
Supplemental materials for this article are available online
http://pubs.amstat.org/doi/suppl/10.1198/106186008X382692/suppl file/yuan.ZIP

Efficient Computation of `1 Regularized
Estimates in Gaussian Graphical Models

Ming YUAN

In this article, I propose an efficient algorithm to compute `1 regularized maximum
likelihood estimates in the Gaussian graphical model. These estimators, recently pro-
posed in an earlier article by Yuan and Lin, conduct parameter estimation and model
selection simultaneously and have been shown to enjoy nice properties in both large
and finite samples. To compute the estimates, however, can be very challenging in
practice because of the high dimensionality and positive definiteness constraint on the
covariance matrix. Taking advantage of the recent advance in semidefinite program-
ming, Yuan and Lin suggested a sophisticated interior-point algorithm to solve the
optimization problem. Although a polynomial time algorithm, the optimization tech-
nique is known not to be scalable for high-dimensional problems. Alternatively, this
article shows that the estimates can be computed by iteratively solving a sequence of
`1 regularized quadratic programs. By effectively exploiting the sparsity of the graph-
ical structure, I propose a new algorithm that can be applied to problems of larger
scale. When combined with a path-following strategy, the new algorithm can be used
to efficiently approximate the entire solution path of the `1 regularized maximum like-
lihood estimates, which also facilitates the choice of tuning parameter. I demonstrate
the efficacy and usefulness of the proposed algorithm on a few simulations and real
datasets.

Key Words: GraphGarrote, GraphLasso; Solution path.

1. INTRODUCTION

Let X = (X (1), . . . , X (p))′ follow a multivariate normal distribution Np(µ,6) with
unknown mean µ and nonsingular covariance matrix 6. We are interested in the construc-
tion and estimation of Gaussian graphical models given an independent and identically
distributed sample X1, . . . , Xn of X . This type of estimation problem naturally occurs
in many statistical applications such as principal component analysis, linear discriminant
analysis, and inferring relationship among multiple variables, to name a few. Most often,

Ming Yuan, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332
(E-mail: myuan@isye.gatech.edu).

c© 2008 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 17, Number 4, Pages 809–826
DOI: 10.1198/106186008X382692

809

http://pubs.amstat.org/doi/suppl/10.1198/106186008X382692/suppl_file/yuan.ZIP

810 M. YUAN

µ is estimated by the sample mean X̄ = (X̄ (1), . . . , X̄ (p))′ where

X̄ (i) =
1

n

n∑

j=1

X (i)j , (1.1)

and 6 by the sample covariance matrix

6̂ =
1

n − 1

n∑

i=1

(
Xi − X̄

)′ (
Xi − X̄

)
. (1.2)

A total of p(p + 1)/2 parameters are needed to specify a completely unstructured covari-
ance matrix. Due to the large number of unknown parameters to be estimated, 6̂ is not a
stable estimate for moderate or large p’s, as often encountered in real applications. Even
worse, when p ≥ n, 6̂ is not positive definite. In contrast, by effectively exploiting the
conditional independence relationship, the dimension of the estimation problem can be
greatly reduced in a Gaussian graphical model.

A graphical model for X is customarily represented by an undirected graph G =
(V, E), where V contains p vertices corresponding to each of the p coordinates and
the edges E = (ei j)1≤i< j≤p describe the conditional independence relationship among
X (1), . . . , X (p). The edge between X (i) and X (j) is absent if and only if X (i) and X (j) are
independent conditional on the other variables. See Whittaker (1990), Lauritzen (1996),
and Edwards (2000) for statistical properties of Gaussian graphical models and commonly
used model selection and parameter estimation methods in such models. It is known that
the graphical structure of (V, E) can be inferred from the zero pattern of the concentration
matrix C = 6−1. A zero entry ci j = 0 in the concentration matrix indicates the conditional
independence between X (i) and X (j) given all other variables. Thus, parameter estimation
and model selection in the Gaussian concentration graph model is equivalent to estimating
parameters and identifying zeros in the concentration matrix.

