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Abstract: In this paper we propose a new support vector machine (SVM), the F∞-

norm SVM, to perform automatic factor selection in classification. The F∞-norm

SVM methodology is motivated by the feature selection problem in cases where the

input features are generated by factors, and the model is best interpreted in terms

of significant factors. This type of problem arises naturally when a set of dummy

variables is used to represent a categorical factor and/or a set of basis functions of

a continuous variable is included in the predictor set. In problems without such

obvious group information, we propose to first create groups among features by

clustering, and then apply the F∞-norm SVM. We show that the F∞-norm SVM

is equivalent to a linear programming problem and can be efficiently solved using

standard techniques. Analysis on simulated and real data shows that the F∞-norm

SVM enjoys competitive performance when compared with the 1-norm and 2-norm

SVMs.

Key words and phrases: F∞ penalty, factor selection; feature selection, linear pro-

gramming, L∞ penalty, support vector machine.

1. Introduction

In the standard binary classification problem, one wants to predict the class

labels based on a given vector of features. Let x denote the feature vector. The

class labels, y, are coded as {1,−1}. A classification rule δ is a mapping from

x to {1,−1} such that a label δ(x) is assigned to the datum at x. Under the

0-1 loss, the misclassification error of δ is R(δ) = P (y 6= δ(x)). The smallest

classification error is the Bayes error achieved by

argmax
c∈{1,−1}

p(y = c|x),

which is referred to as the Bayes rule.

The standard 2-norm support vector machine (SVM) is a widely used clas-

sification tool (Vapnik (1995) and Schölkopf and Smola (2002)). The popularity

of the SVM is largely due to its elegant margin interpretation and highly com-

petitive performance in practice. Let us first briefly describe the linear SVM.

Suppose we have a set of training data {(xi, yi)}n
i=1, where xi is a vector with p
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features, and the output yi ∈ {1,−1} denotes the class label. The 2-norm SVM

finds a hyperplane (xT β +β0) that creates the biggest margin between the train-

ing points for class 1 and -1 (Vapnik (1995) and Hastie, Tibshirani and Friedman

(2001)):

maxβ,β0

1

‖β‖2
(1.1)

subject to yi(β0 + xT
i β) ≥ 1 − ξi,∀i

ξi ≥ 0,
∑

ξi ≤ B,

where ξi are slack variables, and B is a pre-specified positive number that con-

trols the overlap between the two classes. It can be shown that the linear SVM

has an equivalent loss + penalty formulation (Wahba, Lin and Zhang (2000) and

Hastie, Tibshirani and Friedman (2001)):

(β̂, β̂0) = arg min
β,β0

n
∑

i=1

[

1 − yi(x
T
i β + β0)

]

+
+ λ‖β‖2

2, (1.2)

where the subscript “+” means the positive part (z+ = max(z, 0)). The loss

function (1 − t)+ is called the hinge or SVM loss. Thus the 2-norm SVM is ex-

pressed as a quadratically regularized model fitting problem. Lin (2002) showed

that, due to the unique property of the hinge loss, the SVM directly approxi-

mates the Bayes rule without estimating the conditional class probability, and

the quadratic penalty helps control the model complexity to prevent over-fitting

the training data.

Another important task in classification is to identify a subset of features

which contribute most to classification. The benefit of feature selection is two-

fold. It leads to parsimonious models that are often preferred in many scientific

problems, and it is also crucial for achieving good classification accuracy in the

presence of redundant features (Friedman, Hastie, Rosset, Tibshirani and Zhu

(2004) and Zhu, Rosset, Hastie and Tibshirani (2004)). However, the 2-norm

SVM classifier cannot automatically select input features, for all elements of β̂ are

typically non-zero. In the machine learning literature, there are several propos-

als for feature selection in the SVM. Guyon, Weston, Barnhill and Vapnik (2002)

proposed the recursive feature elimination (RFE) method; Weston, Mukherjee,

Chapelle, Pontil, Poggio and Vapnik (2001) and Grandvalet and Canu (2003)

considered some adaptive scaling methods for feature selection in SVMs;

Bradley and Mangasarian (1998), Song, Breneman, Bi, Sukumar, Bennett,

Cramer and Tugcu (2002) and Zhu, Rosset, Hastie and Tibshirani (2004) con-

sidered the 1-norm SVM to accomplish the goal of automatic feature selection in

the SVM.
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In particular, the 1-norm SVM penalizes the empirical hinge loss by the lasso

penalty (Tibshirani (1996)), thus the 1-norm SVM can be formulated in the same

fashion as the 2-norm SVM:

(β̂, β̂0) = arg min
β,β0

n
∑

i=1

[

1 − yi(x
T
i β + β0)

]

+
+ λ‖β‖1. (1.3)

The 1-norm SVM shares many of the nice properties of the lasso. The L1 (lasso)

penalty encourages some of the coefficients to be zero if λ is appropriately chosen.

