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Summary. We consider the problem of selecting grouped variables (factors) for accurate pre-
diction in regression. Such a problem arises naturally in many practical situations with the multi-
factor analysis-of-variance problem as the most important and well-known example. Instead of
selecting factors by stepwise backward elimination, we focus on the accuracy of estimation and
consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor
selection. The lasso, the LARS algorithm and the non-negative garrotte are recently proposed
regression methods that can be used to select individual variables. We study and propose effi-
cient algorithms for the extensions of these methods for factor selection and show that these
extensions give superior performance to the traditional stepwise backward elimination method in
factor selection problems.We study the similarities and the differences between these methods.
Simulations and real examples are used to illustrate the methods.

Keywords: Analysis of variance; Lasso; Least angle regression; Non-negative garrotte;
Piecewise linear solution path

1. Introduction

In many regression problems we are interested in finding important explanatory factors in pre-
dicting the response variable, where each explanatory factor may be represented by a group
of derived input variables. The most common example is the multifactor analysis-of-variance
(ANOVA) problem, in which each factor may have several levels and can be expressed through
a group of dummy variables. The goal of ANOVA is often to select important main effects and
interactions for accurate prediction, which amounts to the selection of groups of derived input
variables. Another example is the additive model with polynomial or nonparametric compo-
nents. In both situations, each component in the additive model may be expressed as a linear
combination of a number of basis functions of the original measured variable. In such cases
the selection of important measured variables corresponds to the selection of groups of basis
functions. In both of these two examples, variable selection typically amounts to the selection of
important factors (groups of variables) rather than individual derived variables, as each factor
corresponds to one measured variable and is directly related to the cost of measurement. In this
paper we propose and study several methods that produce accurate prediction while selecting a
subset of important factors.
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Consider the general regression problem with J factors:

Y =
J∑

j=1
Xjβj + ", .1:1/

where Y is an n × 1 vector, " ∼ Nn.0, σ2I/, Xj is an n × pj matrix corresponding to the jth
factor and βj is a coefficient vector of size pj, j = 1, . . . , J . To eliminate the intercept from
equation (1.1), throughout this paper, we centre the response variable and each input variable
so that the observed mean is 0. To simplify the description, we further assume that each Xj is
orthonormalized, i.e. X′

jXj = Ipj , j =1, . . . , J . This can be done through Gram–Schmidt ortho-
normalization, and different orthonormalizations correspond to reparameterizing the factor
through different orthonormal contrasts. Denoting X= .X1, X2, . . . , XJ / and β = .β′

1, . . . , β′
J /′,

equation (1.1) can be written as Y =Xβ + ".
Each of the factors in equation (1.1) can be categorical or continuous. The traditional

ANOVA model is the special case in which all the factors are categorical and the additive
model is a special case in which all the factors are continuous. It is clearly possible to include
both categorical and continuous factors in equation (1.1).

Our goal is to select important factors for accurate estimation in equation (1.1). This amounts
to deciding whether to set the vector βj to zero vectors for each j. In the well-studied special
case of multifactor ANOVA models with balanced design, we can construct an ANOVA table
for hypothesis testing by partitioning the sums of squares. The columns in the full design matrix
X are orthogonal; thus the test results are independent of the order in which the hypotheses are
tested. More general cases of equation (1.1) including the ANOVA problem with unbalanced
design are appearing increasingly more frequently in practice. In such cases the columns of X

are no longer orthogonal, and there is no unique partition of the sums of squares. The test result
on one factor depends on the presence (or absence) of other factors. Traditional approaches to
model selection, such as the best subset selection and stepwise procedures, can be used in model
(1.1). In best subset selection, an estimation accuracy criterion, such as the Akaike information
criterion or Cp, is evaluated on each candidate model and the model that is associated with
the smallest score is selected as the best model. This is impractical for even moderate numbers
of factors since the number of candidate models grows exponentially as the number of factors
increases. The stepwise methods are computationally more attractive and can be conducted with
an estimation accuracy criterion or through hypothesis testing. However, these methods often
lead to locally optimal solutions rather than globally optimal solutions.

A commonly considered special case of equation (1.1) is when p1 = . . . =pJ = 1. This is the
most studied model selection problem. Several new model selection methods have been intro-
duced for this problem in recent years (George and McCulloch, 1993; Foster and George, 1994;
Breiman, 1995; Tibshirani, 1996; George and Foster, 2000; Fan and Li, 2001; Shen and Ye,
2002; Efron et al., 2004). In particular, Breiman (1995) showed that the traditional subset selec-
tion methods are not satisfactory in terms of prediction accuracy and stability, and proposed
the non-negative garrotte which is shown to be more accurate and stable. Tibshirani (1996)
proposed the popular lasso, which is defined as

β̂LASSO.λ/=arg min
β

.‖Y −Xβ‖2 +λ‖β‖l1/, .1:2/

where λ is a tuning parameter and ‖·‖l1 stands for the vector l1-norm. The l1-norm penalty
induces sparsity in the solution. Efron et al. (2004) proposed least angle regression selection
(LARS) and showed that LARS and the lasso are closely related. These methods proceed in
two steps. First a solution path that is indexed by a certain tuning parameter is built. Then the
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final model is selected on the solution path by cross-validation or by using a criterion such as
Cp. As shown in Efron et al. (2004), the solution paths of LARS and the lasso are piecewise
linear and thus can be computed very efficiently. This gives LARS and the lasso tremendous
computational advantages when compared with other methods. Rosset and Zhu (2004) studied
several related piecewise linear solution path algorithms.

