace mean-variance portfolio, we also applied

several other common portfolio rules to these data. Many existing rules have been recently

examined and compared by DeMiguel, Garlappi and Uppal (2007), and Tu and Zhou (2011).

In addition to the sample mean-variance portfolio and näıve diversification, we included in

our comparison four of the better ones they identified: the three-fund rule of Jorion (1986;

PJ for short), the rule from Kan and Zhou (2007; KZ for short), combination rule based on

sample mean-variance portfolio and näıve diversification (Tu and Zhou, 2011, S&N for short),

and combination rule based on KZ and näıve diversification (Tu and Zhou, 2011, KZ&N for

short). The Sharpe ratio attained by these methods with estimation window T = 60 months,

120 months and 360 months are reported in Table 1.

Data T Sample Näıve S&N KZ KZ&N PJ Subspace MV

60 0.21 0.13 0.21 0.21 0.21 0.22 0.25

25 Portfolios 120 0.32 0.14 0.33 0.33 0.33 0.33 0.30

240 0.36 0.15 0.36 0.36 0.36 0.35 0.35

60 0.13 0.13 NA NA NA NA 0.16

100 Portfolios 120 0.10 0.14 0.14 0.10 0.12 0.08 0.23

240 0.22 0.15 0.24 0.25 0.26 0.25 0.25

Table 1: Comparison between the estimated subspace mean-variance portfolio and several

other popular alternatives on the Fama-French data sets. Reported here are the Sharpe

ratio achieved over a period of 50 years. The portfolio rules S&N, KZ, KZ&N and PJ

require T > N and therefore are not applicable for N = 100 portfolios when T = 60.
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Figure 6: Fama-French portfolio examples – historical performance of ŵd for different choices

of d over a fifty year period. The dashed horizontal lines represent the Sharpe ratio of the

estimated subspace mean-variance portfolio with dim(P) determined using the information

criterion (10).
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As shown by Table 1, the estimated subspace mean-variance portfolio compares favorably

with the other methods. In most cases, it offers substantial improvement over sample mean-

variance portfolio and näıve diversification. It is particularly attractive when the ratio N/T

is relatively large.

5 Conclusions and Discussions

Recent empirical studies have ignited a series of debate regarding the practical merits of

mean-variance analysis when it comes to a large investment universe. At the center of these

discussions is the fundamental question: to what extent can the promised optimality of the

mean-variance portfolio be replicated in practice? We argue that it is possible to achieve

similar performance as the population mean-variance portfolio in practice although evidences

from recent empirical studies seemingly point to another direction. In particular, we show

that under the approximate factor model, optimal Sharpe ratio can be achieved by restricting

the investment in a number of leading eigen-portfolios.

Appendix A – Proof of Theorem 1

It suffices to consider the case when T/N → 0. Recall that

ŵmv =
Σ̂+Ê

1TΣ̂+Ê
,

where Σ̂+ is the Moore-Penrose inverse of Σ̂ to account for the fact that Σ̂ is not of full rank.

Its Sharpe ratio is given by

s(ŵmv) =
ETΣ̂+Ê(

ÊTΣ̂+ΣΣ̂+Ê
)1/2 .

Let Zi = Σ−1/2ri, then Σ̂ = Σ1/2SZΣ
1/2 where SZ is the sample covariance matrix of Zis. As

a result, Σ̂+ = Σ−1/2S+
ZΣ

−1/2, and moreover

s(ŵmv) =
ETΣ−1/2S+

ZΣ
−1/2Ê(

ÊTΣ−1/2S+
ZS

+
ZΣ

−1/2Ê
)1/2
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Because T/N → 0, with probability tending to one, SZ has exactly rank T − 1. See, e.g.,

Anderson (2003). In the rest of the proof, we shall proceed under this event. Write the

eigenvalue decomposition of SZ by

SZ =
T−1∑
k=1

α̂kη̂kη̂
T
k .

Here, the summation is taken up to T − 1 because SZ has rank T − 1. It then follows that

S+
Z =

T−1∑
k=1

1

α̂k

η̂kη̂
T
k .

