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SUMMARY

We propose penalized likelihood methods for estimating the concentration matrix in
the Gaussian graphical model. The methods lead to a sparse and shrinkage estimator of
the concentration matrix that is positive definite, and thus conduct model selection and
estimation simultaneously. The implementation of the methods is nontrivial because of the
positive definite constraint on the concentration matrix, but we show that the computation
can be done effectively by taking advantage of the efficient maxdet algorithm developed
in convex optimization. We propose a BIC-type criterion for the selection of the tuning
parameter in the penalized likelihood methods. The connection between our methods and
existing methods is illustrated. Simulations and real examples demonstrate the competitive
performance of the new methods.
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1. INTRODUCTION

Let X = (X(1),. . . , X(p)) be a p-dimensional random vector following a multivariate
normal distribution Np(µ,�) with unknown mean µ and nonsingular covariance matrix
�. Given a random sample X1,. . . , Xn of X, we wish to estimate the concentration matrix
C = �−1. Of particular interest is the identification of zero entries in the concentration
matrix C = (cij ), since a zero entry cij = 0 indicates the conditional independence between
the two random variables X(i) and X(j) given all other variables. This is the covariance
selection problem (Dempster, 1972) or the model-selection problem in the Gaussian
concentration graph model (Cox & Wermuth, 1996).

A Gaussian concentration graph model for the Gaussian random vector X is represented
by an undirected graph G = (V ,E), where V contains p vertices corresponding to the
p coordinates and the edges E = (eij )1�i<j�p describe the conditional independence
relationships among X(1),. . . , X(p). The edge between X(i) and X(j) is absent if and only if
X(i) and X(j) are independent conditional on the other variables, and corresponds to cij = 0.
Thus parameter estimation and model selection in the Gaussian concentration graph model
are equivalent to estimating parameters and identifying zeros in the concentration matrix;
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see Whittaker (1990), Lauritzen (1996) and Edwards (2000) for statistical properties of
Gaussian concentration graph models and commonly used model selection and parameter
estimation methods in such models.

The standard approach to model selection in Gaussian graphical models is greedy
stepwise forward-selection or backward-deletion, and parameter estimation is based on
the selected model. In each step the edge selection or deletion is typically done through
hypothesis testing at some level α. It has long been recognized that this procedure does
not correctly take account of the multiple comparisons involved (Edwards, 2000). Another
drawback of the common stepwise procedure is its computational complexity. To remedy
these problems, Drton & Perlman (2004) proposed a method that produces conservative
simultaneous 1 − α confidence intervals, and uses these confidence intervals to do model
selection in a single step. The method is based on asymptotic considerations. Meinshausen
& Bühlmann (2006) proposed a computationally attractive method for covariance selection
that can be used for very large Gaussian graphs. They perform neighbourhood selection
for each node in the graph and combine the results to learn the structure of a Gaussian
concentration graph model. They showed that their method is consistent for sparse high-
dimensional graphs. In all of the above mentioned methods, model selection and parameter
estimation are done separately. The parameters in the concentration matrix are typically
estimated based on the model selected. As demonstrated by Breiman (1996), the discrete
nature of such procedures often leads to instability of the estimator: small changes in the
data may result in very different estimates. Other recent advances include a Duke University
discussion paper by A. Dobra and M. West, who presented a novel Bayesian framework
for building Gaussian graphical models and illustrated their approach in a large scale
gene expression study, and Li & Gui (2006), who adopted gradient-directed regularization,
which is described in a technical report by J. Friedman and B. Popescu, available at
http://www-stat.stanford.edu/∼jhf, to construct sparse Gaussian graphical models.

In this paper, we propose a penalized-likelihood method that does model selection and
parameter estimation simultaneously in the Gaussian concentration graph model. We
employ an �1 penalty on the off-diagonal elements of the concentration matrix. This is
similar to the idea of the lasso in linear regression (Tibshirani, 1996). The �1 penalty
encourages sparsity and at the same time gives shrinkage estimates. In addition, we
explicitly ensure that the estimator of the concentration matrix is positive definite. We also
introduce a ‘nonnegative garrote’ type method that is closely related to the aforementioned
approach.

