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We consider efficient construction of nonlinear solution paths for general �1-regularization. Unlike the existing methods that incrementally
build the solution path through a combination of local linear approximation and recalibration, we propose an efficient global approximation
to the whole solution path. With the loss function approximated by a quadratic spline, we show that the solution path can be computed
using a generalized Lars algorithm. The proposed methodology avoids high-dimensional numerical optimization and thus provides faster
and more stable computation. The methodology also can be easily extended to more general regularization framework. We illustrate such
flexibility with several examples, including a generalization of the elastic net and a new method that effectively exploits the so-called
“support vectors” in kernel logistic regression.
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1. INTRODUCTION

In a general predictive modeling framework, a response vari-
able Y is related to a p-dimensional explanatory variable X ≡
(X1, . . . ,Xp)

′ through

η0(X) = β0 + X′β, (1)

where β = (β1, . . . , βp)
′ is a p-dimensional unknown coeffi-

cient vector. When X is observable, the value of η0(X) or its
transformation can be used as a predictor of Y . The goal, there-
fore, is to retrieve η0(·) or, equivalently, β0 and β , given a set of
training data (x1, y1), . . . , (xn, yn) consisting of n independent
copies of (X,Y). A commonly used approach to estimating η0
is regularized empirical risk minimization. Let L(Y, η(X)) be a
loss function such that its expectation with respect to the joint
distribution of (X,Y), E[L(Y, η(X))], is minimized at η0(·).
Then η0 can be estimated by

η̂ = arg min
η

[Ln(η) + λJ(η)], (2)

where

Ln(η) = 1

n

n∑
i=1

L(yi, η(xi)) (3)

and J(·) is a penalty function. For brevity, we write Ln(η)

and Ln(β0, β) interchangeably in what follows. The penalty
J(·) is often defined through the coefficient vector β , that is,
J(η) ≡ J(β). Many popular prediction methods can be formu-
lated using this framework; for example, in ridge regression,
L(Y, η(X)) = [Y − η(X)]2 and J(β) = ‖β‖2

�2
= ∑p

j=1 β2
j .

When p is large, it is often the case that some of the pre-
dictors have only marginal influence on the response. Effec-
tively removing these insignificant explanatory variables could
drastically improve estimation accuracy and enhance model in-
terpretability. An extremely successful approach for exploiting
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such sparsity is to use �1-regularization in the empirical risk
minimization,

J(β) = ‖β‖�1 =
p∑

j=1

|βj|. (4)

In the case of multiple linear regression, this becomes the pop-
ular Lasso (Tibshirani 1996). Under mild regularity conditions
on the loss function, the �1-norm penalty induces sparsity in the
estimated regression coefficient and excludes the insignificant
explanatory variables through continuous shrinkage. For some
particular types of loss functions, the �1-regularization methods
are efficient to compute; for example, in multiple linear regres-
sion, Efron et al. (2004) proposed the Lars algorithm for com-
puting the entire solution paths of the Lasso. Osborne, Presnell,
and Turlach (2000) also considered a similar homotopy algo-
rithm for solving the Lasso. Rosset and Zhu (2007) investigated
a class of �1-penalized problems with piecewise linear solution
paths. Lars-type path-following algorithms also have been used
to compute solution paths of the Huberized Lasso (Rosset and
Zhu 2007), the �1-penalized support vector machine (Zhu et al.
2003; Hastie et al. 2005), and the �1-penalized quantile regres-
sion (Li and Zhu 2008).

There are, however, many interesting �1-penalized empirical
risk minimization problems whose solution paths are not piece-
wise linear and for which the aforementioned algorithms cannot
be directly applied. One common example is the �1-penalized
logistic regression. Rosset (2004) suggested a general algorithm
for following “curved” regularized solution paths. His algo-
rithm iteratively changes the regularization parameter and up-
dates the coefficient estimate by a Newton iteration. Zhao and
Yu (2007) proposed the so-called “boosted Lasso,” that corrects
the forward-stagewise boosting algorithm by allowing back-
ward steps whenever a step in forward-stagewise boosting fit-
ting deviates from that of the Lasso. Park and Hastie (2007)
proposed a predictor–corrector algorithm that computes the en-
tire solution path of �1-penalized generalized linear models. All
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of these approximate solution paths are built in an incremen-
tal fashion. The approximation error is carefully monitored and
controlled locally at each stage. Whenever necessary, the solu-
tion path is recalibrated to control the elevated approximation
error. Because the approximating paths may comprise numer-
ous steps, the cumulative cost of locally controlling the approx-
imation error could be expensive. Furthermore, recalibration in-
volves solving a high-dimensional nonlinear optimization prob-
lem. This is often done through iterative algorithms, which may
run into numerical instability.

In this article we propose a global approach to efficiently ap-
proximating the nonlinear �1-regularization solution paths. In
contrast to the existing work, our algorithm controls the approx-
imation error globally, thereby allowing us to reduce the com-
putational cost incurred in iterative local approximation meth-
ods. The proposed approach starts with a quadratic spline ap-
proximation to the loss function, which most often can be made
arbitrarily accurate. For the quadratic spline loss, a generalized
Lars-type algorithm is devised to compute the exact solution
path, which we call the efficient global approximation (EGA)
path. We show that the EGA path can well approximate the
original nonlinear �1-regularization solution path, and that its
approximation error is controlled by the approximation accu-
racy of the quadratic spline to the loss function. As opposed
to the aforementioned local methods, our approach does not
require numerical optimization. Once the approximate loss is
adopted, the whole solution path can be computed explicitly
and efficiently.

This article is organized as follows. In Section 2 we describe
the EGA path methodology, derive the algorithm for computing
the EGA paths, and show that these EGA paths can be arbitrar-
ily close to the original nonlinear paths if a sufficiently good
approximation to the loss function is adopted. In Section 3 we
extend the methodology to construct solution paths for several
more general regularization methods. In particular, we apply
our algorithm to solve a generalization of the elastic net (Zou
and Hastie 2005) and the support-vector pursuit problem in ker-
nel logistic regression.

2. GLOBAL APPROXIMATION OF
�1–REGULARIZATION PATH

In practice, �1-regularized empirical risk minimization pro-
ceeds in two steps. First, a solution path indexed by λ is built.
Then the final model is selected on the solution path by cross-
validation or using a criterion such as the Akaike information
criterion (AIC) or the Bayes information criterion (BIC). In
general, the solution path must be approximated by evaluating
β(λ) for a fine grid of tuning parameters, and there is a trade-off
between approximation accuracy and computational cost in de-
termining how fine a grid of tuning parameters should be con-
sidered. Park and Hastie (2007) proposed a strategy to allevi-
ate such problems by recognizing that the solution path may
be approximated reasonably well in certain regions with only
few tuning parameters. An even more challenging problem is
the numerical instability in calculating β(λ) for a given λ. This
is routinely done through numerical optimization, which is it-
erative in nature. Even when the objective function is strictly
convex, algorithms for doing this can be unstable with high-
dimensional data, as we demonstrate in Section 2.4.