Hence the 1-norm SVM performs feature selection through regularization. The 1-

norm SVM has significant advantages over the 2-norm SVM when there are many

noise variables (Zhu, Rosset, Hastie and Tibshirani (2004)). A study comparing

the L2 and L1 penalties (Friedman, Hastie, Rosset, Tibshirani and Zhu (2004))

shows that the L1 norm is preferred if the underlying true model is sparse, while

the L2 norm performs better if most of the predictors contribute to the response.

Friedman, Hastie, Rosset, Tibshirani and Zhu (2004) further advocate the bet-

on-sparsity principle; that is, procedures that do well in sparse problems should

be favored.

Although the bet-on-sparsity principle often leads to successful models, the

L1 penalty may not always be the way to achieve this goal. Consider, for ex-

ample, the cases of categorical predictors. A common practice is to represent

the categorical predictor by a set of dummy variables. A similar situation oc-

curs when we express the effect of a continuous factor as a linear combination

of a set of basis functions, e.g., univariate splines in generalized additive models

(Hastie and Tibshirani (1990)). In such problems it is of more interest to select

the important factors than to understand how the individual derived variables

explain the response. With the presence of the factor-feature hierarchy, a factor

is considered as relevant if any one of its child features is active. Therefore all of

a factor’s child features have to be excluded in order to exclude the factor from

the model. We call this simultaneous elimination. Although the 1-norm SVM

can annihilate individual features, it oftentimes cannot perform the simultaneous

elimination needed to discard a factor. This is largely due to the fact that no

factor-feature information is used in (1.3). Generally speaking, if the features are

penalized independently, simultaneous elimination is not guaranteed.

In this paper we propose a natural extension of the 1-norm SVM to account

for such grouping information. We call the proposal an F∞-norm SVM because it

penalizes the empirical SVM loss by the sum of the factor-wise L∞ norm. Owing

to the nature of the L∞ norm, the F∞-norm SVM is able to simultaneously

eliminate a given set of features, hence it is a more appropriate tool for factor

selection than the 1-norm SVM.
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Although our methodology is motivated by problems in which the predictors

are naturally grouped, it can also be applied in other settings where the groupings

are more loosely defined. We suggest first clustering the input features into

groups, and then applying the F∞-norm SVM. This strategy can be very useful

when the predictors are a mixture of true and noise variables, quite common in

applications. Clustering takes advantage of the mutual information among the

input features, and the F∞-norm SVM has the ability to perform group-wise

variable selection. Hence the F∞-norm SVM is able to outperform the 1-norm

SVM in that it is more efficient in removing the noise features and keeping the

true variables.

The rest of the paper is organized as follows. The F∞-norm SVM methodol-

ogy is introduced in Section 2. In Section 3 we show that the F∞-norm SVM can

be cast as a linear programming (LP) problem, and efficiently solved using the

standard linear programming technique. In Sections 4 and 5 we demonstrate the

utility of the F∞-norm SVM using both simulation and real examples. Section 6

contains some concluding remarks.

2. Methodology

Before delving into the technical details, we define some notation. Consider

the vector of input features x = (· · · , x(j), · · · ) where x(j) is the j-th input feature

1 ≤ j ≤ p. Now suppose that the features are generated by G factors, F1, . . . , FG.

Let Sg = {j : x(j) is generated by Fg}. Clearly, ∪G
g=1Sg = {1, . . . , p} and Sg ∩

Sg′ = ∅, ∀g 6= g′. Write x(g) = (· · · x(j) · · · )Tj∈Sg
and β(g) = (· · · βj · · · )Tj∈Sg

, where

β is the coefficient vector in the classifier (xT β + β0) for separating class 1 and

class -1. With such notation,

xT β + β0 =

G
∑

g=1

xT
(g)β(g) + β0. (2.1)

Now define the infinity norm of Fg as

‖Fg‖∞ = ‖β(g)‖∞ = max
j∈Sg

{|βj |}. (2.2)

Given n training samples {(xi, yi)}n
i=1, the F∞-norm SVM solves

min
β,β0

n
∑

i=1

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

+ λ

G
∑

g=1

‖β(g)‖∞. (2.3)

Note that the empirical hinge loss is penalized by the sum of the infinity norm

of factors with a regularization parameter λ. The solution to (2.3) is denoted by
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β̂ and β̂0. The fitted classifier is f̂(x) = β̂0 + xT β̂, and the classification rule is

sign(f̂(x)).

The F∞-norm SVM has the ability to do automatic factor selection. If the

regularization parameter λ is appropriately chosen, some β̂(g) will be exact zero.