There is a connection between the neighbourhood-selection method in Meinshausen
& Bühlmann (2006) and our penalized-likelihood approach, which we illustrate in § 5.
The neighbourhood-selection method can be cast as a penalized M-estimation without
incorporating the positive definiteness or symmetry constraint. The loss function in the
penalized M-estimation is a particular quadratic form. The neighbourhood selection
method is computationally faster because of its simpler form and because it does not
consider the positive definite constraint. Our method is more efficient because of the
incorporation of the positive definite constraint and the use of likelihood.

Throughout the paper we assume that the observations are suitably centred and scaled.
The sample mean is centred to be zero. One may scale to have the diagonal elements of
the sample covariance matrix equal to one or to have the diagonal elements of the sample
concentration matrix equal to one. In our experience these two scalings give very similar
performance, and in this paper we assume the latter since it seems to be more natural for
estimating the concentration matrix.
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2. METHODOLOGY

2·1. Lasso-type estimator

The loglikelihood for µ and C = �−1 based on a random sample X1,. . . , Xn of X is

n

2
log |C| − 1

2

n∑
i=1

(Xi − µ)′ C (Xi − µ)

up to a constant not depending on µ and C. The maximum likelihood estimator of (µ,�)
is (X̄, Ā), where

Ā = 1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

The commonly used sample covariance matrix is S = nĀ/(n − 1). The concentration
matrix C can be naturally estimated by Ā−1 or S−1. However, because of the large number,
p(p + 1)/2, of unknown parameters to be estimated, S is not a stable estimator of � for
moderate or large p. In general, the matrix S−1 is positive definite when n � p, but does
not lead to ‘sparse’ graph structure since the matrix typically contains no zero entry.

To achieve ‘sparse’ graph structure and to give a better estimator of the concentration
matrix, we adapt the lasso idea and seek the minimizer (µ̂, Ĉ) of

−log |C| + 1
n

n∑
i=1

(Xi − µ)′ C (Xi − µ) subject to ∑
i =| j

|cij | � t, (1)

over the set of positive definite matrices. Here t � 0 is a tuning parameter. When t = ∞, the
solution to (1) is the maximum likelihood estimator Ā−1 provided that the inverse exists.
On the other hand, if t = 0, then the constraint forces C to be diagonal, which implies that
X(1),. . . , X(p) are mutually independent. It is clear that µ̂ = X̄ regardless of t . Since the
observations are centred, we have µ̂ = 0. Therefore, Ĉ is the positive definite matrix that
minimizes

−log |C| + 1
n

n∑
i=1

X′
iCXi subject to ∑

i =| j

|cij | � t . (2)

We can further rewrite (2) as

−log |C| + tr(CĀ) subject to ∑
i =| j

|cij | � t . (3)

Since both the objective function and feasible region of (3) are convex, we can equivalently
use the Lagrangian form

−log |C| + tr(CĀ) + λ ∑
i =| j

|cij |, (4)

with λ � 0 being the tuning parameter.

2·2. Nonnegative garrote-type estimator

If a relatively reliable estimator C̃ of C is available, a shrinkage estimator can be defined
through cij = dij c̃ij , where the symmetric matrix D = (dij ) is the minimizer of

−log |C| + tr(CĀ) subject to ∑
i =| j

dij � t, dij � 0, (5)
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and with C positive definite. Equivalently, this can be written as

−log |C| + tr(CĀ) + λ ∑
i =| j

cij

c̃ij

, (6)

subject to cij /c̃ij � 0 and with C positive definite. For a relatively large sample size, Ā−1 is
an obvious choice for the preliminary estimator. This procedure is similar in spirit to the
nonnegative garrote estimator proposed by Breiman (1995) for linear regression.

2·3. Illustration

Consider the special case in which p = 2. Denote the maximum likelihood estimator of
the concentration matrix by

Ĉ0 = (1 r

r 1) ,

where the diagonal elements are 1 because of the scaling. Therefore,

Ā = Ĉ−1
0 = 1

1 − r2 ( 1 −r

−r 1 ) .

Substitution in (4) gives

−log (c11c22 − c2
12) + c11 + c22

1 − r2
− 2rc12

1 − r2
+ 2λ|c12|,

where we used the fact that C is symmetric.