Write also

PZ =
T−1∑
k=1

η̂kη̂
T
k ,

the projection matrix onto the linear space spanned by Zi − Z̄, i = 1, . . . , T .

By Cauchy-Schwartz inequality

s(ŵmv) =
ETΣ−1/2S+

ZΣ
−1/2Ê(

ÊTΣ−1/2S+
ZS

+
ZΣ

−1/2Ê
)1/2

=
ETΣ−1/2PZS

+
ZΣ

−1/2Ê(
ÊTΣ−1/2S+

ZS
+
ZΣ

−1/2Ê
)1/2

≤
(
ETΣ−1/2PZPZΣ

−1/2E
)1/2

=: ∥PZu∥,

where u = Σ−1/2E. Note that PZ is Haar distributed on the orthogonal group. Therefore,

E∥PZu∥2 =
T − 1

N
∥u∥2.

By law of large numbers,

∥PZu∥2 =
T

N
∥u∥2(1 + op(1)).

See, e.g., Chikuse (2003). The proof is now completed by noting that

∥u∥2 = ETΣ−1E = s2(wmv).
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Appendix B – Proof of Proposition 1

Observe that the map Rd → P : x 7→ PPx is bijective. Let xP ∈ Rd be such that wP(µ) =

PPxP solves

min
w∈P

{γ
2
wTΣw −wTE

}
.

Then xP solves

min
x∈Rd

{γ
2
xTPT

PΣPPx− xTPT
PE
}
.

Therefore

xP =
1

γ
(PT

PΣPP)
−1PT

PE,

which yields the claimed formula for wP
mv.

Appendix C – Proof of Theorem 2

The proof is somewhat lengthy and we break it into several steps for clarity.

C.1 – Convergence of leading eigen-pairs of Σ̂

One of the main technical tools needed is the asymptotic properties of the eigenvalue and

eigenvector pairs of Σ̂. It is well known that the eigen-pairs of Σ̂ may not converge to those

of Σ when the number N of assets is large when compared with the length T of estimation

window. See, e.g., Johnstone and Lu (2009). We shall show here that under the approximate

factor model, the leading ones nonetheless behave reasonably with appropriate scaling.

To this end, denote by

f̄ =
1

T

T∑
t=1

ft, ϵ̄ =
1

T

T∑
t=1

ϵt,

and

Σ̂f =
1

T − 1

T∑
t=1

(ft − f̄)(ft − f̄)T,

Σ̂ε =
1

T − 1

T∑
t=1

(ϵt − ϵ̄)(ϵt − ϵ̄)T.
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Then

Σ̂ = BΣ̂fB
T + Σ̂ε +

1

T − 1

T∑
t=1

B(ft − f̄)(ϵt − ϵ̄)T +
1

T − 1

T∑
t=1

(ϵt − ϵ̄)(ft − f̄)TBT.

Let
1

N
Σ̂ =

∑
k

λ̂kη̂kη̂
T
k , and

1

N
BΣfB

T =
K∑
k=1

λkηkη
T
k

be their respective eigenvalue decomposition. For brevity, we shall assume that all positive

eigenvalues of BΣfB
T/N has multiplicity one, i.e., λ1 > λ2 > . . . > λK . The more general

case can be treated in an identical fashion. We first show that

λ̂k − λk = Op

(
1√
T

+
1√
N

)
, and ∥η̂k − ηk∥ = Op

(
1√
T

+
1√
N

)
, (11)

for k = 1, . . . , K. In the light of the classical results from Bhatia, Davis and McIntosh

(1983), it suffices to show that∥∥∥∥ 1

N

(
Σ̂−BΣfB

T
)∥∥∥∥

F

= Op

(
1√
T

+
1√
N

)
. (12)

To this end, we first observe that

Σ̂−BΣfB
T = B(Σ̂f−Σf )B

T+Σ̂ϵ+
1

T − 1

T∑
t=1

B(ft−f̄)(ϵt−ϵ̄)T+
1

T − 1

T∑
t=1

(ϵt−ϵ̄)(ft−f̄)TBT.