The standard approach for constructing Gaussian graphical models, or often referred
to as the covariance selection problem (Dempster 1972), is the greedy stepwise forward
selection or backward deletion, and parameter estimation is based on the selected model.
In each step the edge selection or deletion is typically done through hypothesis testing at
some level α. It has long been recognized that this procedure does not correctly account
for the multiple comparisons involved (see, e.g., Edwards 2000). Another drawback of
the common stepwise procedure is its computational complexity. At each single step the
edge selection or deletion requires fitting a large number of candidate models (of the order
p2). This is computationally infeasible for even moderate p’s. A number of other covari-
ance selection approaches have been introduced in recent years (Drton and Perlman 2004;
Meinshausen and Bühlmann 2006; Li and Gui 2005; Yuan and Lin 2007a). In particular,
Yuan and Lin (2007a) proposed an effective method that conducts parameter estimation
and model selection simultaneously, and showed that their penalized likelihood estimates
enjoy nice properties in both large and finite samples. Their so-called graphLasso estimate
of the concentration matrix is a constrained maximum likelihood estimate defined as

min
C�0

[
− ln |C | + tr

(
C Ā

)]
, subject to

∑

i 6= j

|ci j | ≤ M, (1.3)

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 811

where C � 0 indicates that C is symmetric and positive definite,

Ā =
1

n

n∑

j=1

(
X j − X̄

) (
X j − X̄

)′
(1.4)

is the unrestricted maximum likelihood estimate of the covariance matrix, and M > 0
is a regularization parameter. Clearly when M = +∞, it reduces to the unconstrained
maximum likelihood estimate. As M decreases to 0, more and more ci j ’s will be shrunken
to zero and therefore achieve the goal of model selection. The graphLasso estimate can
also be equivalently written in the Lagrange form:

ĈgraphLasso(λ) = arg min
C�0



− ln |C | + tr
(
C Ā

)
+ λ

∑

i 6= j

|ci j |



 , (1.5)

for some λ ≥ 0. A closely related estimate, referred to as graphGarrote, is given by

min
C�0

[
− ln |C | + tr

(
C Ā

)]
, subject to

∑

i 6= j

ci j

c̃i j
≤ M, and ci j/c̃i j ≥ 0, (1.6)

where C̃ = (c̃i j)p×p is a preliminary estimate of the concentration matrix. An obvious
choice of C̃ is 6̂−1 given that 6̂ is invertible. It can also be equivalently written as

ĈgraphGarrote(λ) = arg min
C�0,ci j /c̃i j≥0



− ln |C | + tr
(
C Ā

)
+ λ

∑

i 6= j

ci j

c̃i j



 . (1.7)

Although both estimates are given as the solution to convex optimization problems, to
compute them can be very challenging in practice because of the high dimensionality and
the positive definiteness constraint. Yuan and Lin (2007a) adopted an interior-point algo-
rithm recently developed for the so-called maxdet problem (Vandenberghe, Boyd, and Wu
1998) to solve (1.5) and (1.7). Their algorithm has been demonstrated to be very effec-
tive in small-scale problems. But this algorithm is known not to be scalable for large-scale
problems because it does not exploit the sparsity structure of high-dimensional graphs. For
example, the maxdet program provided by Wu, Vandenberghe, and Boyd (1996) can only
handle up to several hundred unknown parameters, which amounts to a covariance matrix
with dimension up to about 25. This problem is exacerbated when a good regularization
parameter needs to be selected.

In this article, I propose an alternative algorithm that more effectively exploits the struc-
ture of graphLasso and graphGarrote. I show that (1.5) or (1.7) can be solved by minimiz-
ing a sequence of `1 regularized least squares, which can be computed extremely fast in
the same fashion as the recently proposed Lars for linear regression (Osborne, Presnell,
and Turlach 2000; Efron, Hastie, Johnstone, and Tibshrani 2004). Taking advantage of
the sparsity of the graphical structure, our algorithm can be applied to problems of higher
dimension. Similar to other methods of regularization, graphLasso, and graphGarrote pro-
ceed in two steps in practice. First the solution path indexed by the tuning parameter λ
(or equivalently M) is constructed. The second step, often referred to as tuning, selects the

812 M. YUAN

final estimate on the solution path. For most methods of regularization, it is very expensive
to compute the exact solution path. One has to approximate the solution path by evaluating
the estimate for a fine grid of tuning parameters and there is a tradeoff between the ap-
proximation accuracy and the computational cost in determining how fine a grid of tuning
parameters to be considered. In particular, graphLasso or graphGarrote solution path can
be approximated by solving (1.5) and (1.7) for a series of λ’s, as done by Yuan and Lin
(2007a). When combined with a path-following strategy similar to that of Park and Hastie
(2007), the proposed algorithm can be used to efficiently approximate the entire solution
path of the `1 regularized maximum likelihood estimates, which facilitates the choice of
tuning parameter.