Here we tackle the problem from a different angle. Instead of
approximating β(λ) for a given λ, we attempt to approximate
the vector-valued function β(·). Recall that

(β0(λ),β(λ)) = arg min

[
1

n

n∑
i=1

L(yi, η(xi)) + λ

p∑
j=1

|βj|
]
. (5)

We propose to approximate (β0(λ),β(λ)) by

(β̃0(λ), β̃(λ)) = arg min

[
1

n

n∑
i=1

L̃(yi, η(xi)) + λ

p∑
j=1

|βj|
]
, (6)

where L̃ is an approximation to L. The choice of L̃ should en-
sure that the solution path (β̃0(·), β̃(·)) closely approximates
the original solution path (β0(·), β(·)) and also is easy to com-
pute. In particular, we consider approximating L by a quadratic
spline and show that such approximation enjoys both proper-
ties.

2.1 Approximate Loss Function

Most common loss functions are twice differentiable with re-
spect to η. For brevity, in this article we focus on these loss
functions; however, the discussion can be easily extended to the
more general situations as long as L is convex with respect to η.
When L is twice differentiable, it is desirable for its approxima-
tion also to enjoy such properties. Toward this end, we consider
approximating L using a quadratic spline,

L̃(Y, η) = a0(Y)η(X)2 + b0(Y)η(X) + c0(Y)

+
M∑

j=1

dj(Y)(η(X) − κj(Y))2+, (7)

where (x)+ represents the positive part of x and κ1 < · · · < κM

are the so-called “knots.” Various loss functions can be writ-
ten in the form of (7); popular examples include quadratic
loss, L(Y, η) = (Y − η)2, and squared hinge loss, L(Y, η) =
(1−Yη)2+, among others. More generally, good quadratic spline
approximations can be obtained for a large class of loss func-
tions; for example, when ∂2L/∂η2 satisfies uniform Lipschitz
condition of order α ≥ 0, in that

sup
Y

∣∣∣∣∣∂2L

∂η2

∣∣∣∣
(Y,η1)

− ∂2L

∂η2

∣∣∣∣
(Y,η2)

∣∣∣∣∣ ≤ C1|η1 − η2|α (8)

for any |η1|, |η2| ≤ C2 and some constants C1,C2 > 0, from a
Taylor expansion, it can be derived that there exists a quadratic
spline, L̃, of form (7) so that

sup
|η|≤C2

|L(Y, η) − L̃(Y, η)| = O
(
M−(2+α)

)
. (9)

We now show that the closeness between L and L̃ gener-
ally entails the closeness between the corresponding solution
paths, and thus the solution path for L can be approximated
by (β̃0(·), β̃(·)). Toward this end, let {L̃[k](·, ·) : k ≥ 1} be a se-
quence of approximations to L such that

lim
k→∞ sup

η

∣∣L̃[k]
n (η) − Ln(η)

∣∣ → 0, (10)
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where

L̃[k]
n (η) = 1

n

n∑
i=1

L̃[k](yi, η(xi)). (11)

Clearly, (10) can be ensured if

lim
k→∞ sup

1≤i≤n,η

∣∣L̃[k](yi, η) − L(yi, η)
∣∣ → 0. (12)

Write(
β̃

[k]
0 (λ), β̃[k](λ)

) = arg min

[
L̃[k]

n (η) + λ

p∑
j=1

|βj|
]
. (13)

We then have the following theorem concerning the approxima-
tion error of (β̃

[k]
0 (λ), β̃[k](λ)).

Theorem 1. For any λ ≥ 0 such that (β0(λ),β(λ)) and
{(β̃[k]

0 (λ), β̃[k](λ)) : k ≥ 1} are uniquely defined, we have

β̃
[k]
0 (λ) → β0(λ), β̃[k](λ) → β(λ) (14)

as k → ∞. Furthermore, if Ln is strictly convex in a neighbor-
hood N around (β0(λ),β(λ)), then, for any ε > 0, there exist
constants k0,C > 0 such that for any k ≥ k0,∥∥β̃[k](λ) − β(λ)

∥∥2
�2

≤ C
∣∣L̃[k]

n (η) − Ln(η)
∣∣. (15)

In Theorem 1, (14) qualitatively justifies the EGA path idea
and (15) further quantifies its approximation accuracy. Now
that we have approximated L by a quadratic spline L̃, it suf-
fices to compute (β̃0(·), β̃(·)). When using quadratic loss as in
the multiple linear regression, Efron et al. (2004) developed the
least-angle regression and showed that a simple modification
of Lars yields the entire Lasso solution path. Their results can
be extended to the �1-penalized quadratic spline loss. Follow-
ing Efron et al. (2004), we first derive a generalized Lars al-
gorithm, and then show that a simple modification of the gen-
eralized Lars algorithm can compute the entire solution path
(β̃0(·), β̃(·)).
2.2 Generalized Lars Algorithm

We start with no variables selected in the model. In this
case, only the intercept is present; thus the starting point can

be given as β[1] = 0 and β
[1]
0 = arg min L̃n(β0). We next deter-

mine which variable should enter first. Without loss of general-
ity, assume that κsi(yi) < β

[1]
0 < κsi+1(yi), i = 1,2, . . . ,n. In a

sufficiently small neighborhood around (β
[1]
0 , (β[1])′)′,

L̃n(β0, β) ≡ 1

n

n∑
i=1

L̃(yi, β0 + x′
iβ)

= 1

n

n∑
i=1

[
asi(yi)η

2(xi) + bsi(yi)η(xi) + csi(yi)
]

= 1

n

n∑
i=1

asi(yi)

(
β0 + x′

iβ + bsi(yi)

2asi(yi)

)2

+ 1

n

n∑
i=1

(
csi(yi) − bsi(yi)

2

4asi(yi)

)
,

where

aj(Y) = a0(Y) +
∑
j′≤j

dj′(Y),

bj(Y) = b0(Y) − 2
∑
j′≤j

dj′(Y)κj′(Y),

cj(Y) = c0(Y) +
∑
j′≤j

dj′(Y)κ2
j′ (Y).

This amounts to a weighted linear regression of pseudore-
sponse,

y∗ =
(

− bs1(y1)

2as1(y1)
,− bs2(y2)

2as2(y2)
, . . . ,− bsn(yn)

2asn(yn)

)′
(16)

over the observed predictors X = (x1, . . . ,xn)
′.