LEMMA 1. In the case of the bivariate normal, the proposed penalized likelihood estimator
given by the solution to (4) is

ĉ12 = ( (1 − r2){|r| − λ(1 − r2)}
1 − {|r| − λ(1 − r2)}2 )

+
sign(r),

where (x)+ = max(x, 0) and

ĉ11 = ĉ22 = 1
2
[(1 − r2) + √{(1 − r2)2 + 4ĉ2

12}] . (7)

Similarly, the garrote type estimator can also be obtained in an explicit form in this case.

LEMMA 2. With C̃ = Ā−1, the minimizer of (6) is

ĉ12 = ( (1 − r2){r2 − λ(1 − r2)}
|r| − {r2 − λ(1 − r2)}2/|r|)+

sign(r)

and ĉ11 = ĉ22 are given by (7).

The estimators are illustrated Fig. 1. If the true value of c12 is zero, r will tend to be small
in magnitude. With an appropriately chosen λ, both estimates of c12 can be shrunk to zero,
so that model selection for the graphical model can be achieved. Note that the proposed
estimators are continuous functions of r and consequently of the data. Such continuity,
not shared by the existing methods that perform maximum likelihood estimation on a
selected graph structure, ensures the stability of our estimators. The garrote-type estimator
penalizes large r ’s less heavily than small r ’s. As will be demonstrated in the next section,
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Fig. 1. (a) Lasso-type estimator, (b) garrote type estimator for the case of p = 2.

this can be advantageous for model-fitting. However, the disadvantage of the garrote-type
estimator is that it can only be applied when a good initial estimator is available.

3. ASYMPTOTIC THEORY

In this section, we derive asymptotic properties of the proposed estimators that are
analogous to those for the lasso (Knight & Fu, 2000). For simplicity, we assume that p

is held fixed as the sample size n → ∞. Although it might be more realistic to consider
the case when p → ∞ as n → ∞, the following results nevertheless provide an adequate
illustration of the mechanism of the proposed estimators.

THEOREM 1. If
√

nλ → λ0 � 0 as n → ∞, the lasso-type estimator is such that
√

n(Ĉ − C) → arg min
U=U ′(V ),

in distribution, where

V (U) = tr (U�U�) + tr(UW) + λ0 ∑
i =| j

{uij sign(cij )I (cij =| 0) + |uij |I (cij = 0)} ,

in which W is a random symmetric p × p matrix such that vec(W) ∼ N(0,�), and � is such
that

cov(wij , wi′j ′) = cov(X(i)X(j),X(i′)X(j ′)).
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As an illustration, consider an example where p = 3 and

C =
1 1

3 0
1
3 1 2

3
0 2

3 1

 , � =
 1·25 −0·75 0·5

−0·75 2·25 −1·5
0·5 −1·5 2

 .

Note that, for i =| j =| k =| l,

E {(X(i))4} = 3�2
ii

E {(X(i))3X(j)} = 3�ii�ij

E {(X(i))2(X(j))2} = �ii�jj + 2�2
ij

E {(X(i))2X(j)X(k)} = �ii�jk + 2�ij�ik

E (X(i)X(j)X(k)X(l)) = �ij�kl + �ik�jl + �il�jk.

After some tedious algebraic manipulation, we obtain that

W11
W12
W13
W22
W23
W33


∼ N


0,



3·125 −1·875 1·25 1·125 −0·75 0·5
−1·875 3·375 −2·25 −3·375 2·25 −1·5

1·25 −2·25 2·75 2·25 −2·25 2
1·125 −3·375 2·25 10·125 −6·75 4·5

−0·75 2·25 −2·25 − 6·75 6·75 −6
0·5 −1·5 2 4·5 −6 8




.

We simulated 1000 observations from the distribution of arg min V . Figure 2 gives the
scatterplot of the off-diagonal elements for λ0 = 0, 0·5 and 1. When λ0 = 0, our estimator
is asymptotically equivalent to the maximum likelihood estimator, and the asymptotic
distribution for the elements of C is multivariate normal; see Fig. 2(a). If λ0 > 0, the
proposed estimator will have a positive probability of estimating c13 by its true value 0,
and this probability increases as λ0 increases. From Theorem 1 pr(ĉ13 = 0) tends to 0·30 if
λ0 = 0·5 and to 0·45 when λ0 = 1.