The rest of the article is organized as follows. We describe the new algorithm for solv-
ing (1.5) and (1.7) with a prespecified tuning parameter λ in the next section. Section 3
proposes a path-following algorithm to approximate the whole solution path of graphLasso
or graphGarrote. Sections 4 and 5 demonstrate the efficacy and usefulness of the proposed
algorithm on a few simulations and real datasets. Section 6 concludes with a discussion.

2. COMPUTING GRAPHLASSO AND GRAPHGARROTE

The objective function of (1.5) or (1.7) is strictly convex in the feasible region where
C is restricted to be symmetric and positive definite. This guarantees that the solution
is unique. Computationally, however, it is not immediately clear how these constraints,
particularly the positive definiteness constraint, can be effectively enforced in solving (1.5)
or (1.7).

We begin with the graphLasso estimate given by (1.5). First consider a subproblem
where C is known up to its i th row and column. Suppose C−i,−i is positive definite, then
C is also positive definite if and only if

cii − Ci,−i C
−1
−i,−i C−i,i > 0, (2.1)

where subscript −i indicates that the i th column or row is removed from a matrix. There-
fore it is very easy to ensure the positive definiteness of C if we want to update the i th
row and column of C . Essentially, the original semidefinite program of (1.5) reduces to a
constrained vector optimization problem

min− ln |C | + tr
(
C Ā

)
+ λ

∑

i 6= j

|ci j | subject to cii − Ci,−i C
−1
−i,−i C−i,i > 0, (2.2)

where the minimization is taken over vector Ci,· = C ′·,i .
Note that

det(C) = det(C−i,−i)
(

cii − Ci,−i C
−1
−i,−i C−i,i

)
. (2.3)

Therefore, up to a constant not depending on cii and C−i,i , the objective function of (2.2)
can be rewritten as

− ln
(

cii − C ′−i,i C
−1
−i,−i C−i,i

)
+ cii Āii + 2 Āi,−i C−i,i + 2λ

∑

j 6=i

|ci j |, (2.4)

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 813

where we used the fact that Ā is symmetric and Ci,−i = C ′−i,i . A first-order condition
implies that

cii =
1

āi i
+ C ′−i,i C

−1
−i,−i C−i,i . (2.5)

Plugging (2.5) back to (2.4), C−i,i minimizes

1

2
C ′−i,i

(
āi i C

−1
−i,−i

)
C−i,i + Ai,−i C−i,i + λ

∑

j 6=i

|ci j |, (2.6)

which can be formulated as a quadratic program. We can compute (1.5) by solving (2.6)
for each row and iterating until convergence. To sum up, the graphLasso estimate can be
obtained using the iterative Algorithm 1.

Algorithm 1 Algorithm for Computing graphLasso Estimate

Input: Ā, λ ≥ 0 and an initial value for C
Output: The minimizer of (1.5)
Repeat
for i = 1 to p
Update C−i,i , or equivalently Ci,−i by solving

min
C−i,i

1

2
C ′−i,i

(
āi i C

−1
−i,−i

)
C−i,i + Āi,−i C−i,i + λ

∑

j 6=i

∣
∣ci j

∣
∣ . (2.7)

Update cii = 1/āi i + C ′−i,i C
−1
−i,−i C−i,i .

end
Until a certain convergence criterion is met

Using Algorithm 1, we solve (1.5) by iteratively solving quadratic programs described
by (2.7). Convex quadratic programming can be done very efficiently, whereas nonconvex
quadratic programming is also known to be NP-complete. Therefore it is crucial to en-
sure that āi i C

−1
−i,−i is always positive definite during the iterations. The following lemma

guarantees that this is the case whenever a strictly convex initial value for C is applied.

Lemma 1. If the initial value of the concentration matrix is symmetric and positive
definite, then (2.7) is convex at any stage of the iteration.

Proof: If C is positive definite, then C−i,−i is also positive definite. Consequently āi i C
−1
−i,−i

is also positive definite. It is therefore sufficient to show that C ′s positive definiteness is
preserved throughout the iterations. This can be proved by induction. Assume that C is
positive definite prior to updating the i th row and column. Because we ensure (2.1) in
updating Ci,· and C·,i , C remains to be positive definite after the update. 2

Because (2.7) is convex, we can solve it using a path-following algorithm in a simi-
lar spirit to the Lars algorithm for the Lasso (Tibshirani 1996). For brevity, write W =

814 M. YUAN

āi i C
−1
−i,−i and b = Ā−i,i . We can rewrite (2.7) as

min
u

1

2
u′W u+ b′u+ λ

p−1∑

i=1

|u j |. (2.8)