For n pairs of random variables (z11, z12), . . . , (zn1, zn2) with
case weights w1, . . . ,wn ≥ 0, define the weighted correlation
between them by

covw(Z1,Z2) = 1∑n
i=1 wi

n∑
i=1

wi(zi1 − z̄w
1 )(zi2 − z̄w

2 ), (17)

where

z̄w
j =

∑n
i=1 wizij∑n

i=1 wi
(18)

is the weighted mean. In our case, set the weights to be wi =
asi(yi), i = 1, . . . ,n. Then the predictor most weight-correlated
with Y∗ can reduce L̃(β0, β) most rapidly and should enter first.
We define the active set A = {j1}, where Xj1 is the most weight-
correlated with y∗. We now move along the direction with only
variable j1 in the model. Xj1 remains the only variable that re-
duces L̃n(β0, β) most rapidly until one of the following two
possible events occurs:

(E1) Another variable j2 has as much weighted correlation
with “residual”

(y∗
1 − η(x1), y∗

2 − η(x2), . . . , y∗
n − η(xn))

′ (19)

as variable j1.
(E2) An observation (xi, yi) leaves the sith segment, in that

η(xi) = β0 + x′
iβ reaches either κsi(yi) or κsi+1(yi).

Figure 1 illustrates how the progression should be adjusted
after these events occur. Similar to the original Lars, when (E1)
occurs, we simply add j2 to the active set A, and the generalized
Lars now proceeds in a direction with both Xj1 and Xj2 such
that L̃(β0, β) reduces the fastest. This direction happens to be
the direction equiangular between both predictors, as shown in
Figure 1.

Now consider event (E2). Without loss of generality, assume
that x1 reaches κs1+1(y1). From this point on, η(x1) falls into
the (s1 + 1)th segment of (7). Toward this end, we need to up-
date s1 by s1 + 1. The change of segment also triggers the up-
date of the pseudoresponse and weights; thus we need to adjust
the pseudoresponse and each predictor accordingly so that the
weighted mean remains 0,

y∗
i = y∗

i − (ȳ∗)w, x∗
ij = xij − x̄w

j , j = 1, . . . ,p. (20)
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Figure 1. Adjustment when (E1) or (E2) occurs. As the generalized
Lars algorithm proceeds, two types of events may occur. In (E1), X2
has as much correlation with the residual as X1. In (E2), one observa-
tion reaches the end of a segment and triggers the change of weight,
which in turn results in the change of angle between X1 and X2.

It is not difficult to check that X∗
j1

remains most correlated with
the residual with the updated weights and responses. We con-
tinue marching in this direction. Basically, we recalibrate the
angles between variables in response to (E2), as illustrated in
Figure 1. The generalized Lars stops when L̃n(β0, β) is mini-
mized.

To summarize, the generalized Lars is given by the following
algorithm:

Algorithm (Generalized Lars).

Step 1. Set q = 1 and β[q] = 0. Compute β
[q]
0 as the mini-

mizer of L̃n(β0). Initialize s[q]
i so that κ

s[q]
i

< β
[q]
0 < κ

s[q]+1
i

for

i = 1, . . . ,n.
Step 2. Update the following:

(a) Pseudoresponse:

y∗ =
(

− bs1(y1)

2as1(y1)
,− bs2(y2)

2as2(y2)
, . . . ,− bsn(yn)

2asn(yn)

)′
. (21)

(b) Weights:

wi = asi(yi), i = 1, . . . ,n. (22)

(c) Centered pseudoresponse and predictors:

y∗
i = y∗

i − (ȳ∗)w,
(23)

x∗
ij = xij − x̄w

j , j = 1, . . . ,p.

(d) Residual:

r[q] = (
y∗

1 − x∗
1β

[q], y∗
2 − x∗

2β
[q], . . . , y∗

n − x∗
nβ

[q]). (24)

If q = 1, then actively set

A[q] = arg max
j

{∣∣covw(
Xj, r[q])∣∣}. (25)

Step 3. Compute the current direction, γ , which is a p-
dimensional vector with γ(A[q])c = 0 and γA[q] as the weighted
least squares estimate when regressing r[q] over X

∗
A[q] , where

X
∗ = (x∗

ij) and the subscript A[q] indicates the corresponding

elements of a vector, or columns of a matrix are extracted. More
specifically,

γA[q] = [(
X

∗
A[q]

)′WX
∗
A[q]

]−1(
X

∗
A[q]

)′Wr[q], (26)

where W = diag(w1, . . . ,wn).
Step 4. Compute how far the algorithm proceeds in the di-

rection of γ until one of the following events occurs:

(a) A new variable j enters the active set. The distance αj

solves∣∣(X∗
j )

′Wr[q] − αj(X
∗
j )

′WX
∗γ

∣∣
= ∣∣(X∗

a)
′Wr[q] − αj(X

∗
a)

′WX
∗γ

∣∣, (27)

where X
∗
j is the jth column of X

∗ and a is an arbitrary

index in A[q]. It is not difficult to show that αj can be
given explicitly as

αj = min+

{
(X∗

j − X
∗
a)

′Wr[q]

(X∗
j − X∗

a)
′WX∗γ

,
(X∗

j + X
∗
a)

′Wr[q]

(X∗
j + X∗

a)
′WX∗γ

}
,

(28)
where min+ takes the minimum of the positive elements.

(b) η(xi) leaves the s[q]
i th segment of (7). Note that after

moving uiγ from β[q], the intercept becomes

(ȳ∗)w − (x̄w
1 , . . . , x̄w

n )
(
β[q] + uiγ

)
. (29)

Therefore, η(xi) becomes

(ȳ∗)w + (x∗
i )

′(β[q] + uiγ
)
. (30)

When (x∗
i )

′γ > 0, η(xi) will reach κsi+1(yi) with

ui = 1

(x∗
i )

′γ
(
κsi+1(yi) − (ȳ∗)w − (x∗

i )
′β[q]). (31)

On the other hand, if (x∗
i )

′γ < 0, then η(xi) will reach
κsi−1(yi) with

ui = 1

(x∗
i )

′γ
(
κsi−1(yi) − (ȳ∗)w − (x∗

i )
′β[q]). (32)

Step 5. If a variable j enters the active set, then let α = αj,
and update A[q+1] = A[q] ∪ {j}. If η(xi) switches regions, then
let α = ui, and update s[q+1]

i = s[q]
i ± 1 accordingly.

Step 6. Update β[q+1] = β[q] + αγ and q = q + 1. Go back
to step 2 if α < 1.