Thus the goal of simultaneous elimination of grouped features is achieved via

regularization. This nice property is due to the singular nature of the infinity

norm: ‖β(g)‖∞ is not differentiable at β(g) = 0. As pointed out in Fan and Li

(2001), singularity (at the origin) of the penalty function plays a central role in

automatic feature selection. This property of the L∞ norm has previously been

exploited by Turlach, Venables and Wright (2004) to select a common subset of

predictors to model multiple regression responses.

When each individual feature is considered as a group, the F∞-norm SVM

reduces to the 1-norm SVM, but (2.3) differs from (1.3) because the L1 norm

contains no group information. Therefore, we consider the F∞-norm SVM as a

generalization of the 1-norm SVM by incorporating the factor-feature hierarchy

in the SVM machinery.

The L∞-norm is a special case of the F∞-norm if we put all predictors into

a single group. Then we can consider the L∞-norm SVM

min
β,β0

n
∑

i=1

[

1 − yi(x
T
i β + β0)

]

+
+ λ

(

max
j

|βj |
)

. (2.4)

The L∞-norm penalty is a direct approach to controlling the variability of the

estimated coefficients. Our experience with the L∞-norm SVM indicates that

it may perform quite well in terms of classification accuracy, but all the βjs

are typically nonzero. The F∞-norm penalty mitigates this problem by dividing

the predictors into several smaller groups. In later sections, we present some

empirical results suggesting that the F∞ oftentimes outperforms 1-norm and 2-

norm SVMs in the presence of factors.

In the following theorem we show that the F∞ SVM enjoys the so-called

margin maximizing property.

Theorem 1. Assume the data {(xi, yi)}n
i=1 are separable. Let β̂(λ) be the solu-

tion to (2.3).

(a) limλ→0 mini yix
T
i β̂(λ) = 1.

(b) The limit of any converging subsequence of (β̂(λ))/(‖β̂(λ)‖F∞
) as λ → 0 is

an F∞ margin maximizer. If the margin maximizer is unique, then

lim
λ→0

β̂(λ)

‖β̂(λ)‖F∞

= argmax
β:‖β‖F∞

=1

{

min
i

yix
T
i β

}

.
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Theorem 1 considers the limiting case of the F∞-norm SVM classifier when

the regularization parameter approaches zero. It extends a similar result for the

2-norm SVM (Rosset and Zhu (2003)). The proof of Theorem 1 is in the ap-

pendix. The margin maximization property is theoretically interesting because

it is related to the generalization error analysis based on the margin. Generally

speaking, the larger the margin, the smaller the upper bound on the general-

ization error. Theorem 1 also prohibits any potential radical behavior of the

F∞-norm SVM even for λ → 0 (no regularization), which helps to prevent severe

over-fitting. Of course, similar to the case of the 1-norm and 2-norm SVMs,

the regularized F∞-norm SVM often performs better than its non-regularized

version.

3. Algorithm

In this section we show that the optimization problem (2.3) is equivalent to a

linear programming (LP) problem, and can therefore be solved using standard LP

techniques. The computational efficiency makes the F∞-norm SVM an attractive

choice in many applications.

Note that (2.3) can be viewed as the Lagrange formulation of the constrained

optimization problem

arg min
β,β0

G
∑

g=1

‖β(g)‖∞ (3.1)

subject to

n
∑

i=1

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

≤ B (3.2)

for some B. There is a one-one mapping between λ and B such that the problem

at (3.1) and (3.2) and the one at (2.3) are equivalent. To solve (3.1) and (3.2)

for a given B, we introduce a set of slack variables

ξi =

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

i = 1, 2, . . . , n. (3.3)

With such notation, the constraint in (3.2) can be rewritten as

yi(β0 + xT
i β) ≥ 1 − ξi and ξi ≥ 0 ∀i, (3.4)

n
∑

i=1

ξi ≤ B. (3.5)
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To further simplify the above formulation, we introduce a second set of slack

variables

Mg = ‖β(g)‖∞ = max
j∈Sg

{|βj |}. (3.6)

Now the objective function in (3.1) becomes
∑G

g=1 Mg, and we need a set of new

constraints

|βj | ≤ Mg ∀j ∈ Sg and g = 1, . . . , G. (3.7)

Finally, write βj = β+
j − β−

j where β+
j and β−

j denote the positive and negative

parts of βj , respectively. Then (3.1) and (3.2) can be equivalently expressed

min
β,β0

G
∑

g=1

Mg (3.8)

subject to

yi(β
+
0 − β−

0 + xT
i (β+ − β−)) ≥ 1 − ξi, ξi ≥ 0 ∀i

n
∑

i=1

ξi ≤ B,

β+
j + β−

j ≤ Mg ∀j ∈ Sg g = 1, . . . , G,

β+
j ≥ 0, β−

j ≥ 0 ∀j = 0, 1, . . . , p.