The Karush-Kuhn-Tucker conditions imply that

Wi,·u+ bi + λsign(u j) = 0 if u j 6= 0 (2.9)
∣
∣Wi,·u+ bi

∣
∣ ≤ λ if u j = 0. (2.10)

Denote the active set A = {i : ui 6= 0}. Simple algebra leads to

uA = W−1
A,A (bA + λsign(uA)) , (2.11)

which suggests that the minimizer of (2.8) is piecewise linear in λ. Taking advantage of this
fact, we can sequentially construct the solution with the Lagrange parameter decreasing
from+∞ to λ. More precisely, we use Algorithm 2 to solve (2.7). The same idea is used to
devise the popular Lars algorithm (Osborne et al. 2000; Efron et al. 2004). As pointed out
by Efron et al. (2004), the complexity of Algorithm 2 is O(p3). Therefore each iteration
of Algorithm 1 has complexity O(p4). In contrast, the complexity of one iteration in the
interior point algorithm of Vandenberghe et al. (1998) is O(p6).

The graphGarrote estimate can also be computed using Algorithm 1. To update C−i,i ,
replace (2.7) with

min
C−i,i=C ′i,−i

1

2
C ′−i,i

(
āi i C

−1
−i,−i

)
C−i,i + Ai,−i C−i,i + λ

∑

j 6=i

ci j

c̃i j
subject to ci j/c̃i j ≥ 0.

(2.16)
Again, the solution of (2.16) is piecewise linear in λ. An algorithm similar to Algorithm 2
can be applied, and is stated as Algorithm 3

The following theorem shows that both Algorithms 2 and 3 are valid if āi i C
−1
−i,−i � 0.

Theorem 1. Under the one-at-a-time condition, if āi i C
−1
−i,−i � 0, then Algorithms 2

and 3 are valid.

Proof: The proof for Algorithm 2 follows in the same way as that for the Lasso (Efron et
al. 2004), and Algorithm 3 as that of the nonnegative garrote (Yuan and Lin, 2007b). It is
therefore omitted here. 2

The “one-at-a-time” condition of Theorem 1 was first introduced by Efron et al. (2004)
to derive the connection between the Lasso and the Lars, and later used by Yuan and Lin
(2007b) to prove that the nonnegative garrote solution path is piecewise linear. With the
current notation, the condition states that j∗ in Step 6 of both algorithms is uniquely de-
fined. This assumption basically means that (i) the addition occurs only for one edge at
a time; (ii) no edge disappears at the time of addition; and (iii) no two edges disappear
simultaneously. This is generally true in practice and can always be enforced by slightly
perturbing the observations. For more detailed discussions, the readers are referred to Efron
et al. (2004).

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 815

Algorithm 2 Algorithm for Minimizing (2.7)

Input: W = Aii C
−1
−i,−i , b = A−i,i and λ ≥ 0

Output: The minimizer of (2.7)

1. Start from u[0] = 0, λ[0] = max j |b j | and k = 1.

2. Compute the current “active set”

A1 = arg max
j
|b j |. (2.12)

3. Compute the current direction ν which is a p dimensional vector with γAc
k
= 0 and

γAk = −W−1
Ak ,Ak

b′Ak
− u[k−1]
Ak

. (2.13)

4. For every j /∈ Ak , compute how far the algorithm will progress in the direction γ
before a j /∈ Ak enters the active set. This can be measured by a α j ∈ [0, 1] such
that ∣

∣
∣W j,Ak

(
u[k−1]
Ak
+ αγAk

)
+ b j

∣
∣
∣ = (1− α)λ[k−1]. (2.14)

5. For every j ∈ Ak such that γ j u
[k−1]
j < 0, compute how far the algorithm will

progress in the direction γ before it leaves the active set. This can be measured by
α j = −u[k−1]

j /γ j .

(6) Let α∗ = min j α j ≡ α j∗ . If j∗ /∈ A[k], update Ak+1 = A[k] ∪ { j∗}. Otherwise,
update A[k+1] = { j ∈ A[k] : j 6= j∗}.

(7) Update u[k] = u[k−1] + α∗γ and λ[k] = (1− α∗)λ[k−1]. Set k = k + 1 and Go back
to step (3) until λ[k] ≤ λ.