When quadratic loss is used as in the multiple linear regres-
sion, (E2) will never occur, and the foregoing algorithm reduces
to the original Lars.

2.3 �1-Regularized Quadratic Spline Loss

To take advantage of the generalized Lars algorithm, we first
note that the �1-regularized solution path corresponding to L̃ is
piecewise linear.

Theorem 2. Assume that aj ≥ 0 for all j. Then (β̃0(·), β̃(·))
is piecewise linear.
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Rosset and Zhu (2007) showed that the �1-penalized “al-
most” quadratic loss has piecewise linear solution paths. The
loss function that they considered was piecewise quadratic in
terms of the residual (Y −η) in regression and the margin Yη in
classification. Theorem 2 is more general, in that it does not rely
on the notion of residual or margin. Such generality becomes
useful when we consider, for example, spline approximations
to the negative log-likelihood for generalized linear models or
the partial likelihood for Cox proportional hazards models.

Using the piecewise linear property of the solution paths cor-
responding to L̃, the solution paths can be computed by mod-
ifying the generalized Lars algorithm. The only difference oc-
curs in steps 4 and 5, where another possible event, elimination
of a selected variable, may occur. When this happens, we sim-
ply remove the variable and continue in the direction with the
remaining variables in the active set. More specifically, we re-
place steps 4 and 5 in the generalized Lars by the following:

Algorithm (Generalized Lasso).

Step 4′. Compute how far the algorithm proceeds in the di-
rection of γ until one of the following events occurs:

(a) A new variable j enters the active set. Define αj as before.

(b) η(xi) leaves the s[q]
i th segment of (7). Define ui as before.

(c) A variable j vanishes from A[q]. This occurs only when
β

[q]
j and γj are of opposite signs. Define αj = −β

[q]
j /γj.

Step 5′. If a variable j enters the active set, then denote α =
αj and update A[q+1] = A[q] ∪ {j}. If η(xi) switches regions,

then denote α = ui and update s[q+1]
i = s[q]

i ± 1 accordingly. If
a variable j leaves the active set, then denote α = αj and update
A[q+1] = A[q] − {j}.

The following theorem justifies our proposed algorithm.

Theorem 3. Under the “one at a time” condition described
next, the foregoing algorithm produces the whole solution path
(β̃0(·), β̃(·)).

The term “one-at-a-time condition” was first used by Efron
et al. (2004) in deriving the connection between Lasso and Lars
for multiple linear regression. Similar conditions have been
identified by Osborne, Presnell, and Turlach (2000). In our case,
this term means that the events described in step 4′ do not oc-
cur simultaneously. This is generally true in practice and can
always be enforced by slightly perturbing the response. (For
more detailed discussions on this, see Osborne, Presnell, and
Turlach 2000 or Efron et al. 2004.)

In principle, linear splines also could be used to approxi-
mate the loss function, in which case the resulting approxi-
mate solution paths would be piecewise linear as well, and a
new generalized Lars algorithm could be devised for comput-
ing the linear spline loss solution paths. (Interested readers are
referred to Yao and Lee 2007 for a recent investigation into
problems of this type.) In the present work we prefer quadratic
splines, for a couple of reasons. First and foremost, quadratic
splines approximate the original loss function better than linear
splines. For example, when ∂2L/∂η2 is Lipschitz of order α,
linear splines with M knots generally have approximation er-
rors of the order M−(1+α), as opposed to M−(2+α) for quadratic

splines. In other words, to achieve similar approximation accu-
racy, many more knots are needed for linear splines than for
quadratic splines. Note that the complexity of the generalized
Lars algorithm depends on how often event (E1) or (E2) occurs;
the latter happens more often as the number of knots increases.
Therefore, quadratic spline loss can have tremendous computa-
tional advantages over linear spline loss when used for our pur-
poses. Second, linear spline losses are nondifferentiable at the
knots. As a result, many of the fitted values η̃(xi) = β̃0 + x′

iβ̃ ,
i = 1, . . . ,n, will take values at the knots of L̃. Such behavior
is well known in contexts such as support vector machines. Al-
though this is a desirable feature in these situations, it is more
peculiar in our setting, because such “sticky” points are artifacts
of the approximate loss, not of the original loss.

2.4 Example: �1-Regularized Logistic Regression

To illustrate the proposed methodology, we now consider an
application to the �1-regularized logistic regression. Logistic re-
gression falls into the more general class of generalized linear
models where the loss function is given by

L(Y, η(X)) = −Yη(X) + b[η(X)]. (33)

For logistic regression, b(η) = ln[1 + exp(η)]. Clearly, the loss
function is not a quadratic spline. To approximate it with a
quadratic spline, it suffices to approximate the univariate func-
tion b(·) by a quadratic spline. This is a classical approximation
problem that has been well studied in the literature (DeVore and
Lorentz 1993). Consider approximating b(η) by

b̃(η) = a0η
2 + b0η + c0 +

M∑
j=1

dj(η − κj)
2+. (34)

The parameters (i.e., the coefficients a0,b0, c0, and dj and the
knots κj) in a quadratic spline can be solved numerically, that
is, as the solution to the nonlinear optimization problem

min
a0,b0,c0,dj,κj

(
max

k
|b(ηk) − b̃(ηk)|

)
(35)

subject to the constraint that a0 + ∑J
j=1 dj ≥ 0 for all J ≤ M to

ensure convexity. Here {ηk} is a set of prespecified values for
evaluating the largest approximation error, usually a fine grid
defined over the domain of b(·). The absolute error in (35) also
can be replaced by other criteria that measure the approxima-
tion quality of b̃(·). Our experience suggests that the largest ab-
solute error works pretty well in this case.

Take the logistic regression as an example. For M = 2, the
following approximation can be obtained using the aforemen-
tioned strategy with 100 equally spaced ηk’s in [−5,5]:

b̃(η) =
⎧⎨⎩

0.038, if η ≤ −2.77,

0.09η2 + 0.5η + 0.73, if |η| ≤ 2.77,

η + 0.038, if η ≥ 2.77.
(36)

Figure 2(a) shows b̃(·) together with b(·). The approximation
error also can be evaluated:

sup
η,Y

|L(Y, η) − L̃(Y, η)| = sup
η

|b(η) − b̃(η)| = 0.038. (37)

This approximation can be improved with an increasing num-
ber of knots; for example, the approximation error is de-
creased by about 13%, to 0.033, when M = 4. It is noteworthy
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(a) (b) (c)

Figure 2. A side-by-side comparison of EGA path and exact (GLM) path in the synthetic example. (a) b(η) together with its approximation
(36). (b) The solution path constructed by EGA path. (c) The exact solution path computed by evaluating the �1-regularized estimate for the 200
regularization parameters marked by the ticks on the horizontal axis, and then linearly interpolating between the estimates.

that the larger the M, the more expensive the computation of
(β̃0(·), β̃(·)). In practice, a good choice of M reflects a trade-
off between approximation accuracy and computational com-
plexity. In the case of logistic loss, our experience suggests that
M = 2 is a good choice; thus we use this approximation for the
logistic regression loss throughout the rest of the article.