We shall now bound the four terms on the right hand side individually. It is clear that

1

N2

∥∥∥B(Σ̂f − Σf )B
T
∥∥∥2
F
≤ 1

N2
∥B∥42∥Σ̂f − Σf∥2 = Op

(
1

T

)
, (13)

We then consider the second term.

E∥Σ̂ε∥2F = E

∥∥∥∥∥ 1

T − 1

T∑
t=1

(ϵt − ϵ̄)(ϵt − ϵ̄)T

∥∥∥∥∥
2

F

=
1

(T − 1)2
E

∥∥∥∥∥
T∑
t=1

ϵtϵ
T
t − T ϵ̄ϵ̄T

∥∥∥∥∥
2

F

.

Recall that if A1, A2 are both positive definite and A1 − A2 is also positive definite, then

∥A1∥F ≥ ∥A2∥F where ∥ · ∥F is the Frobenius norm. Using this fact, we have

1

(T − 1)2
E

∥∥∥∥∥
T∑
t=1

ϵtϵ
T
t − T ϵ̄ϵ̄T

∥∥∥∥∥
2

F

≤ 1

(T − 1)2
E

∥∥∥∥∥
T∑
t=1

ϵtϵ
T
t

∥∥∥∥∥
2

F

=
1

(T − 1)2
E

∥∥∥∥∥
T∑
t=1

(
ϵtϵ

T
t − Σε

)∥∥∥∥∥
2

F

+
T 2

(T − 1)2
∥Σε∥2F.
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By Assumption E, we get

E

∥∥∥∥∥
T∑
t=1

(
ϵtϵ

T
t − Σε

)∥∥∥∥∥
2

F

≤ C4N
2T.

On the other hand,

∥Σε∥2F ≤ Nλmax(Σε) = O(N)

following Assumption C, where λmax(A) is the largest eigenvalue of A. Together, we have

E
∥∥∥∥ 1

N
Σ̂ε

∥∥∥∥2
F

= O

(
1

N
+

1

T

)
. (14)

We finally bound the last two terms. Note that

E

∥∥∥∥∥
T∑
t=1

B(ft − f̄)(ϵt − ϵ̄)T

∥∥∥∥∥
2

F

≤ ∥B∥2FE

∥∥∥∥∥
T∑
t=1

(ft − f̄)(ϵt − ϵ̄)T

∥∥∥∥∥
2

F

.

By Assumption B,

∥B∥22 ≤ ∥B∥2F = O(N).

On the other hand, by Assumption F,

E

∥∥∥∥∥
T∑
t=1

(ft − f̄)(ϵt − ϵ̄)T

∥∥∥∥∥
2

F

=
K∑
k=1

N∑
j=1

E

(
T∑
t=1

(fkt − f̄k)(εjt − ϵ̄j)

)2

= O(NT ).

Thus,

E

∥∥∥∥∥ 1

N

1

T − 1

T∑
t=1

B(ft − f̄)(ϵt − ϵ̄)T

∥∥∥∥∥
2

F

= O

(
1

T

)
. (15)

Equation (12), and subsequently (11), follow immediately from (13), (14) and (15).

C.2 – Out-of-sample mean of ŵd

Equipped with (11), we now investigate the out-of-sample mean of the estimated subspace

mean-variance portfolio w̃. Recall that

ŵd =
1

γ

K∑
k=1

1

Nλ̂k

(
η̂Tk Ê

)
η̂k

=
1

γ

K∑
k=1

1

Nλ̂k
η̂kη̂

T
kBµf +

1

γ

K∑
k=1

1

Nλ̂k
η̂kη̂

T
kBf̄ +

1

γ

K∑
k=1

1

Nλ̂k
η̂kη̂

T
k ϵ̄,
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where

Ê = Bµf +Bf̄ + ϵ̄.

is the mean returns estimated from historical data. It is not hard to see that

ETŵd =
1

Nγ
µT

fB
T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bµf +

1

Nγ
µT

fB
T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bf̄

+
1

Nγ
µT

fB
T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
ϵ̄.