(8) Return

u =
(λ− λ[k])u[k−1] + (λ[k−1] − λ)u[k]

λ[k−1] − λ[k]
. (2.15)

3. APPROXIMATING SOLUTION PATHS

The `1 regularization procedures are useful because they conduct parameter estimation
and model selection simultaneously. They give a shrinkage estimate that is known to be
useful when there are multiple parameters to be estimated, and select edges in a manner
less greedy than stepwise methods. Results, however, depend on the amount of penaliza-
tion. It is, therefore, critical to be able to compute a series of estimates for a fine grid of
tuning parameters. In this section, we propose a strategy that, combined with the algo-
rithm presented in the last section, can efficiently approximate the solution path for the `1

regularization.
To fix ideas, we focus on graphLasso. First note that when λ is large enough,

ĈgraphLasso(λ) is a diagonal matrix. The following lemma shows exactly how large λ needs
to be.

816 M. YUAN

Algorithm 3 Algorithm for Minimizing (2.16)

Input: W = Aii C
−1
−i,−i , b = A−i,i , λ ≥ 0, w = C̃−i,i and s =

(sign(w1), . . . , sign(wp−1))
′ Output: The minimizer of (2.16)

1. Start from u[0] = 0, λ[0] = −min j
(
w j b j

)
and k = 1.

2. Compute the current “active set”

A1 = arg min
j

(
w j b j

)
. (2.17)

3. Compute the current direction ν which is a p-dimensional vector with γAc
k
= 0 and

γAk = −W−1
Ak ,Ak

b′Ak
− u[k−1]
Ak

. (2.18)

4. For every j /∈ Ak , compute how far the algorithm will progress in the direction γ
before a j /∈ Ak enters the active set. This can be measured by a α j ∈ [0, 1] such
that [

W j,Ak

(
u[k−1]
Ak
+ αγAk

)
+ b j

]
= −(1− α)λ[k−1]/w j . (2.19)

5. For every j ∈ Ak such that γ jw j < 0, compute how far the algorithm will progress
in the direction γ before it leaves the active set. This can be measured by α j =
−u[k−1]

j /γ j .

6. Let α∗ = min j α j ≡ α j∗ . If j∗ /∈ A[k], update Ak+1 = A[k] ∪ { j∗}. Otherwise,
update A[k+1] = { j ∈ A[k] : j 6= j∗}.

7. Update u[k] = u[k−1] + α∗γ and λ[k] = (1− α∗)λ[k−1]. Set k = k + 1 and Go back
to step (3) until λ[k] ≤ λ.

8. Return

u =
(λ− λ[k])u[k−1] + (λ[k−1] − λ)u[k]

λ[k−1] − λ[k]
. (2.20)

Lemma 2. The minimizer of (1.5) is diag(1/ā11, . . . , 1/āpp) if and only if λ ≥ λmax ≡
maxi 6= j |āi j |.

Proof: Let l(C) = − ln |C | + trace
(
C Ā

)
. Then, by the Karush-Kuhn-Tucker conditions

(Boyd and Vandenberghe 2003), the minimizer of (1.5) also solves

∂l

∂ci j
= −λsign(ci j) for all ci j 6= 0, (3.1)

∣
∣
∣
∣
∂l

∂ci j

∣
∣
∣
∣ ≤ λ for all ci j = 0, (3.2)

where ∂l/∂ci j = −(C−1)i j + āi j . It is not hard to verify that diag(1/ā11, . . . , 1/āpp)

satisfies both (3.1) and (3.2) if and only if λ ≥ λmax. 2

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 817

The solution path for (1.5) is therefore determined as λ decreases from λmax to 0.
When λ = λmax, there are no edges in the graphical model and all nodes are independent.
As λ decreases edges enter the graphical model, and occasionally, some existing edges
may leave the model. A common approach to approximate the solution path is to evaluate
Ĉ(λ) for a fine grid of λ’s and to use linear interpolate between them. One has to trade the
approximation accuracy with the computational cost in determining how fine of a grid of
tuning parameter is to be considered.