For illustration purposes, we consider a simulated example
with n = 50 observations and p = 5 predictors. The predictors
were generated from a multivariate normal distribution with
mean 0 and cov(Xi,Xj) = 0.5|i−j|. The true η(X) is given by

η(X) = 2X1 + X2 − 2X3 − X4 + 0 · X5. (38)

Figure 2 shows the EGA path and the exact solution path.
The exact path was constructed by evaluating the exact �1-
regularized estimate at 200 tuning parameters. The locations of
the exact solutions are represented by the ticks on the horizon-
tal axis. The figure clearly shows that the approximation works
very well. We also ran the EGA path method with M = 4 knots
and found no noticeable difference from the results reported
here.

An alternative strategy for constructinf a piecewise linear
approximation to the solution path of �1-regularized logistic
regression was recently proposed by Park and Hastie (2007).
The main idea of this so-called “GLM path” is to judiciously
identify the “transition” points at which a variable is about
to be added to or dropped from the model, and then use a
nonlinear optimization solver to compute the exact solution at
these transition points. The solution path is then constructed
by linearly interpolating these exact solutions. The exact so-
lution at each transition point is computed by Hessian-based
iterative algorithms, which can be costly when p is large. In
contrast, explicit formulas are available for each update of the
proposed EGA path methodology, and an expensive nonlinear
optimization solver is not needed. Besides reducing the com-
putational cost, avoiding numerical optimization also provides
stability in computing the EGA path. Hessian-based iterative al-
gorithms for solving the �1-regularized logistic regression may
be subject to numerical instability during intermediate itera-
tions.
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(a) (b)

Figure 3. EGA path (a) and GLM path (b) for the Sonar data.

To demonstrate these differences, we applied both methods
to the Sonar data, which were previously used by Gorman and
Sejnowski (1988) in their study of the classification of sonar
signals. The task is to train a classifier to discriminate between
sonar signals bounced off a metal cylinder and those bounced
off a roughly cylindrical rock based on a set of 60 numbers
ranging from 0.0 to 1.0. Each number represents the energy
within a particular frequency band, integrated over a certain
time period. The integration aperture for higher frequencies oc-
cur later in time, because these frequencies are transmitted later
during the chirp. There are a total of 208 signal observations,
of which 97 were bounced off a rock and the remaining were
bounced off a metal cylinder. We fit an �1-regularized logistic
regression model to the Sonar data. The approximate solution
paths are given in Figure 3. The similarity is evident; however,
the computational advantage of the EGA path is noteworthy. An
EGA path was constructed within 2.1 seconds, whereas con-
structing a GLM path with 200 regularization parameters took
6.3 seconds on the same computer. Also note that for 190 out
of the 200 regularization parameters, the numerical optimiza-
tion solver used by the GLM path encountered the problem of
an ill-conditioned Hessian in intermediate iterations and gave
convergence warnings.

3. OTHER �1–RELATED REGULARIZED PATHS

Our proposed methodology also can be easily extended to
compute the global approximate solution paths of several �1-
related regularization methods.

3.1 Generalized Elastic Net

The elastic net proposed by Zou and Hastie (2005) uses a
mixed �1 and �2 regularization in the multiple linear regres-
sion. Zou and Hastie (2005) and subsequent studies (see, e.g.,
Park and Hastie 2007) demonstrated that the elastic net tends to
yield more stable estimates than the usual �1-regularization in
the presence of highly correlated predictors. Although the origi-
nal elastic net was developed for multiple linear regression, the
idea can be naturally extended to the more general predictive
framework, where it can be formulated as

(β0(λ1, λ2), β(λ1, λ2)) = arg min
β0,β

[
1

n

n∑
i=1

L(yi, β0 + x′
iβ)

+ λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj|
]
. (39)

More generally, we can consider

(β0(λ1, λ2), β(λ1, λ2)) = arg min
β0,β

[
1

n

n∑
i=1

L(yi, β0 + x′
iβ)

+ λ2β
′�β + λ1

p∑
j=1

|βj|
]
, (40)

where � is a prespecified positive semidefinite p × p matrix.
When � is the identity matrix, (40) reduces to the generalized
elastic net. For a given λ2, the solution path of the generalized
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Figure 4. EGA path for the leukemia data. The gray vertical line corresponds to the tuning parameter chosen by 10-fold cross-validation.

elastic net, or, more generally (40), is nonlinear as a function
of λ1. To get an accurate piecewise linear approximation of the
nonlinear solution path, we apply the EGA path idea by consid-
ering

(β̃0(λ1, λ2), β̃(λ1, λ2))

= arg min

[
L̃n(η) + λ2β

′�β + λ1

p∑
j=1

|βj|
]
, (41)

where L̃ is the quadratic spline approximation to L. Follow-
ing Theorem 1, it can be shown that the closeness between
L̃ and L implies the closeness between (β̃0(λ1, λ2), β̃(λ1, λ2))

and (β0(λ1, λ2), β(λ1, λ2)) (see Appendix A.4). In practice, λ2

often is chosen from a small number of candidates, that is,
{0,0.01,0.1,1,10,100} (see, e.g., Zou and Hastie 2005). The
impact of λ1 is more complex, and the ability to construct the
solution path indexed by λ1 for each value of λ2 is very impor-
tant. The generalized Lars algorithm also can be easily modified
for this purpose, as detailed in Appendix A.5.

To illustrate, first consider an application of the generalized
elastic net (39) to the leukemia data set (Golub et al. 1999).
This data set comprises 7129 genes and 72 samples; 38 of the
samples, including 27 type 1 leukemia (acute lymphoblastic
leukemia) and 11 type 2 leukemia (acute myeloid leukemia),
are used as the training set. The goal is to construct a diagnostic
rule based on the expression levels of the 7219 genes to pre-
dict the type of leukemia present. The remaining 34 samples
are used as test set. We applied logistic loss with elastic net
penalty (39) to the training data. As before, we used the spline

approximation with M = 2. We used 10-fold cross-validation
to jointly select tuning parameters λ1 and λ2; in particular, the
value chosen for λ2 was 0.01. Figure 4 shows the solution path
as a function of λ1 that corresponds to λ2 = 0.01. The value
of λ1 selected is represented by the vertical broken line. The
corresponding classification rule uses 21 genes. The cross- val-
idation error was 1/38, whereas the test error was 2/34. The
performance here is comparable to that in a previous analysis
reported by Zou and Hastie (2005) and Park and Hastie (2007).