Similarly to Theorem 1, we can derive the asymptotic properties of the nonnegative
garrote-type estimator.
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Fig. 2. Example with p = 3. Asymptotic distribution of our estimator as estimated by 1000 simulations, for
different values of λ0, (a) λ0 = 0, (b) λ0 = 0·5, (c) λ0 = 1.
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THEOREM 2. Denote by Ĉ the minimizer of (6) with initial estimator C̃ = Ā−1. If nλ → ∞
and

√
nλ → 0 as n → ∞, then pr(ĉij = 0) → 1 if cij = 0, and other elements of Ĉ have the

same limiting distribution as the maximum likelihood estimator on the true graph structure.

Theorem 2 indicates that the garrote-type estimator enjoys the so-called oracle property:
it selects the right graph with probability tending to one and at the same time gives a root-n
consistent estimator of the concentration matrix.

4. COMPUTATION

4·1. The maxdet problem

The nonlinearity of the objective function and the positive-definiteness constraint make
the optimization problem (3) nontrivial. We take advantage of the connection between
(3) and the determinant-maximization problem, the maxdet problem (Vandenberghe et al.,
1998), which can be solved very efficiently with the interior point algorithm.

The maxdet problem is of the form

min
x∈Rm

b′x − log |G(x)| ,
where b ∈ Rm, G(x) is positive definite, F(x) is positive semidefinite, and the functions
G : Rm → Rl×l and F : Rm → Rl×l are affine:

G(x) = G0 + x1G1 + · · · + xmGm,

F (x) = F0 + x1F1 + · · · + xmFm,

where Fi and Gi are symmetric matrices. To use the algorithm of Vandenberghe et al.
(1998), it is also required that Fi, i = 1,. . . ,m, be linearly independent and the same be
true of Gi, i = 1,. . . ,m. It is not hard to see that the garrote-type estimator (5) solves a
maxdet problem.

4·2. Algorithm for lasso-type estimator

If the signs of the cij ’s are known, (3) can be expressed as the following maxdet problem:

min
C

2 ∑
i<j

aij cij + ∑
i

aiicii − log

∣∣∣∣∣∑
i

ciiI
(i) + ∑

i<j

cij I
(ij)

∣∣∣∣∣ ,
subject to ∑i ciiI

(i) + ∑i<j cij I
(ij) being positive definite,

t − 2 ∑
i<j

cij sij � 0, sij cij � 0, (8)

where C = (cij ), S = (sij ), Ā = (aij ), I (i) is an n × n matrix with the (i, i)th entry being 1
and all other entries being 0, I (ij) is an n × n matrix with the (i, j)th and the (j, i)th entries
being 1 and all other entries being 0, and sij is the sign of cij . Since the signs of the cij ’s
are not known in advance, we propose to update the sij ’s and cij ’s iteratively using the
following steps.

Step 1. Let Ĉold = Ā−1 and sij = sign {(Ĉold)ij} for all i =| j .

Step 2. Let Ĉnew solve (8) over the set of positive definite matrices.
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Step 3. If Ĉnew = Ĉold, then stop and let Ĉ = Ĉnew. Otherwise, set Ĉold = Ĉnew and
sij = −sij for all pairs (i, j) such that ĉij = 0 and go back to Step 2.

In our experience the algorithm usually converges within a small number of iterations.
Clearly, other initial values for s can also be used.

LEMMA 3. The above algorithm always converges and converges to the solution to (3).

4·3. Tuning

So far we have concentrated on the calculation of the minimizer of (3) for any fixed tuning
parameter t . In practice, we need to choose a tuning parameter so as to minimize a score
measuring the goodness-of-fit. A commonly used such score is the multifold crossvalidation
score, but a computationally more efficient alternative is the BIC for model selection and
estimation. To evaluate the BIC for the current setting, one must first obtain an estimate of
the degrees of freedom, which is defined as the number of unknown parameters in the case
of the maximum likelihood estimate.

Let Â = Ĉ−1 and � = {(i, j) : ĉij =| 0}. From the Karush-Kuhn-Tucker conditions, it
is not hard to see that the lasso-type estimator satisfies âij = āij + λsign(ĉij ) for all
pairs (i, j) ∈ �. The remaining card(�c)/2 unique entries of Â can be obtained by solving
card(�c)/2 equations, Ĉij = 0, where i < j and card(·) is the cardinality of a set. Therefore,
Ĉ relies on the observations only through āij , (i, j) ∈ �. Note that the number of parameters
in {āij : (i, j) ∈ �} is ∑i�j êij . Since the āij ’s are maximum likelihood estimates, we can
define, for a given tuning parameter t ,

BIC(t) = −log|Ĉ(t)| + tr{Ĉ(t)Ā} + log n

n ∑
i�j

êij (t),

where êij = 0 if ĉij = 0, and êij = 1 otherwise.