Although the lasso and LARS enjoy great computational advantages and excellent perfor-
mance, they are designed for selecting individual input variables, not for general factor selection
in equation (1.1). When directly applied to model (1.1), they tend to make selection based on
the strength of individual derived input variables rather than the strength of groups of input
variables, often resulting in selecting more factors than necessary. Another drawback of using
the lasso and LARS in equation (1.1) is that the solution depends on how the factors are or-
thonormalized, i.e. if any factor Xj is reparameterized through a different set of orthonormal
contrasts, we may obtain a different set of factors in the solution. This is undesirable since our
solution to a factor selection and estimation problem should not depend on how the factors are
represented. In this paper we consider extensions of the lasso and LARS for factor selection
in equation (1.1), which we call the group lasso and group LARS. We show that these natural
extensions improve over the lasso and LARS in terms of factor selection and enjoy superior
performance to that of traditional methods for factor selection in model (1.1). We study the
relationship between the group lasso and group LARS, and show that they are equivalent when
the full design matrix X is orthogonal, but can be different in more general situations. In fact, a
somewhat surprising result is that the solution path of the group lasso is generally not piecewise
linear whereas the solution path of group LARS is. Also considered is a group version of the
non-negative garrotte. We compare these factor selection methods via simulations and a real
example.

To select the final models on the solution paths of the group selection methods, we introduce
an easily computable Cp-criterion. The form of the criterion is derived in the special case of an
orthogonal design matrix but has a reasonable interpretation in general. Simulations and real
examples show that the Cp-criterion works very well.

The later sections are organized as follows. We introduce the group lasso, group LARS and the
group non-negative garrotte in Sections 2–4. In Section 5 we consider the connection between
the three algorithms. Section 6 is on the selection of tuning parameters. Simulation and a real
example are given in Sections 7 and 8. A summary and discussions are given in Section 9.
Technical proofs are relegated to Appendix A.

2. Group lasso

For a vector η ∈Rd , d �1, and a symmetric d ×d positive definite matrix K, we denote

‖η‖K = .η′Kη/1=2:

We write ‖η‖=‖η‖Id
for brevity. Given positive definite matrices K1, . . . , KJ , the group lasso

estimate is defined as the solution to

1
2

∥∥∥∥Y −
J∑

j=1
Xjβj

∥∥∥∥2

+λ
J∑

j=1
‖βj‖Kj , .2:1/

where λ� 0 is a tuning parameter. Bakin (1999) proposed expression (2.1) as an extension of
the lasso for selecting groups of variables and proposed a computational algorithm. A similar
formulation was adopted by Lin and Zhang (2003) where Xj and Kj were chosen respectively to
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Fig. 1. (a)–(d) l1-penalty, (e)–(h) group lasso penalty and (i)–(l) l2-penalty

be basis functions and the reproducing kernel of the functional space induced by the jth factor.
It is clear that expression (2.1) reduces to the lasso when p1 = . . .=pJ =1. The penalty function
that is used in expression (2.1) is intermediate between the l1-penalty that is used in the lasso
and the l2-penalty that is used in ridge regression. This is illustrated in Fig. 1 in the case that all
Kjs are identity matrices. Consider a case in which there are two factors, and the corresponding
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coefficients are a 2-vector β1 = .β11, β12/′ and a scalar β2. Figs 1(a), 1(e) and 1(i) depict the
contour of the penalty functions. Fig. 1(a) corresponds to the l1-penalty |β11|+ |β12|+ |β2|=
1, Fig. 1(e) corresponds to ‖β1‖ + |β2| = 1 and Fig. 1(i) corresponds to ‖.β′

1, β2/′‖ = 1. The
intersections of the contours with planes β12 = 0 (or β11 = 0), β2 = 0 and β11 =β12 are shown
in Figs 1(b)–1(d), 1(f)–1(h) and 1(j)–1(l). As shown in Fig. 1, the l1-penalty treats the three
co-ordinate directions differently from other directions, and this encourages sparsity in indi-
vidual coefficients. The l2-penalty treats all directions equally and does not encourage sparsity.
The group lasso encourages sparsity at the factor level.

There are many reasonable choices for the kernel matrices Kjs. An obvious choice would be
Kj = Ipj , j =1, . . . , J . In the implementation of the group lasso in this paper, we choose to set
Kj =pjIpj . Note that under both choices the solution that is given by the group lasso does not
depend on the particular sets of orthonormal contrasts that are used to represent the factors.
We prefer the latter since in the ANOVA with balanced design case the resulting solution is
similar to the solution that is given by ANOVA tests. This will become clear in later discussions.

Bakin (1999) proposed a sequential optimization algorithm for expression (2.1). In this paper,
we introduce a more intuitive approach. Our implementation of the group lasso is an exten-
sion of the shooting algorithm (Fu, 1999) for the lasso. It is motivated by the following prop-
osition, which is a direct consequence of the Karush–Kuhn–Tucker conditions.

Proposition 1. Let Kj = pjIpj , j = 1, . . . , J . A necessary and sufficient condition for β =
.β′

1, . . . , β′
J /′ to be a solution to expression (2.1) is

−X′
j.Y −Xβ/+ λβj

√
pj

‖βj‖ =0 ∀βj �=0, .2:2/

‖−X′
j.Y −Xβ/‖�λ

√
pj ∀βj =0: .2:3/

Recall that X′
jXj = Ipj . It can be easily verified that the solution to expressions (2.2) and (2.3)

is

βj =
(

1− λ
√

pj

‖Sj‖
)

+
Sj, .2:4/

where Sj =X′
j.Y −Xβ−j/, with β−j = .β′

1, . . . , β′
j−1, 0′, β′

j+1, . . . , β′
J /. The solution to expression

(2.1) can therefore be obtained by iteratively applying equation (2.4) to j =1, . . . , J .
The algorithm is found to be very stable and usually reaches a reasonable convergence toler-

ance within a few iterations. However, the computational burden increases dramatically as the
number of predictors increases.