3.2 Support Vector Pursuit

We now discuss an interesting example of (40) that can iden-
tify support vectors in nonlinear discriminant analysis. Kernel
methods are often used instead of linear methods to capture pos-
sible nonlinearity in η(·). This is often done in the framework
of reproducing kernel Hilbert spaces. Let HK be a reproducing
kernel Hilbert space with kernel K(·, ·). The following regular-
ization is commonly used to estimate η(·) = β0 + η1(·) with
η1(·) ∈ HK :

ηλ(·) = arg min
β0∈R,η1∈HK

[
Ln(η) + λ‖η1‖2

HK

]
. (42)

Estimates of this form have been well studied in the literature
(Wahba 1990). It is known that although the minimization is
taken over a possibly infinite-dimensional space HK , the solu-
tion of (42) actually lies in a finite-dimensional space and can
be given by

ηλ(·) = β0(λ) +
n∑

i=1

βi(λ)K(·,xi), (43)
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and the β ′s can be obtained by putting this expression back into
(42),

(β0(λ),β(λ)) = arg min
β

[
1

n

n∑
i=1

L

(
yi, β0 +

n∑
j=1

βjK(xi,xj)

)

+ λβ ′Kβ

]
, (44)

where, with a slight abuse of notation, K denotes the Gram ma-
trix with the (i, j) entry K(xi,xj). For some loss functions, such
as the hinge loss underlying the support vector machine, the
solution in (44) has a sparse representation; that is, many β̂j’s
are 0. Those observations with β̂j �= 0 are often referred to as
“support vectors.” Other interesting loss functions do not enjoy
such sparsity, however. A well-known example is kernel logistic
regression. Various multistep procedures have been pursued to
encourage sparsity in kernel logistic regression (Lin et al. 2000;
Williams and Seeger 2001; Zhu and Hastie 2002; Zhang et al.
2004). A common idea is to find a sparse matrix approximation
of the Gram matrix, and then fit the kernel logistic regression
model using the sparse submatrix. Because an exclusive search
is infeasible, some type of greedy algorithm is used to to search
for a good sparse matrix approximation. This method is simi-
lar in spirit to forward/backward regression for multiple linear
regression.

We show here that the idea of �1-regularization can be more
naturally adopted to induce support vectors in kernel logistic
regression. We term this technique support vector pursuit. In
particular, we add an additional �1 penalty in (44),

(β0(λ),β(λ)) = arg min
β,β0

[
1

n

n∑
i=1

L

(
yi, β0 +

n∑
j=1

βjK(xi,xj)

)

+ λ2β
′Kβ + λ1

n∑
j=1

|βj|
]
, (45)

where L is the logistic loss and λ2 and λ1 are two regular-
ization parameters. It is worth mentioning that, to the best of
our knowledge, no existing methods can be used to efficiently
compute the support vector pursuit. Similar to the elastic net,
we consider a small set of candidate values for λ2; for exam-
ple, let λ∗ be the tuning parameter selected for (42), which of-
ten is done by 10-fold cross-validation or generalized cross-
validation. We then consider the following candidate values
for λ2: {λ∗/100, λ∗/10, λ∗,10λ∗,100λ∗}. For each λ2, we con-
struct the EGA path for 0 ≤ λ1 < ∞. The number of support
vectors is controlled by λ1; generally speaking, the larger λ1,
the fewer support vectors are used. Thus, compared with the
import vector machine idea of Zhu and Hastie (2002), support
vector pursuit generates support vectors in a smoother fashion.

To demonstrate the support vector pursuit method, we first
consider a synthetic example with univariate smoothing spline
kernel logistic regression. Take xi, i = 1, . . . ,101, to be equally
spaced between 0 and 1. The responses yi were generated from
a binomial trial with probability of success p(xi) = 1 − 1/(1 +
exp(η(xi))), where

η(X) = 3 sin(2πX). (46)

Following Wahba (1990), we let HK be the orthogonal comple-
ment of constant functions in the second-order Sobolev–Hilbert
space and choose the kernel so that

‖η1‖2
HK

=
∫

(η′′
1)2 +

(∫
η′

1

)2

. (47)

For comparison, we ran both the usual kernel estimate given
by (42) and the proposed support vector pursuit estimate on the
simulated data. Figure 5 shows the true probability function p(·)
and its estimates. All tuning parameters were chosen by 10-
fold cross-validation. From Figure 5, we can see that the two
estimates are essentially the same in terms of fitting the data.
But all coefficients of the usual kernel estimate are nonzero,
whereas the support vector pursuit relies on only eight support
vectors, represented by the red circles.

We next applied the support vector pursuit to the mixture data
example considered by Zhu and Hastie (2002) and Hastie, Tib-
shirani, and Friedman (2001). The training data were 200 data
points generated from a pair of mixture densities. Because the
Bayes classification boundary was nonlinear, we fitted kernel
classifiers to the training data. Hastie et al. (2001) suggested
using the radial kernel K(x1,x2) = exp(−‖x1 − x2‖2

�2
) to fit

the support vector machine and kernel logistic regression. The
support vector machine with the smallest test error (i.e., 0.218)
had 107 support vectors. The import vector machine of Zhu and
Hastie (2002) used 21 import vectors and had a test error was
0.219. Using the same kernel function, the support vector pur-
suit used 27 support vectors to achieve the test error of 0.213.
Figure 6 shows the support vector pursuit decision boundary
and the support vectors.

4. DISCUSSIONS

In this article we have proposed a global approach to approx-
imating the nonlinear �1-regularization paths. We also have il-
lustrated how the so-called “EGA path” idea can be applied to
solve other interesting statistical learning problems, such as the
generalized elastic net and support vector pursuit. The proposed
methodology provides piecewise linear approximations to the
true nonlinear regularization path. The EGA path’s computa-
tional efficiency path facilitates the choice of the tuning pa-
rameter. If necessary, the EGA estimate also can be used as
the initial value in an iterative nonlinear optimization solver to
compute the exact solution.

While we were revising this manuscript, it was brought to
our attention that Friedman, Hastie, and Tibshirani (2008) have
developed an efficient R package, glmnet, for computing the
�1-regularization path for logistic regression with the elastic-net
penalty (with � = I). glmnet can efficiently compute the so-
lution at a given regularization parameter, and thus the whole
process is repeated for typically 100 different regularization
parameters to construct a piecewise linear approximation of
the true nonlinear solution path. The performance of glmnet
hinges on the choice of these regularization parameters, which
clearly differs from those in glmpath and the EGA path. We
also ran some experiments to compare the three methods on the
Sonar data and Golub’s data; the results are given in Table 1.
Keep in mind that such a comparison may not faithfully repre-
sent the computational complexity of these algorithms due to
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Figure 5. The smoothing spline kernel example for support vector pursuit. The eight circles correspond to the “support vectors” chosen by
the support vector pursuit.