5. QUADRATIC APPROXIMATION

Provided that Ā is nonsingular, a second-order approximation to the objective function
of (3) around Ā−1 can be written as (Boyd & Vandenberghe, 2003)

tr {(C − Ā−1)Ā(C − Ā−1)Ā} .

Therefore, the solution to (4) can be approximated by the solution to

tr {(C − Ā−1)Ā(C − Ā−1)Ā} + λ|C|�1 . (9)

This second-order approximation is closely connected to the approach proposed by
Meinshausen & Bühlmann (2006). In their approach, for each i = 1,. . . , p, we seek the
minimizer θ̂ i,−i = (θ̂ i1,. . . , θ̂ i(i−1), θ̂ i(i+1),. . . , θ̂ ip) ∈ Rp−1 of

1
n

∣∣∣∣X(i) − X[−i]θi,−i

∣∣∣∣2 + λ ∑
j =| i

|θ ij |, (10)

where X[−i] is the n × (p − 1) matrix resulting from the deletion of the ith column from
the data matrix X. A vertex j is taken to be a neighbour of vertex i if and only if θ̂ ij =| 0.
The two vertices are connected by an edge in the graphical model if either vertex is the
neighbour of the other one.
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Note that θ ii , i = 1,. . . , p, are not determined. For notational purposes, we write θii = 1
for i = 1,. . . , p. Recall that we scale each component of X so that all the diagonal
elements of the sample concentration matrix are unity. The following lemma reveals a
close connection between the approach of Meinshausen & Bühlmann (2006) and the
second-order approximation (9).

LEMMA 4. The matrix � = (θ ij ) defined by (10) is the unconstrained solution to

min
C

tr {(C − Ā−1)′Ā(C − Ā−1)} + λ|C|�1, (11)

over all p × p matrices with diagonal elements fixed at 1.

Lemma 4 shows that the approach of Meinshausen & Bühlmann (2006) seeks a sparse
C close to Ā– 1. However, it does not incorporate the symmetry and positive-definiteness
constraint in the estimation of the concentration matrix, and therefore an additional step is
needed to estimate either the covariance matrix or the concentration matrix. Also, the loss
function used by Meinshausen & Bühlmann is different from the quadratic approximation
to the loglikelihood, and therefore the approach is expected to be less efficient than our
penalized likelihood method or the corresponding quadratic approximation (9).

6. SIMULATION

We consider eight different models in our simulation.

Model 1. Heterogeneous model with � = diag(1, 2,. . . , n).

Model 2. An AR(1) model with cii = 1 and ci,i−1 = ci−1,i = 0·5.

Model 3. An AR(2) model with cii = 1, ci,i−1 = ci−1,i = 0·5 and ci,i−2 = ci−2,i = 0·25.

Model 4. An AR(3) model with cii = 1, ci,i−1 = ci−1,i = 0·4 and ci,i−2 = ci−2,i = ci,i−3 =
ci−3,i = 0·2.

Model 5. An AR(4) model with cii = 1, ci,i−1 = ci−1,i = 0·4, ci,i−2 = ci−2,i = ci,i−3 =
ci−3,i = 0·2 and ci,i−4 = ci−4,i = 0·1.

Model 6. Full model with cij = 2 if i = j and cij = 1 otherwise.

Model 7. Star model with every node connected to the first node, with cii = 1,
c1,i = ci,1 = 0·2 and cij = 0 otherwise.

Model 8. Circle model with cii = 1, ci,i−1 = ci−1,i = 0·5 and c1n = cn1 = 0·4.