We now analyze the three terms on the right hand side separately.

We begin with the first term.

1

N
µT

fB
T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bµf

=
1

N
µT

fB
T

(
1

N
BΣfB

T

)+

Bµf +
1

N
µT

fB
T

{
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
}
Bµf

= µT
fΣ

−1
f µf +

1

N
µT

fB
T

{
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
}
Bµf .

Note that ∣∣∣∣∣ 1NµT
fB

T

{
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
}
Bµf

∣∣∣∣∣
≤ 1

N

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
∥∥∥∥∥
2

µT
fB

TBµf .

where ∥ · ∥2 stands for the usual matrix spectral norm. Observe that(
1

N
BΣfB

T

)+

=
K∑
k=1

1

λk
ηkη

T
k .

By (11), ∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
∥∥∥∥∥
2

= Op

(
1√
T

+
1√
N

)
. (16)

Therefore,

1

N
µT

fB
T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bµf = µT

fΣ
−1
f µf +Op

(
1√
T

+
1√
N

)
.

27



Next consider the second term in the expression of ETŵd.∣∣∣∣∣ 1NµT
fB

T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bf̄

∣∣∣∣∣ ≤ 1

N

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k

∥∥∥∥∥
2

∥Bµf∥∥Bf̄∥

≤ 1

N

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k

∥∥∥∥∥
2

∥B∥22∥µf∥∥f̄∥.

By triangular inequality,∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k

∥∥∥∥∥
2

≤

∥∥∥∥∥
(

1

N
BΣfB

T

)+
∥∥∥∥∥
2

+

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
∥∥∥∥∥
2

= λ−1
K +Op

(
1√
T

+
1√
N

)
.

By Assumption B,

∥B∥22 ≤ ∥B∥2F = O(N).

Together with the fact that

∥f̄∥ = Op(T
−1/2),

we get ∣∣∣∣∣ 1NµT
fB

T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Bf̄

∣∣∣∣∣ = Op

(
1

T 1/2

)
.

Similarly the last term can also be bounded.∣∣∣∣∣ 1NµT
fB

T

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
ϵ̄

∣∣∣∣∣ ≤ 1

N

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k

∥∥∥∥∥
2

∥Bµf∥∥ϵ̄∥

≤ 1

N

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k

∥∥∥∥∥
2

∥B∥2∥µf∥∥ϵ̄∥

≤ Op

(
1

T 1/2

)
.

In conclusion, we have

ETŵd = µT
fΣ

−1
f µf +Op

(
1√
T

+
1√
N

)
. (17)

C.3 – Out-of-sample Variance of ŵd

It remains to consider the out-of-sample variance of ŵd:

ŵT
dΣŵd = ŵT

dΣεŵd + ŵT
dBΣfB

Tŵd. (18)

We shall bound the two terms on the right hand side separately.
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C.3.1 – Bounding ŵT
dΣεŵd

Observe that

ŵT
dΣεŵd = ÊT

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Σε

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Ê

≤ 1

N2

∥∥∥∥∥
(

K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Σε

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)∥∥∥∥∥
2

∥Ê∥2.

By triangular inequality,∥∥∥∥∥
(

K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Σε

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)∥∥∥∥∥
2

≤
∥∥∥(BΣfB

T
)+

Σε

(
BΣfB

T
)+∥∥∥

2

+

∥∥∥∥∥(BΣfB
T
)+

Σε

(
BΣfB

T
)+ −

(
BΣfB

T
)+

Σε

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)∥∥∥∥∥
2

+

∥∥∥∥∥
(

K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Σε

(
BΣfB

T
)+ −

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Σε

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)∥∥∥∥∥
2

In the light of (16), we get∥∥∥∥∥
(

K∑
k=1

1

λ̂k
η̂kη̂

T
k

)
Σε

(
K∑
k=1

1

λ̂k
η̂kη̂

T
k

)∥∥∥∥∥
2

→p

∥∥∥(BΣfB
T
)+

Σε

(
BΣfB

T
)+∥∥∥

2
≤ λ−2

K ∥Σε∥2 = O(1).