Here, we take an approach similar to that of Park and Hastie (2007). We capture the
main structure of the solution path by computing the exact solution at the “turning points”
when edge addition or deletion occurs, and then linearly interpolate between them. Starting
with λmax, we compute ĈgraphLasso(λmax) and then make an intelligent guess for the next
“turning point.” A sensible choice actually comes as a byproduct of Algorithm 2. Note
that in updating C−i,i using Algorithm 2, we compute a piecewise linear solution path
where each change point corresponds to a change of the active set. Algorithm 2 not only
solves (2.7), but also provides λL

i < λmax where λL
i corresponds to the change point that

is immediately next to λmax in updating C−i,i . A natural guess for the next “turning point”
of the solution path ĈgraphLasso(λ) is therefore λ(1) = max λL

i . We then compute the exact
solution with this tuning parameter. This time, in using Algorithm 2, we may be able to
find for each i , two tuning parameters λL

i < λ(1) < λU
i that correspond to the change

points immediate next to λ(1).
Two possible scenarios may occur with our guess. If λ(1) is greater than or equal to

the next actual “turning point,” we update our guess with λ(2) = max λL
i as before. If it is

smaller than the next actual “turning point,” we miss the actual “turning point” and need
to increase λ(1). A good candidate is λ(2) = min λU

i . To distinguish between these two
possible scenarios, we keep track of the so-called active set defined as

A(λ) = arg max
i 6= j

∣
∣
∣
∣
∂l

∂ci j

∣
∣
∣
∣ . (3.3)

When λ(1) is greater than the next actual “turning point,” A(λ(1)) = A(λmax). Otherwise
A(λ(1)) differs from A(λmax) generally. At the actual “tuning point”, A(λ(1)) 6= A(λmax)

but {(i, j) : i 6= j, ĉi j (λ
(1)) 6= 0} = A(λmax). We continue this process until the whole

solution path is constructed.
Interestingly, in constructing the solution path, we are also able to speed up the com-

putation for a fixed tuning parameter. Denote for a tuning parameter λ, Bi (λ) = { j 6= i :
ĉi j (λ) 6= 0}. The solution to (2.7) can be given as ci j = 0 if j /∈ Bi (λ) and CBi ,i is given
by

arg min



1

2
C ′Bi ,i

(
Aii C

−1
−i,−i

)

Bi ,Bi
CBi ,i + Ai,Bi CBi ,i + λ

∑

j∈Bi

|ci j |



 . (3.4)

For a sparse graph, the cardinality of B j is much smaller than p. Therefore computing (3.4)
should be much faster than minimizing (2.7). The difficulty, of course, is that Bi (λ) is not
known apriori. Nevertheless, we can update C and B′s in an iterative fashion.

818 M. YUAN

Algorithm 4 An Alternative Algorithm for Minimizing (2.7)

Input: W = Aii C
−1
−i,−i , b = A−i,i , λ ≥ 0 and initial value for Bi

Output: The minimizer of (2.7)

1. Using Algorithm 1 to compute (3.4). Update CBi ,i with the solution. Set C−Bi ,i = 0.

2. Compute the current “active set”

Ai = arg max
j

∣
∣W j,Bi CBi ,i + b j

∣
∣ . (3.5)

3. If Ai 6= Bi , update Bi with Ai ∪ Bi and go back to step (1).

4. Return C−i,i .

Lemma 3. If āi i C
−1
−i,−i � 0, Algorithm 4 always converges and converges to the

minimizer of (2.7).

Proof: Clearly Bi is strictly increasing and the algorithm has to terminate within at most p
iterations. At its convergence, it is evident that (3.2) is satisfied for any j /∈ Bi . On the other
hand, by the Karush-Kuhn-Tucker conditions, (3.1) and (3.2) are satisfied for any j ∈ Bi .
The proof is then completed by the fact that (2.7) is strictly convex when āi i C

−1
−i,−i � 0.2

Depending on the initial value, Algorithm 4 may take up to p iterationsand could be
computationally more demanding than Algorithm 2. On the other hand, if the true Bi is
small and a good starting value is available, Algorithm 4 can be much faster than Algorithm
2. In constructing the solution path, we automatically have a very good initial value for Bi .
Denote by λ∗ the previous “turning point”. Then as discussed before, Bi (λ) = { j : (i, j) ∈
A(λ∗)} unless λ is smaller than the next “turning point.” Therefore, { j : (i, j) ∈ A(λ∗)}
can be used as an initial value for Bi in Algorithm 4.

It is worth noting that in high-dimensional problems the graph is most often sparse, and
we may not need to construct the whole solution path. The above procedure can therefore
be terminated at an earlier stage. To determine when to stop the algorithm, one could adopt
the Bayesian information criterion (BIC) of Yuan and Lin (2007a):

BIC(λ) = − ln |Ĉ(λ)| + trace(Ĉ(λ) Ā)+
ln n

n

∑

i≤ j

êi j (λ), (3.6)

where ei j (λ) = 1 if ĉi j (λ) 6= 0 and 0 otherwise.