For each model, we simulated samples with size 25 and dimension p = 5, or size
50 and dimension 10. We compare our methods with the approach of Meinshausen &
Bühlmann (2006) and the method proposed by Drton & Perlman (2004) in terms of the
Kullback–Leibler loss,

KL = −log|Ĉ| + tr(Ĉ�) − (−log|�−1| + p),

the number of false positives (FP; incorrectly identified edges) and the number of false
negatives (FN; incorrectly missed edges). The approach of Meinshausen & Bühlmann
(2006) was implemented using the LARS package from R and the method of Drton &
Perlman (2004) has also been implemented in the SIN package of R. Their method gives
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each edge of the full graph a p-value and two different cut-off values, 5% and 25%, were
suggested in their original paper. Both of these methods focus on model selection and do
not consider the problem of estimating the covariance matrix or the concentration matrix.
For comparison, we estimate the concentration matrix by the maximum likelihood estimate
after the graph structure is selected using their methods. Table 1 documents the means
and standard errors, in parentheses, from 100 runs for each combination. Our penalized
likelihood method is referred to as Lasso in the table because of its connection to the idea
of the lasso in linear regression. Similarly, the extension described in § 2·2 is referred to as
Garrote in the table.

As shown in Table 1, the proposed penalized likelihood methods enjoy better performance
than the other methods. The method of Meinshausen & Bühlmann (2006) and both versions
of the Drton–Perlman method tend to have larger FN, which may partly explain their
relatively poor performance. However, the results suggest that the proposed penalized
likelihood approach combined with BIC may have relatively larger FP. The solution path
of (3) may therefore be more informative in determining the graph structure.

All four methods under comparison require the selection of tuning parameters that
control the trade-off between sensitivity and specificity. To appreciate better the merits of
different methods independently of the tuning parameter selection, we plotted the receiver
operating characteristic curves for different models and methods, each averaged over the
100 simulated datasets. The AR(4) and full models are not included because the specificity in
these cases is not well defined when p = 5. From the plot, not shown here because of space
restrictions, the proposed methods outperform the other approaches for all models when
p = 5 and n = 25. In the cases when p = 10 and n = 50, the performance of all methods
improves but Lasso and Garrote still enjoy competitive performance when compared with
the other approaches.

7. REAL WORLD EXAMPLES

We first consider three real-world examples. The cork borings data are presented in
Whittaker (1990, p. 267) and were originally used by Rao (1948). The p = 4 measurements
are the weights of cork borings on n = 28 trees in the four directions, north, east, south
and west. Fret’s heads dataset contains head measurements on the first and the second
adult son in a sample of 25 families. The 4 variables are the head length of the first son, the
head breadth of the first son, the head length of the second son and the head breadth of
the second son. The data are also presented in Whittaker (1990, p. 255). The Mathematics
marks dataset (Mardia et al., 1979, p. 3) contains the marks of n = 88 students in the p = 5
examinations in mechanics, vectors, algebra, analysis and statistics. The data also appear
in Whittaker (1990, p. 1).

Figures 3–5 depict the solution paths of (3) for each of the three datasets.
To compare the accuracy of different methods, fivefold crossvalidation was applied on the

datasets. Table 2 documents the average values of KL distances for each method, where now

KL = −log|Ĉ| + tr(Ĉ�̂),

in which Ĉ is the concentration matrix estimated on the training set and �̂ is the sample
covariance matrix evaluated on the test set.

Next we considered a larger problem. The opening prices of 35 stocks were collected for
the years 2003 and 2004. Different methods were applied to estimate the covariance matrix
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Fig. 3. Cork borings dataset. The Meinshausen–Bühlmann method selects (d); both
methods based on SIN, with cut-off 0·05 and 0·25, select (b); both Lasso and Garrote

with BIC select (e).
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Fig. 4. Fret’s heads dataset. The Meinshausen–Bühlmann method selects (f); SIN with cut-off 0·05
selects (a); SIN with cut-off 0·25 selects (b); both Lasso and Garrote with BIC select (f).

using the data from 2003. The KL loss of the estimates are then evaluated using the data
from 2004, and Table 3 reports the improved KL loss over the sample covariance matrix.

As shown in Tables 2 and 3, the proposed penalized likelihood methods enjoy very
competitive performance.
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Fig. 5. Mathematics marks dataset. The Meinshausen–Bühlmann method selects (f); SIN with cut-off
0·05 selects (b) with an additional edge between Mechanics and Vectors; SIN with cut-off 0·25 selects (f);

Lasso with BIC selects (j); and Garrote with BIC selects (f).