Figure 6. The mixture data example for the support vector pursuit. The training data in two classes are indicated by circles and triangles,
respectively. The broken lines are the Bayes decision boundary. The dark solid lines are the support vector pursuit decision boundary. Solid
black squares are the 27 support vectors.
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Table 1. Times (in seconds) for the
glmnet, glmpath, and EGA paths

Sonar Golub

glmnet 10.59 6.08
glmpath 6.33 14.45
EGA 2.09 9.05

NOTE: All timings were carried out on an Intel
Core 2 Duo Processor E8200 2.66 GHz.

implementation differences. EGA does all of its numeric com-
putations in R, glmnet does all of its computations in For-
tran, and glmpath frequently calls Fortran routines to
do numerical optimization. Nevertheless, Table 1 indicates that
these methods are of comparable computational speed for these
two data sets.

Finally, we want to point out that the EGA path idea also can
be easily extended to handle other challenging nonlinear regu-
larization problems using concave penalties. For example, the
SCAD penalty for model selection and estimation of Fan and Li
(2001, 2006) is often solved by iterative algorithms for a grid
of regularization parameters. Recently, Zou and Li (2008) pro-
posed the LLA algorithm for solving the SCAD. Combining the
LLA algorithm and our EGA path can boost the computational
efficiency of the SCAD estimator in, for example, the SCAD-
penalized logistic regression model.

APPENDIX: PROOFS OF THEOREMS AND
APPROXIMATION ERROR AND ALGORITHM OF THE
EGA PATH FOR THE GENERALIZED ELASTIC NET

A.1 Proof of Theorem 1

For brevity, we write β instead of (β0, β) when no confusion occurs.
Let β∗(λ) �= β(λ) be the limit of an arbitrary convergent subsequence
{β̃[kl](λ)} of {β̃[k](λ)}. By definition,

L̃[kl]
n

(
β̃[kl](λ)

) + λ

p∑
j=1

∣∣β̃[kl]
j (λ)

∣∣ ≤ L̃[kl]
n (β(λ)) + λ

p∑
j=1

|βj(λ)|. (A.1)

Taking the limit of both sides yields

Ln(β∗(λ)) + λ

p∑
j=1

|β∗
j (λ)| ≤ Ln(β(λ)) + λ

p∑
j=1

|βj(λ)|, (A.2)

which implies that β∗(λ) = β(λ) by the definition of β(λ). Therefore,
β̃[k](λ) → β(λ) as k goes to infinity. Thus when k is sufficiently large,
β̃[k](λ) falls into the neighborhood of β(λ), N .

Denote A = {j :βj(λ) �= 0}. By Taylor’s expansion,(
Ln

(
β̃[k](λ)

) + λ

p∑
j=1

∣∣β̃[k]
j (λ)

∣∣) −
(

Ln(β(λ)) + λ

p∑
j=1

|βj(λ)|
)

=
∑
j/∈A

[
∂Ln

∂βj

∣∣∣∣
β(λ)

β̃
[k]
j (λ) + λ

∣∣β̃[k]
j (λ)

∣∣]

+
∑
j∈A

[
∂Ln

∂βj

∣∣∣∣
β(λ)

(
β̃

[k]
j (λ) − βj(λ)

) + λ
(∣∣β̃[k]

j (λ)
∣∣ − |βj(λ)|)]

+ 1

2

(
β̃[k](λ) − β(λ)

)′ ∂2Ln

∂β ∂β ′
∣∣∣∣
tβ(λ)+(1−t)β̃[k](λ)

× (
β̃[k](λ) − β(λ)

)

for some 0 ≤ t ≤ 1. First-order conditions indicate that∣∣∣∣∣∂Ln

∂βj

∣∣∣∣
β(λ)

∣∣∣∣∣ ≤ λ if j /∈ A, (A.3)

∂Ln

∂βj

∣∣∣∣
β(λ)

= λ sign(βj(λ)) if j ∈ A. (A.4)

Equation (A.3) implies that for any j /∈ A,

∂Ln

∂βj

∣∣∣∣
β(λ)

β̃
[k]
j (λ) + λ

∣∣β̃[k]
j (λ)

∣∣ ≥ 0. (A.5)

Because β̃[k](λ) → β(λ), there exists a k∗ such that for k > k∗,
sign(β̃

[k]
j (λ)) = sign(βj(λ)) for all j ∈ A. Together with (A.4),

∂Ln

∂βj

∣∣∣∣
β(λ)

(
β̃

[k]
j (λ) − βj(λ)

) + λ
(∣∣β̃[k]

j (λ)
∣∣ − |βj(λ)|) = 0 (A.6)

for any j ∈ A and k > k∗. Therefore,(
Ln

(
β̃[k](λ)

) + λ

p∑
j=1

∣∣β̃[k]
j (λ)

∣∣) −
(

Ln(β(λ)) + λ

p∑
j=1

|βj(λ)|
)

≥ C
∥∥β̃[k](λ) − β(λ)

∥∥2
�2

(A.7)

for some constant C > 0, because ∂2Ln/∂β ∂β ′ is strictly positive def-
inite on N .

In contrast, by definition,

L̃[k]
n

(
β̃[k](λ)

) + λ

p∑
j=1

∣∣β̃[k]
j (λ)

∣∣
≤ L̃[k]

n (β(λ)) + λ

p∑
j=1

|βj(λ)|

= [
L̃[k]

n (β(λ)) − Ln(β(λ))
] +

[
Ln(β(λ)) + λ

p∑
j=1

|βj(λ)|
]
,

which implies that(
Ln

(
β̃[k](λ)

) + λ

p∑
j=1

∣∣β̃[k]
j (λ)

∣∣) −
(

Ln(β(λ)) + λ

p∑
j=1

|βj(λ)|
)

≤ [
L̃[k]

n (β(λ)) − Ln(β(λ))
]
. (A.8)

This, together with (A.7), yields the desirable result.