This LP formulation of the F∞-norm SVM is similar to the margin-maximization

formulation of the 2-norm SVM.

It is worth pointing out that the above derivation also leads to an alternative

LP formulation of the F∞-norm SVM:

min
β,β0

n
∑

i=1

ξi + λ

G
∑

g=1

Mg (3.9)

subject to

yi(β
+
0 − β−

0 + xT
i (β+ − β−)) ≥ 1 − ξi ξi ≥ 0 ∀i,

β+
j + β−

j ≤ Mg ∀j ∈ Sg g = 1, . . . , G,

β+
j ≥ 0, β−

j ≥ 0 ∀j = 0, 1, . . . , p.

Note that (2.3), (3.8) and (3.9) are three equivalent formulations of the F∞-norm

SVM.
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For any given tuning parameter (B or λ), we can efficiently solve the F∞-

norm SVM using the standard LP technique. In applications, it is often impor-

tant to select a good tuning parameter such that the generalization error of the

fitted F∞-norm SVM is minimized. For this purpose, we can run the F∞-norm

SVM for a grid of tuning parameters, and choose the one that minimizes the

K-fold cross-validation score or the test error on an independent validation data

set.

4. Simulation

In this section we report on simulation experiments to compare the F∞-norm

SVM with the standard 2-norm SVM and the 1-norm SVM.

In the first set of simulations, we focused on the cases where the predictors

are naturally grouped. This situation arises when some of the predictors are

latent variables describing the same categorical factor or polynomial effects of

the same continuous variable. We considered three simulation models described

below.

Model I. Fifteen latent variables Z1, . . . , Z15 were first simulated according to a

centered multivariate normal distribution with covariance between Zi and

Zj being 0.5|i−j|. Then Zi is trichotomized as 0, 1, 2 if it is smaller than

Φ−1(1/3), larger than Φ−1(2/3) or in between. The response Y was then

simulated from a logisitic regression model with the probability of success

being the logit of

7.2I(Z1 =1)−4.8I(Z1 =0)+4I(Z3 =1)+2I(Z3 =0)+4I(Z5 =1)+4I(Z5 =0)−4,

where I(·) is the indicator function. This model has 30 predictors and 15

groups. The true features are six predictors in three groups (Z1,Z3 and Z5).

The Bayes error is 0.095.

Model II. In this example, both main effects and second order interactions were

considered. Four categorical factors Z1, Z2, Z3 and Z4 were first generated

as in (I). The response Y was again simulated from a logisitic regression

model with the probability of success being the logit of

3I(Z1 =1) + 2I(Z1 =0) + 3I(Z2 =1) + 2I(Z2 =0) + I(Z1 =1, Z2 =1)

+1.5I(Z1 =1, Z2 =0) + 2I(Z1 =0, Z2 =1) + 2.5I(Z1 =0, Z2 =0) − 4.

In this model there are 32 predictors and 10 groups. The ground truth uses

eights predictors in three groups (Z1, Z2 and Z1Z2 interaction). The Bayes

error is 0.116.
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Model III. This example concerns additive models with polynomial compo-

nents. Eight random variables Z1, . . . , Z8 and W were independently gen-

erated from a standard normal distribution. The covariates were Xi =

(Zi + W )/
√

2. The response followed a logistic regression model with the

probability of success being the logit of

(X3
3 + X2

3 + X3) +
(1

3
X3

6 − X2
6 +

2

3
X6

)

.

In this model we have 24 predictors in eight groups. The ground truth

involves six predictors in two groups (Z1 and Z2). The Bayes error is 0.188.

For each of the above three models, 100 observations were simulated as

the training data, and another 100 observations were collected for tuning the

regularization parameter for each of the three SVMs. To test the accuracy of

the classification rules, we also independently generated 10, 000 observations as a

test set. Since the Bayes error is the lower bound for the classification accuracy

of any classifier, when evaluating a classifier δ it is reasonable to use its relative

misclassification error

RME(δ) =
Err(δ)

Bayes Error
.

Table 4.1 reports the mean classification error and its standard error (in

parentheses) for each method and each model, averaged over 100 runs. Several

observations can be made from Table 4.1. In all examples, the F∞ SVM outper-

forms the other two methods in terms of classification error. We also see that the

F∞ SVM tends to be more stable than the the other two. Table 4.2 documents

the number of factors selected by the F∞-norm and 1-norm SVMs. It indicates

that the F∞-norm SVM tends to select fewer factors than the 1-norm SVM.

As mentioned in the introduction, the F∞ SVM can also be applied to prob-

lems where the natural grouping information is either hidden or not available.