3. Group least angle regression selection

LARS (Efron et al., 2004) was proposed for variable selection in equation (1.1) with p1 = . . .=
pJ =1 and the algorithm can be described roughly as follows. Starting with all coefficients equal
to 0, the LARS algorithm finds the input variable that is most correlated with the response var-
iable and proceeds on this direction. Instead of taking a full step towards the projection of Y on
the variable, as would be done in a greedy algorithm, the LARS algorithm takes only the largest
step that is possible in this direction until some other input variable has as much correlation
with the current residual. At this point the projection of the current residual on the space that is
spanned by the two variables has equal angle with the two variables, and the LARS algorithm
proceeds in this direction until a third variable ‘earns its way into the most correlated set’. The
LARS algorithm then proceeds in the direction of the projection of the current residual on the
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space that is spanned by the three variables, a direction that has equal angle with the three input
variables, until a fourth variable enters, etc. The great computational advantage of the LARS
algorithm comes from the fact that the LARS path is piecewise linear.

When all the factors in equation (1.1) have the same number of derived input variables
(p1 = . . . = pJ , though they may not be equal to 1), a natural extension of LARS for factor
selection that retains the piecewise linear property of the solution path is the following. Define
the angle θ.r, Xj/ between an n-vector r and a factor that is represented by Xj as the angle
between the vector r and the space that is spanned by the column vectors of Xj. It is clear that
this angle does not depend on the set of orthonormal contrasts representing the factor, and that
it is the same as the angle between r and the projection of r in the space that is spanned by the
columns of Xj. Therefore cos2{θ.r, Xj/} is the proportion of the total variation sum of squares
in r that is explained by the regression on Xj, i.e. the R2 when r is regressed on Xj. Since Xj is
orthonormal, we have

cos2{θ.r, Xj/}=‖X′
jr‖2=‖r‖2:

Starting with all coefficient vectors equal to the zero vector, group LARS finds the factor (say
Xj1 ) that has the smallest angle with Y (i.e. ‖X′

j1
Y‖2 is the largest) and proceeds in the direction

of the projection of Y on the space that is spanned by the factor until some other factor (say
Xj2 ) has as small an angle with the current residual, i.e.

‖X′
j1

r‖2 =‖X′
j2

r‖2, .3:1/

where r is the current residual. At this point the projection of the current residual on the space
that is spanned by the columns of Xj1 and Xj2 has equal angle with the two factors, and group
LARS proceeds in this direction. As group LARS marches on, the direction of projection of
the residual on the space that is spanned by the two factors does not change. Group LARS
continues in this direction until a third factor Xj3 has the same angle with the current residual
as the two factors with the current residual. Group LARS then proceeds in the direction of the
projection of the current residual on the space that is spanned by the three factors, a direction
that has equal angle with the three factors, until a fourth factor enters, etc.

When the pjs are not all equal, some adjustment to the above group LARS algorithm is
needed to take into account the different number of derived input variables in the groups.
Instead of choosing the factors on the basis of the angle of the residual r with the factors Xj

or, equivalently, on ‖X′
jr‖2, we can base the choice on ‖X′

jr‖2=pj. There are other reasonable
choices of the scaling; we have taken this particular choice in the implementation in this paper
since it gives similar results to the ANOVA test in the special case of ANOVA with a balanced
design.

To sum up, our group version of the LARS algorithm proceeds in the following way.

Step 1: start from β[0] =0, k =1 and r[0] =Y:

Step 2: compute the current ‘most correlated set’

A1 =arg max
j

‖X′
jr[k−1]‖2=pj:

Step 3: compute the current direction γ which is a p=Σpj dimensional vector with γAc
k
=0

and

γAk
= .X′

Ak
XAk

/−X′
Ak

r[k−1],

where XAk
denotes the matrix comprised of the columns of X corresponding to Ak.



Model Selection and Estimation in Regression 55

Step 4: for every j =∈Ak, compute how far the group LARS algorithm will progress in direction
γ before Xj enters the most correlated set. This can be measured by an αj ∈ [0, 1] such that

‖X′
j.r[k−1] −αjXγ/‖2=pj =‖X′

j′.r[k−1] −αjXγ/‖2=pj′ , .3:2/

where j′ is arbitrarily chosen from Ak.
Step 5: if Ak �={1, . . . , J}, let α=minj =∈Ak

.αj/≡αjÅ and update Ak+1 =A∪{jÅ}; otherwise,
set α=1.
Step 6: update β[k] =β[k−1] +αγ, r[k] =Y −Xβ[k] and k =k +1. Go back to step 3 until α=1.

Equation (3.2) is a quadratic equation of αj and can be solved easily. Since j′ is from the
current most correlated set, the left-hand side of equation (3.2) is less than the right-hand side
when αj =0. However, by the definition of γ, the right-hand side is 0 when αj =1. Therefore, at
least one of the solutions to equation (3.2) must lie between 0 and 1. In other words, αj in step 4
is always well defined. The algorithm stops after α=1, at which time the residual is orthogonal
to the columns of X, i.e. the solution after the final step is the ordinary least square estimate.
With probability 1, this is reached in J steps.

4. Group non-negative garrotte

Another method for variable selection in equation (1.1) with p1 = . . .=pJ =1 is the non-nega-
tive garrotte that was proposed by Breiman (1995). The non-negative garrotte estimate of βj is
the least square estimate β̂LS

j scaled by a constant dj.λ/ given by

d.λ/=arg min
d

(
1
2‖Y −Zd‖2 +λ

J∑
j=1

dj

)
subject to dj �0, ∀j, .4:1/

where Z = .Z1, . . . , ZJ / and Zj =Xjβ̂
LS
j .

The non-negative garrotte can be naturally extended to select factors in equation (1.1). In this
case β̂LS

j is a vector, and we scale every component of vector β̂LS
j by the same constant dj.λ/.