Next, we bound ∥Ê∥2. Note that

∥Ê∥2 = µT
fB

TBµf + f̄TBTBf̄ + ϵ̄Tϵ̄+ 2µT
fB

TBf̄ + µT
fB

Tϵ̄+ 2f̄TBTϵ̄.

Recall that f is the sample mean of T zero mean random vectors. Therefore Ef2k = O(T−1)

for any 1 ≤ k ≤ K. As K is finite, we get

E∥f̄∥2 = O(T−1).

Similarly, ϵ̄ is the sample mean of T zero mean random vectors of dimension N . Thus,

E∥ϵ̄∥2 = O(NT−1).

Together with the facts that

∥B∥22 = O(N), and ∥µf∥ = O(1),
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we get

µT
fB

TBµf ≤ ∥B∥22∥µf∥2 = O(N);

f̄TBTBf̄ ≤ ∥B∥22∥f̄∥2 = Op(NT
−1);∣∣µT

fB
TBf̄

∣∣ ≤ ∥B∥22∥µf∥∥f̄∥ = Op(NT
−1/2);∣∣µT

fB
Tϵ̄
∣∣ ≤ ∥B∥2∥µf∥∥ϵ̄∥ = Op(NT

−1/2);∣∣f̄TBTϵ̄
∣∣ ≤ ∥B∥2∥f̄∥∥ϵ̄∥ = Op(NT

−1),

which imply that ∥Ê∥2 = Op(N). Thus,

ŵT
dΣεŵd = Op

(
1

N

)
.

C.3.2 – Bounding ŵT
dBΣfB

Tŵd

It remains to bound the second term on the right hand side of (18). Write

ŵT
dBΣfB

Tŵd = µT
fB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf

+(Ê −Bµf )
T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
(Ê −Bµf )

+2(Ê −Bµf )
T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf .

We now analyze the three terms on the right hand side separately.

µT
fB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf

= µT
fB

T
(
BΣfB

T
)+
BΣfB

T
(
BΣfB

T
)+
Bµf

+µT
fB

T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

Bµf

+2µT
fB

T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T
(
BΣfB

T
)+
Bµf

Observe that

µT
fB

T
(
BΣfB

T
)+
BΣfB

T
(
BΣfB

T
)+
Bµf

= µT
fB

T
(
BΣfB

T
)+
Bµf

= µT
fΣ

−1
f µf .
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On the other hand,

µT
fB

T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

Bµf

≤

∥∥∥∥∥
K∑
k=1

1

λ̂k
η̂kη̂

T
k −

(
1

N
BΣfB

T

)+
∥∥∥∥∥
2

2

∥∥∥∥ 1

N
BΣfB

T

∥∥∥∥
2

(
1

N
∥Bµf∥2

)
= Op

(
1

N
+

1

T

)
.

By Cauchy-Schwartz inequality,∣∣∣∣∣µT
fB

T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T
(
BΣfB

T
)+
Bµf

∣∣∣∣∣
≤

(
µT

fB
T
(
BΣfB

T
)+
BΣfB

T
(
BΣfB

T
)+
Bµf

)1/2
×

(
µT

fB
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

Bµf

)1/2

= Op

(
1√
T

+
1√
N

)
.

This shows that

µT
fB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf = µT

fΣ
−1
f µf +Op

(
1√
T

+
1√
N

)
.