Table 2. Small-scale examples. Averaged KL loss estimated by
fivefold crossvalidation

Dataset Lasso Garrote MB SIN (0·05) SIN (0·25) Sample

Cork borings 21·65 22·28 22·46 25·21 24·45 22·68
Fret’s heads 18·68 18·33 20·15 21·10 21·22 20·00
Maths marks 29·52 29·53 29·83 30·66 30·26 29·84

MB, method of Meinshausen & Bühlmann (2006); SIN (0·05), method of Drton
& Perlman (2004) based on a cut-off of 0·05; SIN (0·25), method of Drton &
Perlman (2004) based on a cut-off of 0·25.

Table 3. Stock market example. Improvement of predictive
KL loss over sample covariance matrix

Dataset Lasso Garrote MB SIN (0·05) SIN (0·25)

Stock Market 0·05 0·16 −0·58 −5·89 −4·81
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APPENDIX

Proofs

Proof of Lemma 1. The first-order condition leads to

− c22

c11c22 − c2
12

+ 1
1 − r2

= 0, (A1)

− c11

c11c22 − c2
12

+ 1
1 − r2

= 0, (A2)

2c12

c11c22 − c2
12

− 2r

1 − r2
+ 2λsign(c12) = 0, (A3)

where sign(c12) = 1 if c12 > 0, sign(c12) = −1 if c12 < −1, and sign(c12) is anywhere between −1
and 1 if c12 = 0. Equation (7) can be easily obtained from (A1) and (A2). Together with (A3), we
conclude that

2c12
1
2 (1 − r2) [(1 − r2) + √{(1 − r2)2 + 4c2

12}] + 2λsign(c12) = 2r

1 − r2 . (A4)

The sign of the left-hand side of the above equation, sign(c12), should therefore be equal to the sign
of the right-hand side, sign(r). It follows that (A4) implies that

|c12|
1
2 [(1 − r2) + √{(1 − r2)2 + 4c2

12}] =
√{(1 − r2)2 + 4c2

12} − (1 − r2)

2|c12| = |r| − λ(1 − r2). (A5)

The proof can be completed by the solution of (A5).
�

Proof of Theorem 1. Define Vn(U) as

Vn(U) = −log

∣∣∣∣C + U√
n

∣∣∣∣ + tr{(C + U√
n
) Ā} + λ ∑

i =| j

∣∣∣∣cij + uij√
n

∣∣∣∣
+ log |C| − tr(CĀ) + λ ∑

i =| j

|cij |.

Note that

log

∣∣∣∣C + U√
n

∣∣∣∣ − log |C| = log

∣∣∣∣I + �1/2U�1/2

√
n

∣∣∣∣ =
p∑

i=1
log {1 + σ i(�

1/2U�1/2)/
√

n} ,

where σ i(·) denotes the ith-largest eigenvalue of a matrix. Since

log {1 + σ i(�
1/2U�1/2)/

√
n} = σ i(�

1/2U�1/2)√
n

− σ 2
i (�

1/2U�1/2)

n
+ o( 1

n
) ,

we conclude that

log

∣∣∣∣C + U√
n

∣∣∣∣ − log |C| = ∑
i

σ i(�
1/2U�1/2)√

n
− tr(�1/2U�U�1/2)

n
+ o( 1

n
)

= tr(�1/2U�1/2)√
n

− tr(�1/2U�U�1/2)

n
+ o( 1

n
)

= tr (U�)√
n

− tr (U�U�)

n
+ o( 1

n
) .
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On the other hand,

tr{(C + U√
n
) Ā} − tr(CĀ) = tr (UĀ√

n
)

= tr (U�)√
n

+
tr {U(Ā − �)}

√
n

.

Together with the fact that

λ ∑
i =| j

(∣∣∣∣cij + uij√
n

∣∣∣∣ − |cij |) = λ√
n ∑

i =| j

{uij sign(cij )I (cij =| 0) + |uij |I (cij = 0)} ,

nVn(U) can be re-written as

tr (U�U�) + tr (UWn) + √
nλ ∑

i =| j

{uij sign(cij )I (cij =| 0) + |uij |I (cij = 0)} + o (1) ,

where Wn = √
n(Ā − �) → N (0, �). Therefore, nVn(U) → V (U), in distribution. Since both V (U)

and nVn(U) are convex and V (U) has a unique minimum, it follows that,

arg min nVn(U) = √
n(Ĉ − C) → arg min V (U). �

Proof of Theorem 2. The proof proceeds in the same fashion as that of Theorem 1. Define
Vn(U) as

Vn(U) = −log

∣∣∣∣C + U√
n

∣∣∣∣ + tr{(C + U√
n
) Ā} + λ ∑

i =| j

cij + uij /
√

n

c̃ij

+ log |C| − tr(CĀ) + λ ∑
i =| j

cij

c̃ij

.