4. NUMERICAL EXAMPLES

4.1 MATHEMATICS MARKS DATA

To demonstrate the proposed algorithm, we first consider a relatively small-scale prob-
lem. We use the Mathematics marks dataset from Mardia, Kent and Bibby (1979). The

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 819

Figure 1. Mathematics marks dataset: solution paths constructed using equally spaced values for the tuning
parameters, and the proposed algorithm. In each plot, the y-axis corresponds to the value of the off-diagonal
entries of the estimated concentration matrix, and the x-axis represents the value of the tuning parameter M =∑

i 6= j |ci j |.

data contain the marks of n = 88 students in the p = 5 examinations in mechanics, vec-
tors, algebra, analysis, and statistics. The data have previously been analyzed in Yuan and
Lin (2007a). Yuan and Lin (2007a) computed the graphLasso and graphGarrote using their
interior point algorithm for a grid of tuning parameters. For problem of this size, the esti-
mates can be computed efficiently using both the proposed algorithms and those of Yuan
and Lin (2007a). To appreciate the efficacy of the proposed algorithms for path construc-
tion, we plot the approximated solution path with 50 and 200 equally spaced values of the
tuning parameters for graphLasso and graphGarrote in Figure 1. For the graphLasso, 50
values of the tuning parameters seem to be enough. But for the graphGarrote, some inter-
esting characteristics are missing with only 50 values. In contrast, when using the proposed
algorithm we are able to accurately recover the solution path with only ten different values
of the tuning parameters.

The order that the edges enter the graphical model is presented in Table 1.
By constructing the whole solution path, our algorithm also facilitates the selection of

the final graphical model. Yuan and Lin (2007a) proposed to use the BIC score defined in
(3.6) to determine the final graphical model. The final model selected using the BIC score
is presented in Figure 2. In particular, Yuan and Lin (2007a) showed that graphGarrote

http://pubs.amstat.org/action/showImage?doi=10.1198/106186008X382692&iName=master.img-000.jpg&w=344&h=257

820 M. YUAN

Table 1. The order that each edge enters the graphical model for the math marks data.

Order graphLasso graphGarrote

Step 1 Algebra – Analysis Algebra – Analysis
Step 2 Algebra – Statistics Algebra – Statistics
Step 3 Vector – Algebra Vector – Algebra
Step 4 Analysis – Statistics Mechanics – Vector
Step 5 Mechanics – Vector Mechanics – Algebra
Step 6 Mechanics – Algebra Analysis – Statistics
Step 7 Vector – Analysis Vector – Analysis
Step 8 Vector – Statistics Mechanics – Statistics
Step 9 Mechanics – Analysis Vector – Statistics
Step 10 Mechanics – Statistics Mechanics – Analysis

Figure 2. Math marks dataset: tuning with BIC, and the final graphical model selected. In the left plots, the
x-axis represents the value of the tuning parameter M , and the y-axis represents the corresponding BIC score.
The gray line in each plot is the value that minimizes the BIC score.

http://pubs.amstat.org/action/showImage?doi=10.1198/106186008X382692&iName=master.img-001.jpg&w=357&h=283

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 821

0 200 400 600 800 1000

−
5

0
5

10
15

Solution Path (graphLasso)

M

c i
j

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

1.
0

ROC (graphLasso)

1−specificity

se
ns
iti
vi
ty

0 200 400 600 800 1000

−
10

0
10

20

KL/BIC (graphLasso)

M

sc
or
e

0 200 400 600 800

−
5

0
5

10
15

Solution Path (graphGarrote)

M

c i
j

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

ROC (graphGarrote)

1−specificity

se
ns
iti
vi
ty

0 200 400 600 800

−
10

0
10

20

KL/BIC (graphGarrote)

M

sc
or
e

KL
BIC

Figure 3. Simulated example (p = 25, n = 100): solution path, ROC curve, and KL loss and BIC scores.
In each plot of the left column, the y-axis corresponds to the value of the off-diagonal entries of the estimated
concentration matrix, and the x-axis represents the value of the tuning parameter M . The ROC curves of the plots
in the middle column are produced with varying values of the tuning parameter. The two plots from the right
column give the BIC and KL scores for different values of the tuning parameters.

is consistent in selecting the graphical model if p is held fixed as n goes to infinity whereas
graphLasso may not be. In this example, one may suspect that this is the case. In fact,
the model selected by graphGarrote has previously been confirmed using other methods
(Edwards, 2000). All these findings agree with those from Yuan and Lin (2007a) obtained
using a different but more expensive algorithm.