To take into account the different number of derived variables in the factor, we define d.λ/ as

d.λ/=arg min
d

(
1
2‖Y −Zd‖2 +λ

J∑
j=1

pjdj

)
subject to dj �0, ∀j: .4:2/

The (group) non-negative garrotte solution path can be constructed by solving the quadratic
programming problem (4.2) for all λs, as was done in Breiman (1995). It can be shown (see
Yuan and Lin (2005)) that the solution path of the non-negative garrotte is piecewise linear,
and this can be used to construct a more efficient algorithm for building the (group) non-
negative garrotte solution path. The algorithm is quite similar to the modified LARS algo-
rithm for the lasso, with a complicating factor being the non-negativity constraints in equation
(4.2).

Step 1: start from d[0] =0, k =1 and r[0] =Y:

Step 2: compute the current active set

C1 =arg max
j

.Z′
jr[k−1]=pj/:

Step 3: compute the current direction γ, which is a p-dimensional vector defined by γCc
k
= 0

and

γCk
= .Z′

Ck
ZCk

/−Z′
Ck

r[k−1]:



56 M.Yuan and Y. Lin

Step 4: for every j =∈ Ck, compute how far the group non-negative garrotte will progress in
direction γ before Xj enters the active set. This can be measured by an αj such that

Z′
j.r[k−1] −αjZγ/=pj =Z′

j′.r[k−1] −αjZγ/=pj′ .4:3/

where j′ is arbitrarily chosen from Ck.
Step 5: for every j ∈ Ck, compute αj = min.βj, 1/ where βj = −d

[k−1]
j =γj, if non-negative,

measures how far the group non-negative garrotte will progress before dj becomes 0.
Step 6: if αj �0, ∀j, or minj:αj>0{αj}> 1, set α=1; otherwise, denote α=minj:αj>0{αj}≡
αjÅ . Set d[k] = d[k−1] + αγ. If jÅ =∈ Ck, update Ck+1 = Ck ∪ {jÅ}; otherwise update Ck+1 =
Ck −{jÅ}.
Step 7: set r[k] =Y −Zd[k] and k =k +1. Go back to step 3 until α=1.

5. Similarities and differences

Efron et al. (2004) showed that there is a close connection between the lasso and LARS, and
the lasso solution can be obtained with a slightly modified LARS algorithm. It is of interest to
study whether a similar connection exists between the group versions of these methods. In this
section, we compare the group lasso, group LARS and the group non-negative garrotte, and
we pin-point the similarities and differences between these procedures.

We start with the simple special case where the design matrix X= .X1, . . . , XJ / is orthonor-
mal. The ANOVA with balanced design problem is of this situation. For example, a two-way
ANOVA with number of levels I and J can be formulated as equation (1.1) with p1 = I − 1,
p2 =J − 1 and p3 = .I − 1/.J − 1/ corresponding to the two main effects and one interaction.
The design matrix X would be orthonormal in the balanced design case.

From equation (2.4), it is easy to see that, when X is orthonormal, the group lasso estimator
with tuning parameter λ can be given as

β̂j =
(

1− λ
√

pj

‖X′
jY‖

)
+

X′
jY , j =1, . . . , J: .5:1/

As λ descends from ∞ to 0, the group lasso follows a piecewise linear solution path with
changepoints at λ=‖X′

jY‖=
√

pj, j =1, . . . , J . It is easy to see that this is identical to the solu-
tion path of group LARS when X is orthonormal. In contrast, when X is orthonormal, the
non-negative garrotte solution is

β̂j =
(

1− λpj

‖X′
jY‖2

)
+

X′
jY , .5:2/

which is different from the solution path of the lasso or LARS.
Now we turn to the general case. Whereas group LARS and the group non-negative garrotte

have piecewise linear solution paths, it turns out that in general the solution path of the group
lasso is not piecewise linear.

Theorem 1. The solution path of the group lasso is piecewise linear if and only if any group
lasso solution β̂ can be written as β̂j = cjβ

LS
j , j =1, . . . , J , for some scalars c1, . . . , cJ .

The condition for the group lasso solution path to be piecewise linear as stated above is clearly
satisfied if each group has only one predictor or if X is orthonormal. But in general this con-
dition is rather restrictive and is seldom met in practice. This precludes the possibility of the
fast construction of solution paths based on piecewise linearity for the group lasso. Thus, the
group lasso is computationally more expensive in large scale problems than group LARS and
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the group non-negative garrotte, whose solution paths can be built very efficiently by taking
advantage of their piecewise linear property.

To illustrate the similarities and differences between the three algorithms, we consider a sim-
ple example with two covariates X1 and X2 that are generated from a bivariate normal dis-
tribution with var.X1/ = var.X2/ = 1 and cov.X1, X2/ = 0:5. The response is then generated
as

Y =X3
1 +X2

1 +X1 + 1
3 X3

2 −X2
2 + 2

3 X2 + ",

where " ∼ N.0, 32/. We apply the group lasso, group LARS and the group non-negative gar-
rotte to the data. This is done by first centring the input variables and the response variable
and orthonormalizing the design matrix corresponding to the same factor, then applying the
algorithms that are given in Sections 2–4, and finally transforming the estimated coefficients
back to the original scale. Fig. 2 gives the resulting solution paths. Each line in the plot cor-
responds to the trajectory of an individual regression coefficient. The path of the estimated
coefficients for linear, quadratic and cubic terms are represented by full, broken and dotted
lines respectively.