For example, the sonar data considered in Section 5.2 contains 60 continuous

predictors, but it is not clear how these 60 predictors are grouped. To tackle this

issue, we suggest first grouping the features by clustering and then applying the

Table 4.1. Simulation models I, II and III: compare the accuracy of different SVMs.

Model I Model II Model III

Bayes rule 0.095 0.116 0.188

F∞-norm 0.120 (0.002) 0.119 (0.010) 0.215 (0.002)

1-norm 0.133 (0.026) 0.142 (0.034) 0.223 (0.003)

2-norm 0.151 (0.019) 0.130 (0.025) 0.228 (0.002)

RME(F∞) 1.263 (0.021) 1.026 (0.086) 1.144 (0.011)

RME(L1) 1.400 (0.274) 1.224 (0.293) 1.186 (0.016)

RME(L2) 1.589 (0.200) 1.121 (0.216) 1.213 (0.011)
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Table 4.2. Simulation models I, II and III: the number of factors selected by

the F∞-norm and 1-norm SVMs.

Model I Model II Model III

True 3 3 2

F∞-norm 11.46 (0.35) 3.66 (0.29) 6.70 (0.16)

1-norm 11.94 (0.34) 4.33 (0.22) 6.67 (0.13)

F∞ SVM. To demonstrate this strategy, we considered a fourth simulation model.

Model IV. Two random variables Z1 and Z2 were independently generated from
a standard normal distribution. In addition, 60 standard normal variables

{ǫi} were generated. The predictors X were

Xi = Z1 + 0.5ǫi, i = 1, . . . , 20,

Xi = Z2 + 0.5ǫi, i = 21, . . . , 40,

Xi = ǫi, i = 41, . . . , 60.

The response followed a logistic regression model with the probability of
success being the logit of 4Z1 + 3Z2 + 1. The Bayes error is 0.109.

We simulated 20 (100) observations as the training data, and another 20

(100) observations as the validation data for tuning the three SVMs. An inde-

pendent set of 10, 000 observations were simulated to compute the test error. We
repeated the simulation 100 times.

As the oracle who designed the above model, we know that there are 22

groups of predictors. The first 20 predictors form a first group in which the

pairwise correlation within the group is 0.8. Likewise, predictors 20-40 form a
second group in which the pairwise correlation is also 0.8. The first 40 predictors

are considered relevant. The remaining 20 predictors form 20 individual groups

of size one, for they are independent noise features. We could fit a F∞ SVM using

the oracle group information, this is not available in applications. A practical
strategy is to use the observed data to find the groups on which the F∞ SVM

is to be built. In this work we employed hierarchical clustering to cluster the

predictors into k clusters (groups), where the sample correlations were used to
measure the closeness of predictors. For given k clusters (groups) we can fit a

F∞ SVM. Thus in this procedure we actually have two tuning parameters: the

number of clusters, and B. The validation set was used to find a good choice of

(k,B).
Figure 4.1 displays the classification error of the F∞ SVM using different

numbers of clusters (k). Based on the validation error curve we see that the

optimal k is 20 and 12 for n = 20 and n = 100, respectively. It is interesting to

see that for any value of k, the classification accuracy of the corresponding F∞



THE F∞-NORM SUPPORT VECTOR MACHINE 389

SVM is better than that of the 1-norm SVM. As shown in Table 4.3, the F∞-norm

SVM via clustering performs almost identically to the F∞-norm SVM using the
oracle group information. In terms of classification accuracy, the F∞-norm SVM

dominates the 1-norm SVM and the 2-norm SVM by a good margin.
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Figure 4.1. Simulation model IV: the validation error and test error vs. the

number of clusters (k). For each k we found the value of B(k) giving the
smallest validation error. Then the pair of (k, B(k)) was used in computing

the test error. The broken horizontal lines indicate the test error of the 1-

norm SVM. Note that in both plots the F∞ SVM uniformly dominates the

1-norm SVM regardless the value of k.



390 HUI ZOU AND MING YUAN

Table 4.3. Simulation model IV: compare different SVMs. F∞-norm (oracle)

is the F∞-norm SVM using the oracle group information. NSG=Number of

Selected Groups, and NSP=Number of Selected Predictors. The F∞-norm

SVM is significantly more accurate than both the 1-norm and 2-norm SVMs.

The ground truth is that 40 predictors in two groups are true features. The

1-norm SVM severely under-selected the model. In contrast, the F∞-norm

SVM can almost identify the ground truth even when n = 20.