Similarly, the second term can be bounded by

(Ê −Bµf )
T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
(Ê −Bµf )

= (Ê −Bµf )
T
(
BΣfB

T
)+
BΣfB

T
(
BΣfB

T
)+

(Ê −Bµf )

+(Ê −Bµf )
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T

×

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

(Ê −Bµf )

+2(Ê −Bµf )
T

{
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k −

(
BΣfB

T
)+}

BΣfB
T
(
BΣfB

T
)+

(Ê −Bµf )

= Op

(
1

T

)
+Op

(
1

NT
+

1

T 2

)
+Op

(
1

N1/2T
+

1

T 3/2

)
.
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Now, the third term can be bounded using Cauchy Schwartz inequality:∣∣∣∣∣(Ê −Bµf )
T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf

∣∣∣∣∣
≤

{
µT

fB
T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
Bµf

}1/2

×

{
(Ê −Bµf )

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
BΣfB

T

(
K∑
k=1

1

Nλ̂k
η̂kη̂

T
k

)
(Ê −Bµf )

}1/2

= Op

(
1√
T

)
To sum up, we have

ŵT
dBΣfB

Tŵd = µT
fΣ

−1
f µf +Op

(
1√
T

+
1√
N

)
. (19)

Together with (17), we get

s2(ŵd) =
(ETŵd)

2

ŵT
dBΣfBTŵd

= (µT
fΣ

−1
f µf )

−1 +Op

(
1√
T

+
1√
N

)
= s2(wmv) +Op

(
1√
T

+
1√
N

)
,

which completes the proof.

Appendix D – Alternative Portfolio Rules

For completeness, we list here the alternative portfolio rules included in the numerical ex-

periments from Section 4.

• Näıve diversification

we =
1

N
1.

• The portfolio rule of Jorion (1986) is based on Bayes-Stein estimates of E and Σ:

ÊBS = (1− ν)Ê + νÊg1
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and

Σ̂BS =

(
1 +

1

T + λ

)
Σ̃ +

λ

T (T + 1 + λ)

11T

1TΣ̃−11

where

Êg =
1TΣ̂−1Ê

1TΣ̂−11
, ν =

N + 2

N + 2 + T (Ê − Êg1)TΣ̃−1(Ê − Êg1)
,

and

Σ̃ =
T − 1

T −N − 2
Σ̂, λ = (N + 2)/[(Ê − Êg1)

TΣ̃−1(Ê − Êg1)].

The portfolio weights are then given by

ŵPJ =
1

γ
(Σ̂BS)−1ÊBS.

• The rule from Kan and Zhou (2007):

ŵKZ =
1

γ

T −N − 2

c(T − 1)

[
ηΣ̂−1Ê + (1− η)ÊgΣ̂

−11
]
,

where

η =
ψ2

ψ2 +N/T
, ψ2 = (Ê − Êg1)

TΣ̂−1(Ê − Êg1).

• Combination rule based on sample mean-variance portfolio and näıve diversification

(Tu and Zhou, 2011):

ŵS&N = (1− δ)we + δ
T −N − 2

T − 1
ŵmv,

where

δ = π1/(π1 + π2)

and

π1 = wT
e Σ̂we −

2

γ
wT

e Ê +
1

γ2
θ̃2,

π2 =
1

γ2

[
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
− 1

]
θ̃2 +

(T − 2)(T −N − 2)

γ2(T −N − 1)(T −N − 4)

N

T
.

Here

θ̃2 =
(T −N − 2)θ2 −N

T
+

2θN(1 + θ2)−(T−2)/2

T
∫ θ2/(1+θ2)

0
xN/2(1− x)(T−N−2)/2dx

and

θ2 = ÊTΣ̂−1Ê.
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• Combination rule based on KZ and näıve diversification (Tu and Zhou, 2011)

ŵKZ&N = (1− ζ)we + ζŵKZ,

where

ζ =
π1 − π13

π1 − 2π13 + π3
,

and

π13 =
1

γ2
θ̃2 − 1

γ
wT

e Ê +
(T −N − 1)(T −N − 4)

γ(T − 2)(T −N − 2)

[
ηwT

e Ê + (1− η)Êgw
T
e 1
]

−(T −N − 1)(T −N − 4)

γ2(T − 2)(T −N − 2)

[
ηÊTΣ̃−1Ê + (1− η)ÊgÊ

TΣ̃−11
]
,

π3 =
1

γ2
θ̃2 − (T −N − 1)(T −N − 4)

γ2(T − 2)(T −N − 2)

(
θ̃2 − N

T
η

)
.
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