The x-axis in Fig. 2 is the fraction of progress measuring how far the estimate has marched
on the solution path. More specifically, for the group lasso,

fraction.β/=∑
j

‖βj‖√pj

/∑
j

‖βLS
j ‖√pj:

For the group non-negative garrotte,

fraction.d/=∑
j

pjdj

/∑
j

pj:

For group LARS,

fraction.β/=

K∑
k=1

(
J∑

j=1
‖β[k]

j −β
[k−1]
j ‖√pj

)
+

J∑
j=1

‖βj −β
[K]
j ‖√pj

J∑
k=1

(
J∑

j=1
‖β[k]

j −β
[k−1]
j ‖√pj

) ,

where β is an estimate between β[K] and β[K+1]. The fraction of progress amounts to a one-to-
one map from the solution path to the unit interval [0,1]. Using the fraction that was introduced
above as the x-scale, we can preserve the piecewise linearity of the group LARS and non-negative
garrotte solution paths.

Obvious non-linearity is noted in the group lasso solution path. It is also interesting that, even
though the group lasso and group LARS are different, their solution paths look quite similar
in this example. According to our experience, this is usually true as long as maxj.pj/ is not very
big.

6. Tuning

Once the solution path of the group lasso, group LARS or the group non-negative garrotte has
been constructed, we choose our final estimate in the solution path according to the accuracy
of prediction, which depends on the unknown parameters and needs to be estimated. In this
section we introduce a simple approximate Cp-type criterion to select the final estimate on the
solution path.



58 M.Yuan and Y. Lin

beta

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−0.50.00.51.0

fr
ac

tio
n

(a
)

(b
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−0.50.00.51.0

fr
ac

tio
n

beta

(c
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−0.50.00.51.0

fr
ac

tio
n

beta

F
ig

.2
.

(a
)

G
ro

up
LA

R
S

,(
b)

gr
ou

p
la

ss
o

an
d

(c
)

gr
ou

p
no

n-
ne

ga
tiv

e
ga

rr
ot

te
so

lu
tio

ns



Model Selection and Estimation in Regression 59

It is well known that in Gaussian regression problems, for an estimate µ̂ of µ=E.Y |X/, an
unbiased estimate of the true risk E.‖µ̂−µ‖2=σ2/ is

Cp.µ̂/= ‖Y − µ̂‖2

σ2 −n+2 dfµ,σ2 , .6:1/

where

dfµ,σ2 =
n∑

i=1
cov.µ̂i, Yi/=σ

2: .6:2/

Since the definition of the degrees of freedom involves the unknowns, in practice, it is often
estimated through the bootstrap (Efron et al., 2004) or some data perturbation methods (Shen
and Ye, 2002). To reduce the computational cost, Efron et al. (2004) introduced a simple explicit
formula for the degrees of freedom of LARS which they showed is exact in the case of ortho-
normal designs and, more generally, when a positive cone condition is satisfied. Here we take
the strategy of deriving simple formulae in the special case of orthonormal designs, and then
test the formulae as approximations in more general case through simulations. The same strat-
egy has also been used with the original lasso (Tibshirani, 1996). We propose the following
approximations to df. For the group lasso,

d̃f{µ̂.λ/≡Xβ}=∑
j

I.‖βj‖> 0/+∑
j

‖βj‖
‖βLS

j ‖ .pj −1/, .6:3/

for group LARS,

d̃f.µ̂k ≡Xβ[k]/=∑
j

I.‖β[k]
j ‖> 0/+∑

j




∑
l<k

‖β[l+1]
j −β

[l]
j ‖

∑
l<J

‖β[l+1]
j −β

[l]
j ‖


 .pj −1/, .6:4/

and, for the non-negative garrotte,

d̃f{µ̂.λ/≡Zd}=2
∑
j

I.dj > 0/+∑
j

dj.pj −2/: .6:5/

Similarly to Efron et al. (2004), for group LARS we confine ourselves to the models correspond-
ing to the turning-points on the solution path. It is worth noting that, if each factor contains
only one variable, formula (6.3) reduces to the approximate degrees of freedom that were given
in Efron et al. (2004).

Theorem 2. Consider model (1.1) with the design matrix X being orthonormal. For any esti-
mate on the solution path of the group lasso, group LARS or the group non-negative garrotte,
we have df=E.d̃f/.

Empirical evidence suggests that these approximations work fairly well for correlated predic-
tors. In our experience, the performance of this approximate Cp-criterion is generally compar-
able with that of fivefold cross-validation and is sometimes better. Fivefold cross-validation is
computationally much more expensive.

7. Simulation

In this section, we compare the prediction performance of group LARS, the group lasso and the
group non-negative garrotte, as well as that of LARS and the lasso, the ordinary least squares
estimate and the traditional backward stepwise method based on the Akaike information



60 M.Yuan and Y. Lin

criterion. The backward stepwise method has commonly been used in the selection of grouped
variables, with multifactor ANOVA as a well-known example.

Four models were considered in the simulations. In the first we consider fitting an additive
model involving categorical factors. In the second we consider fitting an ANOVA model with
all the two-way interactions. In the third we fit an additive model of continuous factors. Each
continuous factor is represented through a third-order polynomial. The last model is an addi-
tive model involving both continuous and categorical predictors. Each continuous factor is
represented by a third-order polynomial.

(a) In model I, 15 latent variables Z1, . . . , Z15 were first simulated according to a centred mul-
tivariate normal distribution with covariance between Zi and Zj being 0:5|i−j|. Then Zi is
trichotomized as 0, 1 or 2 if it is smaller than Φ−1. 1

3 /, larger than Φ−1. 2
3 / or in between.

The response Y was then simulated from

Y =1:8 I.Z1 =1/−1:2 I.Z1 =0/+ I.Z3 =1/+0:5 I.Z3 =0/+ I.Z5 =1/+ I.Z5 =0/+ ",

where I.·/ is the indicator function and the regression noise " is normally distributed with
variance σ2 chosen so that the signal-to-noise ratio is 1:8. 50 observations were collected
for each run.