A.2 Proof of Theorem 2

It is not hard to see that L̃ given by (7) is convex given that aj ≥ 0

for all j. Thus, from the Karush–Kuhn–Tucker theorem, (β̃0(λ), β̃(λ))

satisfies

1

n

n∑
i=1

xij
[
2asi(yi)η̃(xi) + bsi

] + λ sign(β̃j(λ)) = 0 if β̃j(λ) �= 0,

∣∣∣∣∣1

n

n∑
i=1

xij
[
2asi(yi)η̃(xi) + bsi

]∣∣∣∣∣ ≤ λ if β̃j(λ) = 0,

where η̃(xi) = β̃0 + x′
iβ̃ . Hereinafter we suppress the dependence

of β̃ on λ if no confusion occurs. Write A = {j : β̃j �= 0}, and also
write XB = (1,Xj : j ∈ A), sB = (0, sign(β̃j) : j ∈ A)′ and W =
diag(asi(yi) : i = 1, . . . ,n). Then, from the foregoing Karush–Kuhn–
Tucker conditions, it can be deduced that β̃Ac = 0 and

β̃B ≡ (β̃0, β̃j : j ∈ A)′

= (X′
B WXB)−1

X
′
B b − nλ

2
(X′

B WXB)−1sB, (A.9)
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where b = (bs1 , . . . ,bsn)
′. It is now evident that the β̃ indexed by λ

has a linear trajectory unless one of the following two events occurs:

(a) A changes, either with an existing variable leaving A or another
new variable entering A

(b) si changes for some i – β̃0 + xiβ̃ reaches either bounds of its
corresponding segment.

The proof is completed.

A.3 Proof of Theorem 3

It suffices to show that any point on the constructed solution path
satisfies the Karush–Kuhn–Tucker conditions for some λ ≥ 0. This is
clearly true for the starting point β̃ = 0. In the light of Theorem 2, we
need to show that this remains true after either A or any si changes.
When A changes, the proof follows from the same argument as for
the Lasso (Efron et al. 2004) and thus is omitted here. Now consider
the case when si changes. Without loss of generality, assume that s1
changes to s1 + 1, in other words, η̃(x1) increases to κ1(y1). Thus it is
necessary that

x1B(X′
B WXB)−1sB > 0 (A.10)

for η̃(x1) to increase. For the algorithm to work appropriately, we need
to show that the the first observation will not come back to the s1th seg-
ment immediately. To show this, assume the contrary, that for some
tuning parameter λ − ε with ε > 0 arbitrarily small, η̃[λ−ε](x1) <

η̃[λ](x1), where the superscripts represent the corresponding tuning
parameters. With ε sufficiently small, we can assume that the B’s re-
main unchanged; therefore,

η̃[λ−ε](x1) = x1Bβ̃B(λ + ε)

= x′
1B(X′

B WXB)−1
X

′
B b

− n(λ − ε)

2
x′

1B(X′
B WXB)−1sB

≥ x′
1B(X′

B WXB)−1
X

′
B b − nλ

2
x′

1B(X′
B WXB)−1sB

= η̃[λ](x1),

which contradicts the assumption stated earlier. Therefore, the first ob-
servation will not return to the s1th segment immediately. This com-
pletes the proof of the theorem.

A.4 Approximation Error of the EGA Path for the
Generalized Elastic Net

Similar to before, let {L̃[k] : k ≥ 1} be a sequence of approximations
to L such that

lim
k→∞ sup

η

∣∣L̃[k]
n (η) − Ln(η)

∣∣ → 0. (A.11)

Denote by (β̃
[k]
0 (λ1, λ2), β̃[k](λ1, λ2)) the solution corresponding to

loss L̃[k]. By Theorem 1 and Corollary 1, we have the following.

Corollary 1. For any λ1, λ2 ≥ 0 such that (β0(λ1, λ2), β(λ1, λ2))

and {(β̃[k]
0 (λ1, λ2), β̃[k](λ1, λ2)) : k ≥ 1} are uniquely defined, we have

β̃
[k]
0 (λ1, λ2) → β0(λ1, λ2), β̃[k](λ1, λ2) → β(λ1, λ2) (A.12)

as k → ∞. Furthermore, if Ln is strictly convex in a neighborhood N
around (β0(λ1, λ2), β(λ1, λ2)), then for any ε > 0, there exist con-
stants k0,C > 0 such that for any k ≥ k0,∥∥β̃[k](λ1, λ2) − β(λ1, λ2)

∥∥2
�2

≤ C
∣∣L̃[k]

n (β0(λ1, λ2), β(λ1, λ2))

− Ln(β0(λ1, λ2), β(λ1, λ2))
∣∣. (A.13)

A.5 Algorithm of the EGA Path for the Generalized Elastic Net

To compute the solution path for (41), we need only to modify the
evaluation of the current direction γ and distances αj in the generalized
Lasso algorithm presented in Section 2.3. Recall that

L̃(β0, β) = 1

n

n∑
i=1

asi(yi)(y
∗
i − (β0 + x′

iβ))2

+ 1

n

n∑
i=1

(
csi(yi) − bsi(yi)

2

4asi(yi)

)
. (A.14)

Without the additional penalty, the direction taken at the qth iteration,
γA[q] , can be given as the minimizer of the weighted least squares,

1

n

n∑
i=1

asi(yi)(y
∗
i − (x∗

i,A[q])
′(βA[q] + γ ))2. (A.15)

When the additional penalty is present, γA[q] now becomes the mini-
mizer of

1

n

n∑
i=1

asi(yi)(y
∗
i − (x∗

i,A[q])
′(βA[q] + γA[q]))2

+ λ2(βA[q] + γA[q])′�(βA[q] + γA[q]). (A.16)

It is not hard to see that the minimizer is

γA[q] = [(X∗
A[q])

′WX
∗
A[q] + λ�]−1(X∗

A[q])
′Wy∗ − βA[q] . (A.17)

Similarly, the calculation of the step length, αj , also must be modi-
fied. An application of the Karush–Kuhn–Tucker conditions yields∣∣(X∗

j )′Wr[q] − αj(X
∗
j )′WX

∗γ − λ2
(
β

[q]
j + αjγj

)∣∣
= ∣∣(X∗

a)′Wr[q] − αj(X
∗
a)′WX

∗γ − λ2
(
β

[q]
a + αjγa

)∣∣,
where, similar to the generalized Lars algorithm, a is an arbitrary index

in A[q]. Denote δj = β
[q]
j + γj and δa = β

[q]
a + γa. Then

αj = min+

{
(X∗

j − X
∗
a)′Wr[q] − λ2(β

[q]
j − β

[q]
a )

(X∗
j − X∗

a)′WX∗γ + λ2(γj − γa)
,

(X∗
j + X

∗
a)′Wr[q] − λ2(β

[q]
j + β

[q]
a )

(X∗
j + X∗

a)′WX∗γ + λ2(γj + γa)

}
. (A.18)

[Received May 2008. Revised June 2009.]
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