As before,

nVn(U) = tr (U�U�) + tr (UWn) + √
nλ ∑

i =| j

uij

c̃ij

+ o(1).

Note that c̃ij = Op(n−1/2) if cij = 0, c̃ij → cij in probability and
√

nλ → 0. Therefore, the above
expression can be rewritten as

nVn(U) = tr (U�U�) + tr (UWn) + nλ ∑
cij =0

uij

c̃ij

√
n

+ o(1).

Since nλ → ∞, we conclude that the minimizer of nVn(U) satisfies uij = 0 if cij = 0 with probability
tending to one. The proof is now completed if we note that the maximum likelihood estimator Ĉtrue

for the true graph (V , E = (cij =| 0)) is such that
√

n(Ĉtrue − C) → arg min {tr (U�U�) + tr (UW)} ,

in distribution, where the minimum is taken over all symmetric matrices U such that uij = 0 if
cij = 0. �

Proof of Lemma 2. Simple matrix calculus shows that the matrix of second derivatives of the
objective function in (8) is positive definite and therefore the objective function is strictly convex.
Since the feasible region is compact, Ĉnew is always well defined. We now show that the algorithm will
terminate in a finite number of iterations. Note that, at each iteration, Ĉold lies in the feasible region
of Step 2. If the algorithm does not terminate, that is, at each step Ĉnew =| Ĉold, then the minimum
attained at Step 2 is strictly smaller than that from the previous iteration. The minima attained in the
iterations form a strictly decreasing sequence, which in turn implies that the sign matrix in (8) must
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be different for all iterations. However, this contradicts the fact that there are only a finite number,
2p(p−1)/2, of possible choices for the sign matrix S. Therefore the algorithm has to terminate.

Now we show that the algorithm converges to the solution to (3). Denote the solution at
convergence of the algorithm by Ĉ. By the algorithm we see there exist two sign matrices Ŝ and S̃,
with ŝij ĉij � 0, s̃ij ĉij � 0, and ŝij = −s̃ij for any ĉij = 0, such that Ĉ solves (8) with both Ŝ and S̃. Let
l(C) = −log |C| + tr(CĀ). Then, by the Karush-Kuhn-Tucker conditions (Boyd & Vandenberghe,
2003), there exist λ1 > 0 and λ2 > 0 such that

∂l

∂cij

∣∣∣∣
C=Ĉ

ŝij = −λ1 for all ĉij =| 0 (A6)

∂l

∂cij

∣∣∣∣
C=Ĉ

ŝij � −λ1 for all ĉij = 0, (A7)

and
∂l

∂cij

∣∣∣∣
C=Ĉ

s̃ij = −λ2 for all ĉij =| 0 (A8)

∂l

∂cij

∣∣∣∣
C=Ĉ

s̃ij � −λ2 for all ĉij = 0. (A9)

Together with the fact that ŝij = s̃ij for any ĉij =| 0, (A6) and (A8) imply that λ1 = λ2 ≡ λ.
Combining this with (A7) and (A9), we conclude that

∂l

∂cij

∣∣∣∣
C=Ĉ

= −λŝij for all ĉij =| 0

−λ � ∂l

∂cij

∣∣∣∣
C=Ĉ

� λ for all ĉij = 0,

which implies that Ĉ is also the solution to (4), and equivalently (3), again by the Karush-Kuhn-
Tucker conditions. �

Proof of Lemma 3. Let B = Ā−1. Then bii = 1 according to our scaling and bi,−i is the least-
squares estimator corresponding to regressing X(i) on the other elements; see Lauritzen (1996) and
Meinshausen & Bühlmann (2006). Using this fact, we may write (11) as

1
n

p∑
i=1

∣∣∣∣X[−i]bi,−i − X[−i]θi,−i

∣∣∣∣2 + λ ∑
i =| j

|θ ij |.

To minimize this function, we have θii = 1 and θ i,−i as the minimizer of (10). �
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