(b) In model II, both main effects and second-order interactions were considered. Four cat-
egorical factors Z1, Z2, Z3 and Z4 were first generated as in model I. The true regression
equation is

Y =3 I.Z1 =1/+2 I.Z1 =0/+3 I.Z2 =1/+2 I.Z2 =0/+ I.Z1 =1, Z2 =1/

+1:5 I.Z1 =1, Z2 =0/+2 I.Z1 =0, Z2 =1/+2:5 I.Z1 =0, Z2 =0/+ ",

with signal-to-noise ratio 3. 100 observations were collected for each simulated data set.
(c) Model III is a more sophisticated version of the example from Section 5. 17 random

variables Z1, . . . , Z16 and W were independently generated from a standard normal dis-
tribution. The covariates are then defined as Xi = .Zi +W/=

√
2. The response follows

Y =X3
3 +X2

3 +X3 + 1
3 X3

6 −X2
6 + 2

3 X6 + ",

where "∼N.0, 22/. 100 observations were collected for each run.
(d) In model IV covariates X1, . . . , X20 were generated in the same fashion as in model III.

Then the last 10 covariates X11, . . . , X20 were trichotomized as in the first two models.
This gives us a total of 10 continuous covariates and 10 categorical covariates. The true
regression equation is given by

Y =X3
3 +X2

3 +X3 + 1
3 X3

6 −X2
6 + 2

3 X6 +2 I.X11 =0/+ I.X11 =1/+ ",

where "∼N.0, 22/. For each run, we collected 100 observations.

For each data set, the group LARS, the group lasso, the group non-negative garrotte and the
LARS solution paths were computed. The group lasso solution path is computed by evaluat-
ing on 100 equally spaced λs between 0 and maxj.‖X′

jY‖=
√

pj/. On each solution path, the
performance of both the ‘oracle’ estimate, which minimizes the true model error defined as

ME.β̂/= .β̂ −β/′E.X′X/.β̂ −β/,

and the estimate with tuning parameter that is chosen by the approximate Cp was recorded. It
is worth pointing out that the oracle estimate, arg min{ME.β̂/}, is only computable in simu-
lations, not real examples. Also reported is the performance of the full least squares estimate
and the stepwise method. Only main effects were considered except for the second model where
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Table 1. Results for the four models that were considered in the simulation†

Results for the following methods:

Group LARS Group garrotte Group lasso LARS Least squares

Oracle Cp Oracle Cp Oracle Cp Oracle Cp Full Stepwise

Model I
Model error 0.83 1.31 0.99 1.79 0.82 1.31 1.17 1.72 4.72 2.39

(0.4) (1.06) (0.62) (1.34) (0.38) (0.95) (0.47) (1.17) (2.28) (2)
Number of factors 7.79 8.32 5.41 7.63 8.48 8.78 10.14 10.44 15 5.94

(1.84) (2.94) (1.82) (3.05) (2.05) (3.4) (2.5) (3.07) (0) (2.29)
CPU time (ms) 168.2 97 2007.3 380.8 1.35 167.05

(19.82) (13.6) (265.24) (40.91) (3.43) (29.9)

Model II
Model error 0.09 0.11 0.13 0.17 0.09 0.12 0.13 0.17 0.36 0.15

(0.04) (0.05) (0.08) (0.13) (0.04) (0.07) (0.05) (0.11) (0.14) (0.13)
Number of factors 5.67 5.36 5.68 5.83 6.72 6.29 8.46 8.03 10 4.15

(1.16) (1.62) (1.81) (2.12) (1.42) (2.03) (1.09) (1.39) (0) (1.37)
CPU time (ms) 126.85 83.85 2692.25 452 2.1 99.85

(15.35) (12.63) (429.56) (32.95) (4.08) (21.32)

Model III
Model error 1.71 2.13 1.47 2.02 1.6 2.04 1.68 2.09 7.86 2.52

(0.82) (1.14) (0.93) (2.1) (0.78) (1.15) (0.88) (1.4) (3.21) (2.22)
Number of factors 7.45 7.46 4.87 4.44 8.88 7.94 11.05 9.34 16 4.3

(1.99) (2.99) (1.47) (3.15) (2.42) (3.73) (2.58) (3.37) (0) (2.11)
CPU time (ms) 124.4 71.9 3364.2 493.2 2.15 195

(9.06) (7.39) (562.5) (15.78) (4.12) (18.51)

Model IV
Model error 1.89 2.14 1.68 2.06 1.78 2.08 1.92 2.25 6.01 2.44

(0.73) (0.87) (0.84) (1.21) (0.7) (0.92) (0.79) (0.99) (2.06) (1.64)
Number of factors 10.84 9.75 6.43 6.08 12.05 10.26 14.34 12.08 20 5.73

(2.3) (3.24) (1.97) (3.54) (2.86) (3.81) (2.95) (3.83) (0) (2.26)
CPU time (ms) 159.5 88.4 5265.55 530.6 2.2 305.4

(8.67) (8.47) (715.28) (30.68) (4.15) (23.87)

†Reported are the average model error, average number of factors in the selected model and average central pro-
cessor unit (CPU) computation time, over 200 runs, for group LARS, the group non-negative garrotte, the group
lasso, LARS, the full least squares estimator and the stepwise method.

second-order interactions are also included. Table 1 summarizes the model error, model sizes
in terms of the number of factors (or interaction) selected and the central processor unit time
consumed for constructing the solution path. The results that are reported in Table 1 are aver-
ages based on 200 runs. The numbers in parentheses are standard deviations based on the 200
runs.