Model IV: Bayes Error = 0.109

Method Test Error NSG NSP

n = 20

F∞-norm (k=20) 0.158 (0.004) 2.01 (0.03) 37.99 (0.48)

1-norm 0.189 (0.004) 7.51 (0.25) 7.51 (0.25)
2-norm 0.164 (0.004)

F∞-norm (oracle) 0.160 (0.004) 1.97 (0.02) 39.67 (0.33)

RME(F∞-norm) 1.450 (0.037)

RME(1-norm) 1.734 (0.037)

RME(2-norm) 1.505 (0.037)

n = 100

F∞-norm (k=12) 0.129 (0.001) 2.01 (0.01) 40.64 (0.093)

1-norm 0.147 (0.001) 12.21 (0.45) 12.21 (0.45 )
2-norm 0.140 (0.001)

F∞-norm (oracle) 0.125 (0.001) 2.01 (0.01) 40.09 (0.057)

RME(F∞-norm) 1.174 (0.009)

RME(1-norm) 1.349 (0.009)

RME(2-norm) 1.284 (0.009)

Furthermore, the F∞-norm SVM almost identified the ground truth, while

the 1-norm SVM severely under-selected the model. Consider the n = 20 case.

Note that the sample size is even less than the number of true predictors. The F∞-

norm SVM can still select about 40 predictors. In none of the 100 simulations did

the 1-norm SVM select all the relevant features. The 1-norm SVM also selected a

few noise variables. The probability that the 1-norm SVM discarded all the noise

predictors is about 0.42 when n = 20 and 0.62 when n = 100. Figure 4.2 depicts

the probability of perfect variable selection by the F∞-norm SVM as a function of

the number of clusters. Perfect variable selection means that all the true features

are selected and all the noise features are eliminated. It is interesting to see that

the F∞-norm SVM can have pretty high probabilities of perfect selection, even

when the sample size is less than the number of true predictors. Note that the

1-norm SVM can never select all the true predictors whenever the sample size

is less than the number of true predictors, a fundamental difference between the

F∞ penalty and the L1 penalty.
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Figure 4.2. Simulation model IV. The probability of perfect selection by the
F∞-norm SVM as functions of the number of clusters.

5. Examples

The simulation study has demonstrated the promising advantages of the

F∞-norm SVM. We now examine the performance of the F∞-norm SVM and

the 1-norm and 2-norm SVMs on two benchmark data sets, obtained from UCI

Machine Learning Repository (Newman and Merz (1998)).

5.1. Credit approval data

The credit approval data contains 690 observations with 15 attributes. There

are 307 observations in class “+” and 383 observations in class “-”. This dataset

is interesting because there is a good mix of attributes – six continuous and nine

categorical. Some categorical attributes have a large number of values and some

have a small number of values. Thus, when they are coded by dummy variables,

we have some large groups as well as some small groups. Using the dummy

variables to represent the categorical attributes, we end up with 37 predictors

which naturally form 10 groups, as displayed in Table 5.4.

We randomly selected 1/2 of the data for training, 1/4 data for tuning, and

the remaining 1/4 as the test set. We repeated the randomization 10 times and

now report the average test error of each method and its standard error. Table

5.5 summarizes the results. The F∞-norm SVM appears to be the most accurate

classifier. The variable/factor selection results look very interesting. The F∞

and 1-norm SVMs selected similar numbers of predictors (about 20). However,



392 HUI ZOU AND MING YUAN

in this example, model sparsity is best interpreted in terms of the selected factors,

for we wish to know which categorical attributes are effective. When considering

factor selection, we see that the F∞-norm SVM provided a much sparser model

than the 1-norm SVM.

Table 5.4. The natural groups in the credit approval data. The first group

includes the six numeric predictors. The other nine groups represent the nine

categorical factors, where the predictors are defined using dummy variables.

group predictors in the group

1 (1, 2, 3, 4, 5, 6)

2 (7)

3 (8, 9)
4 (10, 11)

5 (12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)

6 (25, 26, 27, 28, 29, 30, 31, 32)

7 (33)

8 (34)
9 (35)

10 (36, 37)

Table 5.5. Credit approval data: compare different SVMs. NSG=Number

of Selected Groups, and NSP=Number of Selected Predictors.

Test Error NSP NSG

F∞-norm 0.128 (0.008) 19.70 (0.99) 3.00 (0.16)

1-norm 0.132 (0.007) 20.40 (1.35) 7.70 (0.45)

2-norm 0.135 (0.008)

We rebuilt the F∞-norm SVM classifier using the entire data set. The se-

lected factors are 1,5, and 7; the selected predictors are {1, 2, 3, 4, 5, 6, 12, 13, 14,

16, 17, 18, 19, 20, 21, 22, 23, 24, 33}. The data file concerns credit card applica-

tions. So all attribute names and values have been changed to symbols to pro-

tect confidentiality. Thus we do not know the exact interpretation of the selected

factors and predictors.