Several observations can be made from Table 1. In all four examples, the models that were
selected by LARS are larger than those selected by other methods (other than the full least
squares). This is to be expected since LARS selects individual derived variables and, once a
derived variable has been included in the model, the corresponding factor is present in the
model. Therefore LARS often produces unnecessarily large models in factor selection prob-
lems. The models that are selected by the stepwise method are smaller than those selected by
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Table 2. p-values of the paired t-tests comparing the estimation error of the various methods

Method p-values for the following models:

Model I Model II Model III Model IV

LARS Stepwise LARS Stepwise LARS Stepwise LARS Stepwise
(Cp) (Cp) (Cp) (Cp)

Group LARS (Cp) 0.0000 0.0000 0.0000 0.0000 0.5829 0.0007 0.0162 0.0017
Group garrotte (Cp) 0.3386 0.0000 0.5887 0.0003 0.4717 0.0000 0.0122 0.0000
Group lasso (Cp) 0.0000 0.0000 0.0000 0.0001 0.3554 0.0000 0.0001 0.0001

other methods. The models that are selected by the group methods are similar in size, though the
group non-negative garrotte seems to produce slightly smaller models. The group non-negative
garrotte is fastest to compute, followed by group LARS, the stepwise method and LARS. The
group lasso is the slowest to compute.

To compare the performance of the group methods with that of the other methods, we con-
ducted head-to-head comparisons by performing paired t-tests on the model errors that were
obtained for the 200 runs. The p-values of the paired t-tests (two sided) are given in Table 2.
In all four examples, group LARS (with Cp) and the group lasso (with Cp) perform signifi-
cantly better than the traditional stepwise method. The group non-negative garrotte performs
significantly better than the stepwise method in three of the four examples, but the stepwise
method is significantly better than the group non-negative garrotte in example 2. In example 3,
the difference between the three group methods and LARS is not significant. In examples 1, 2
and 4, group LARS and the group lasso perform significantly better than LARS. The perfor-
mance of the group non-negative garrotte and that of LARS are not significantly different in
examples 1, 2 and 3, but the non-negative garrotte significantly outperforms LARS in example
4. We also report in Table 1 the minimal estimation error over the solution paths for each of the
group methods. It represents the estimation error of the oracle estimate and is a lower bound
to the estimation error of any model that is picked by data-adaptive criteria on the solution
path.

8. Real example

We re-examine the birth weight data set from Hosmer and Lemeshow (1989) with the group
methods. The birth weight data set records the birth weights of 189 babies and eight predictors
concerning the mother. Among the eight predictors, two are continuous (mother’s age in years
and mother’s weight in pounds at the last menstrual period) and six are categorical (mother’s
race (white, black or other), smoking status during pregnancy (yes or no), number of previous
premature labours (0, 1 or 2 or more), history of hypertension (yes or no), presence of uterine
irritability (yes or no), number of physician visits during the first trimester (0, 1, 2 or 3 or
more)). The data were collected at Baystate Medical Center, Springfield, Massachusetts, during
1986.

A preliminary analysis suggests that non-linear effects of both mother’s age and weight
may exist. To incorporate these into the analysis, we model both effects by using third-order
polynomials.
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Table 3. Test set prediction error of the models
selected by group LARS, the group non-nega-
tive garrotte, the group lasso and the stepwise
method

Method Prediction error

Group LARS (Cp) 609092.8
Group garrotte (Cp) 579413.6
Group lasso (Cp) 610008.7
Stepwise 646664.1

For validation, we randomly selected three-quarters of the observations (151 cases) for model
fitting and reserve the rest of the data as the test set. Fig. 3 gives the solution paths of group
LARS, the group lasso and the group non-negative garrotte. The x-axis is defined as before and
the y-axis represents the group score defined as the l2-norm of the fitted value for a factor. As
Fig. 3 shows, the solution paths are quite similar. All these methods suggest that number of phy-
sician visits should be excluded from the final model. In addition to this variable, the backward
stepwise method excludes two more factors: mother’s weight and history of hypertension. The
prediction errors of the selected models on the test set are reported in Table 3. Group LARS, the
group lasso and the group non-negative garrotte all perform better than the stepwise method.
The performance LARS depends on how the categorical factors are represented, and therefore
LARS was not included in this study.

9. Discussion

Group LARS, the group lasso and the group non-negative garrotte are natural extensions of
LARS, the lasso and the non-negative garrotte. Whereas LARS, the lasso and the non-negative
garrotte are very successful in selecting individual variables, their group counterparts are more
suitable for factor selection. These new group methods can be used in ANOVA problems with
general design and tend to outperform the traditional stepwise backward elimination method.
The group lasso enjoys excellent performance but, as shown in Section 5, its solution path in
general is not piecewise linear and therefore requires intensive computation in large scale prob-
lems. The group LARS method that was proposed in Section 3 has comparable performance
with that of the group lasso and can be computed quickly owing to its piecewise linear solution
path. The group non-negative garrotte can be computed the fastest among the methods that are
considered in this paper, through a new algorithm taking advantage of the piecewise linearity
of its solution. However, owing to its explicit dependence on the full least squares estimates,
in problems where the sample size is small relative to the total number of variables, the non-
negative garrotte may perform suboptimally. In particular, the non-negative garrotte cannot
be directly applied to problems where the total number of variables exceeds the sample size,
whereas the other two group methods can.
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Appendix A

A.1. Proof of theorem 1
The ‘if ’ part of theorem 1 is true because, in this case, expression (2.1) is equivalent to the lasso formu-
lation for cjs, and the solution path of the lasso is piecewise linear. The proof of the ‘only if ’ part relies on
the following lemma.

Lemma 1. Suppose that β̂ and β̃ are two distinct points on the group lasso solution path. If any point on
the straight line connecting β̂ and β̃ is also on the group lasso solution path, then β̂j = cjβ̃j , j =1, . . . , J ,
for some scalars c1, . . . , cJ .