5.2. Sonar data

The sonar data has 208 observations with 60 continuous predictors. The task

is to discriminate between sonar signals bounced off a metal cylinder and those

bounced off a roughly cylindrical rock. We randomly selected half of the data

for training and tuning, and the remaining half of the data were used as a test

set. We used 10-fold cross-validation on the training data to find good tuning

parameters for the three SVMs. The whole procedure was repeated ten times.
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There is no obvious grouping information in this data set. Thus we first
applied hierarchical clustering to find the “groups”, then we used the clustered
groups to fit the F∞-norm SVM. Figure 5.3 shows the cross-validation errors and
the test errors of the F∞-norm SVM using different number of clusters (k). We
see that k = 6 yields the smallest cross-validation error. It is worth mentioning
that in this example that the 1-norm SVM is uniformly dominated by the F∞-
norm SVM using any value of k. This example and the simulation model IV imply
that the mutual information among the predictors could be used to improve the
prediction performance of an L1 procedure.
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Figure 5.3. Sonar data: the cross-validation error and test error vs. the
number of clusters (k). For each k we found the value of B(k) giving the
smallest validation error. Then the pair of (k, B(k)) was used in computing
the test error. The broken horizontal lines indicate the test error of the 1-
norm SVM. Note that the F∞-norm SVM uniformly dominates the 1-norm
SVM regardless the value of k. The dotted vertical lines show the chosen
optimal k.

Table 5.6 compares the three SVMs. In this example the 2-norm SVM has
the best classification performance, closely followed by the F∞-norm SVM. Al-
though the 1-norm SVM selects a very sparse model, its classification accuracy
is significantly worse than that of the F∞-norm SVM. If jointly considering the
classification accuracy and the sparsity of the model, we think the F∞-norm SVM
is the best among the three competitors.
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Table 5.6. Sonar data: compare different SVMs.

Test Error NSV

F∞-norm 0.254 (0.009) 46.8 (3.92)
1-norm 0.291 (0.011) 20.4 (1.69)

2-norm 0.237 (0.011)

We used the entire sonar data set to fit the F∞-norm SVM. The twelve

variables {1, 2, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60} were discarded. The 1-norm

SVM selected 23 variables which are all included in the set of 48 selected variables

by the F∞-norm SVM. We see that predictors 51-60, representing energy within

high frequency bands, do not contribute to the classification of sonar signals.

6. Discussion

In this article we have proposed the F∞-norm SVM for simultaneous classi-

fication and feature selection. When the input features are generated by known

factors, the F∞-norm SVM is able to eliminate a group of features if the corre-

sponding factor is irrelevant to the response. Empirical results show that the F∞-

norm SVM often outperforms the 1-norm SVM and the standard 2-norm SVM.

Similar to the 1-norm SVM, the F∞-norm SVM often enjoys better performance

than the 2-norm SVM in the presence of noise variables. When compared with

1-norm SVM, the F∞-norm SVM is most powerful for factor selection.

With pre-defined groups, the F∞-norm SVM and the 1-norm SVM have

about the same order of computational cost. When there is no obvious group in-

formation, the F∞-norm SVM can be used in combination with clustering among

features. Note that with the freedom to select the number of clusters, the F∞-

norm SVM has the 1-norm SVM as a special case and can potentially achieve

higher accuracy in classification if both are optimally tuned. Extra computations

are required in clustering and selecting the optimal number of clusters. But the

extra cost is worthwhile because the gain in accuracy can be substantial, as shown

in Sections 4 and 5. We have used hierarchical clustering in our numerical study,

because it is very fast to compute.

Clustering itself is a classical yet challenging problem in statistics. To fix

ideas, we used hierarchical clustering in the examples. Although this strategy

works reasonably well according to our experience, it is certainly worth investigat-

ing alternative choices. For example, in projection pursuit, linear combinations of

the predictors are used as input features in nonparametric fitting. The important

question is how to identify the optimal linear combinations. Zhang, Yu and Shi

(2003) proposed a method based on linear discriminant analysis for identifying

linear directions in nonparametric regression models (e.g., multivariate additive
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splines (MARS) models). Suppose that we can safely assume that the clus-

ters/groups can be clearly defined in the space of linear combinations of the

predictors. Then a good grouping method seems to be obtainable by combining

Zhang’s method with clustering. This is an interesting topic for future research.