Now suppose that the group lasso solution path is piecewise linear with changepoints at β[0] =0, β[1], . . . ,
β[M] =βLS. Certainly the conclusion of theorem 1 holds for β[M]. Using lemma 1, the proof can then be
completed by induction.

A.2. Proof of lemma 1
For any estimate β, define its active set by {j : βj �= 0}. Without loss of generality, assume that the active
set stays the same for αβ̂ + .1−α/β̃ as α increases from 0 to 1. Denote the set by E . More specifically, for
any α∈ [0, 1],

E ={j :αβ̂j + .1−α/β̃j �=0}:

Suppose that αβ̂ + .1 −α/β̃ is a group lasso solution with tuning parameter λα. For an arbitrary j ∈E ,
write

Cα = λα

√
pj

‖αβ̂j + .1−α/β̃j‖
:

From equation (2.2),

X′
j [Y −X{αβ̂ + .1−α/β̃}]=Cα{αβ̂j + .1−α/β̃j}: .A:1/

Note that

X′
j [Y −X{αβ̂ + .1−α/β̃}]=αX′

j.Y −Xβ̂/+ .1−α/X′
j.Y −Xβ̃/

=αC1β̂j + .1−α/C0β̃j:

Therefore, we can rewrite equation (A.1) as

α.C1 −Cα/β̂j = .1−α/.Cα −C0/β̃j: .A:2/

Assume that the conclusion of lemma 1 is not true. We intend to derive a contradiction by applying equa-
tion (A.2) to two indices j1, j2 ∈E which are defined in the following.

Choose j1 such that β̂j1
�= cβ̃j1

for any scalar c. According to equation (A.2), Cα must be a constant as
α varies in [0,1]. By the definition of Cα, we conclude that

λα ∝‖αβ̂j1
+ .1−α/β̃j1

‖:

In other words,

λ2
α =η‖β̂j1

− β̃j−1‖2α2 +2η.β̂j1
− β̃j1

/′β̃j1
α+η‖β̃j1

‖2 .A:3/

for some positive constant η.
To define j2, assume that λ1 > λ0 without loss of generality. Then Σj ‖β̃j‖

√
pj > Σj ‖β̂j‖

√
pj . There

is a j2 such that ‖β̃j2
‖√pj > ‖β̂j2

‖√pj . Then, for j2, C1 > C0. Assume that C1 − Cα �= 0 without loss of
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generality. By equation (A.2),

β̂j2
= .1−α/.Cα −C0/

α.C1 −Cα/
β̃j2

≡ cj2 β̃j2
:

Therefore,

Cα = .1−α/C0 + cj2αC1

1−α+ cj2α
: .A:4/

Now, by definition of Cα,

λα ={αC1cj2 + .1−α/C0}‖β̃j2
‖: .A:5/

Combining equations (A.3) and (A.5), we conclude that

{.β̂j1
− β̃j1

/′β̃j1
}2 =‖β̂j1

− β̃j−1‖2‖β̃j1
‖2,

which implies that β̂j1
=‖β̂j1

‖= β̃j1
=‖β̃j1

‖. This contradicts our definition of j1. The proof is now completed.

A.3. Proof of theorem 2
Write β̂j = .β̂j1, . . . , β̂jpj

/ and βLS
j = .βLS

j1 , . . . , βLS
jpj

/′. For any β̂ that depends on Y only through βLS, since
X′X= I, by the chain rule we have

tr
(

@Ŷ

@Y

)
= tr

{
@.Xβ̂/

@Y

}

= tr
{

@.Xβ̂/

@βLS

@βLS

@Y

}

= tr
(

X
@β̂

@βLS
X′

)

= tr
(

X′X
@β̂

@βLS

)

= tr
(

@β̂

@βLS

)

=
J∑

j=1

pj∑
i=1

(
@β̂ji

@βLS
ji

)
: .A:6/

Recall that the group lasso or the group LARS solution is given by

β̂ji =
(

1− λ
√

pj

‖βLS
j ‖

)
+
βLS

ji : .A:7/

It implies that

@β̂ji

@βLS
ji

= I.‖βLS
j ‖>λ

√
pj/

[
1− λ{‖βLS

j ‖2 − .βLS
ji /2}√

pj

‖βLS
j ‖3

]
: .A:8/

Combining equations (A.6) and (A.8), we have
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n∑
l=1

@Ŷl

@Yl

=
J∑

j=1
I.‖βLS

j ‖>λ
√

pj/

{
pj − λ.pj −1/

√
pj

‖βLS
j ‖

}

=
J∑

j=1
I.‖βLS

j ‖>λ
√

pj/+
J∑

j=1

(
1− λ

√
pj

‖βLS
j ‖

)
+

.pj −1/:

= d̃f:

Similarly, the non-negative garrotte solution is given as

β̂ji =
(

1− λpj

‖βLS
j ‖2

)
+
βLS

ji : .A:9/

Therefore,

@β̂ji

@βLS
ji

= I{‖βLS
j ‖>

√
.λpj/}

[
1− λpj{‖βLS

j ‖2 −2.βLS
ji /2}

‖βLS
j ‖4

]
: .A:10/

As a result of equations (A.6) and (A.10),

n∑
l=1

@Ŷl

@Yl

=
J∑

j=1
I{‖βLS

j ‖>
√

.λpj/}
{

pj − λpj.pj −2/

‖βLS
j ‖2

}

=2
J∑

j=1
I{‖βLS

j ‖>
√

.λpj/}+
J∑

j=1

(
1− λpj

‖βLS
j ‖2

)
+

.pj −2/

= d̃f,

where the last equality holds because dj = .1−λpj=‖βLS
j ‖2/+.

Now, an application of Stein’s identity yields

df=
n∑

l=1
cov.Ŷl, Yl/=σ

2

=E

(
n∑

l=1

@Ŷl

@Yl

)
=E.d̃f/:
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