There are other approaches to automatic factor selection. Consider a penalty

function pλ(·) and a norm function s(β) such that 0 < C1 ≤ |s(β)|/‖β‖∞ ≤ C2 <

∞, C1 and C2 constants. Suppose pλ(·) is singular at zero and consider

min
β,β0

n
∑

i=1

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

+

G
∑

g=1

pλ

(

|s(β(g))|
)

. (6.1)

By the analysis in Fan and Li (2001) we know that with a proper choice of λ,

some |s(β(g))| will be zero. Thus all the variables in group g are eliminated. A

good combination of (pλ(·), s(·)) can be pλ(·) = λ| · | and s(β) = ‖β‖q. The

F∞-norm SVM amounts to using pλ = λ| · | and q = ∞ in (6.1). The SCAD func-

tion (Fan and Li (2001)) gives another popular penalty function. Yuan and Lin

(2006) proposed the so-called group lasso for factor selection in linear regression.

The group lasso strategy can be easily extended to the SVM paradigm as

min
β,β0

n
∑

i=1

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

+ λ

G
∑

g=1

√

βT
(g)β(g)

√

|Sg|
. (6.2)

Hence the group lasso is equivalent to using pλ(·) = λ| · | and s(β) = ‖β‖2/
√

|Sg|
in (6.1). In general, (6.1) (also (6.2)) is a nonlinear optimization problem and

can be expensive to solve. We favor the F∞-norm SVM because of the great

computational advantages it brings about.

We have focused on the application of the F∞-norm in binary classification

problems. But the methodology can be easily extended to the case of more

than two classes. Lee, Lin and Wahba (2004) proposed the multi-category SVM

by utilizing a new multi-category hinge loss. A multi-category F∞-norm SVM

can be defined by replacing the L2 penalty in the multi-category SVM with the

F∞-norm penalty.

Appendix: proof of theorem 1

We make a note that the proof is in the spirit of Rosset and Zhu (2003).

Write

L(β, λ) =

n
∑

i=1

[

1 − yi

( G
∑

g=1

xT
i,(g)β(g) + β0

)]

+

+ λ

G
∑

g=1

‖β(g)‖∞.
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Then β̂(λ) = arg minβ L(β, λ). Let m0 = mini yix
T
i β0 > 0 and let β∗ = β0/m0.

Part (a). We first show that lim infλ→0{mini yix
T
i β̂(λ)} ≥ 1. Suppose this

is not true, then there is a decreasing sequence of {λk} → 0 and some ǫ > 0

such that, for all k, mini yix
T
i β̂(λk) ≤ 1 − ǫ. Then L(β∗, λk) ≥ L(β̂(λk), λk) ≥

[1 − (1 − ǫ)]+ = ǫ. However, note that mini yix
T
i β∗ = 1, therefore

ǫ ≤ L(β∗, λk) = λk

G
∑

g=1

‖β∗(g)‖∞ → 0 as k → ∞.

This is a contradiction. Now we show lim supλ→0{mini yix
T
i β̂(λ)} ≤ 1. Assume

the contrary, then there is a decreasing sequence of {λk} → 0 and some ǫ > 0

such that, for all k, mini yix
T
i β̂(λk) ≥ 1 + ǫ. Note that

L(β̂(λk), λk) = λk

G
∑

g=1

‖β̂(λk)‖∞,

L(
β̂(λk)

1 + ǫ
, λk) = λk

G
∑

g=1

‖β̂(λk)‖∞
1

1 + ǫ
.

Thus we have L(β̂(λk)/(1 + ǫ), λk) < L(β̂(λk), λk), which contradicts the defini-

tion of β̂(λk). Thus we claim limλ→0 mini yix
T
i β̂(λ) = 1.

Part (b). Suppose a subsequence of β̂(λk)/‖β̂(λk)‖F∞
converges to β∗ as

λk → 0. Then ‖β∗‖F∞
= 1. Also denote mini yix

T
i β by m(β). We need to

show m(β∗) = maxβ:‖β‖F∞
=1 m(β). Assume the contrary, then there is some β∗∗

such that ‖β∗∗‖F∞
= 1 and m(β∗∗) > m(β∗). From part (a),

lim
λk→0

min
i

yix
T
i

β̂(λk)

‖β̂(λk)‖F∞

· ‖β̂(λk)‖F∞
= 1,

which implies that limλk→0 m(β∗)‖β̂(λk)‖F∞
= 1. On the other hand, we observe

that

L
( β∗∗

m(β∗∗)
, λk

)

= λk

∥

∥

∥

β∗∗

m(β∗∗)

∥

∥

∥

F∞

= λk

1

m(β∗∗)
.

L(β̂(λk), λk) ≥ λk‖β̂(λk)‖F∞
.

So we have

L
(

β∗∗

m(β∗∗) , λk

)

L(β̂(λk), λk)
≤ m(β∗)

m(β∗∗)

1

m(β∗)‖β̂(λk)‖F∞

.
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Hence

lim sup
λk→0

L
(

β∗∗

m(β∗∗) , λk

)

L(β̂(λk), λk)
≤ m(β∗)

m(β∗∗)
< 1,

which contradicts the definition of β̂(λk).
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