4.2 SIMULATED EXAMPLE

Next we use a simulated example to illustrate the effect of sample size. Let the true
concentration matrix be as follows: cii = 1, ci,i−1 = 0.5, ci,i+1 = 0.5, and ci j = 0 for
|i − j | > 1. Following Yuan and Lin (2007a), we standardize the population covariance
matrix so that its diagonal elements are one. We consider a p = 25 dimensional prob-
lem. We first generated a sample of size n = 100. Using the same computer, our new
algorithm took about 10 minutes to construct the whole solution path whereas the interior-
point algorithm took nearly an hour to compute the estimate for a single value of the tuning
parameter. The lack of efficiency of the existing algorithm makes it difficult to assess the
merits of graphLasso and graphGarrote in these relatively high dimensional settings. Us-

822 M. YUAN

0 1000 2000 3000 4000 5000 6000

−
60

−
40

−
20

0
20

40

Solution Path (graphLasso)

M

c i
j

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

ROC (graphLasso)

1−specificity
se
ns
iti
vi
ty

0 1000 2000 3000 4000 5000 6000

0
20

40
60

80
10
0

KL/BIC (graphLasso)

M

sc
or
e

KL
BIC

0 100 200 300 400 500 600

−
5

0
5

10
15

20

Solution Path (graphGarrote)

M

c i
j

0.0 0.1 0.2 0.3

0.
2

0.
4

0.
6

0.
8

1.
0

ROC (graphGarrote)

1−specificity

se
ns
iti
vi
ty

0 100 200 300 400 500 600
−
10

0
10

20

KL/BIC (graphGarrote)

M

sc
or
e

KL
BIC

Figure 4. Simulated example (p = n = 25): solution path, ROC curve, and KL loss and BIC scores. In each plot
of the left column, the y-axis corresponds to the value of the off-diagonal entries of the estimated concentration
matrix, and the x-axis represents the value of the tuning parameter M . The ROC curves of the plots in the middle
column are produced with varying values of the tuning parameter. The two plots from the right column give the
BIC and KL scores for different values of the tuning parameters.

ing the proposed algorithm, we construct the solution paths, which are given in Figure 3.
Also plotted are the receiver operating characteristics (ROC) curves, the BIC scores, and
the Kullback-Leibler (KL) loss defined as

L(Ĉ) = − ln |Ĉ | + tr(Ĉ6). (4.1)

In comparison, we simulated data with the same dimension p = 25 but only n = 25
observations. Clearly in this case, the sample covariance is not invertible and an alternative
preliminary estimate is necessary. We first ran the graphLasso solution path. We chose the
graphLasso estimate with λ determined by BIC as the initial estimate C̃ for the graphGar-
rote. Figure 4 provides the same details as Figure 3, but for the smaller dataset.

A few observations can be made from this exercise. First we note that BIC score is
very efficient in picking the optimal tuning parameter that minimizes the true KL loss,
particularly when the sample size is 100. Yuan and Lin (2007a) proved that in large sample
situations, graphGarrote is consistent in model selection if p is held fixed. According to
our experience, it also performs well when p is relatively large when compared with n, so
long as a good initial estimate is used.

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 823

−2 −1 0 1 2

1
2

3
4

5

DPPS3

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

6
7

8
9

10

DXPS2(cla1)

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

5.
5

6.
0

6.
5

7.
0

DXPS3

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

2.
0

3.
0

4.
0

5.
0

GGPPS1mt

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

2
3

4
5

GGPPS4

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

1
2

3
4

5

GGPPS5

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

1
2

3
4

5

GGPPS6

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

7.
5

8.
0

8.
5

9.
0

9.
5

HDS

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

−2 −1 0 1 2

3
4

5
6

7

MPDC2

Theoretical Quantiles

S
am

pl
e
Q
ua
nt
ile
s

Figure 5. Gene Expression: qqplot for nine genes, each with 118 log transformed gene expression measure-
ments.

5. APPLICATION

This section considers an application of the `1 regularization to construct the isoprenoid
biosynthetic pathway. It is now known that plants contain two pathways for the synthesis
of the structural precursors of isoprenoids: the mevalonate (MVA) pathway, located in the
cytosol/ER, and the recently discovered methylerythritol 4-phosphate (MEP) pathway, lo-
cated in the plastids. To better understand the pathway and gain insights into the crosslink
between the two pathways, Wille et al. (2004) reported gene expression measurements
obtained under various experimental conditions using 118 GeneChip microarrays. They
focused on 40 genes, 16 of which were assigned to the cytosolic MVA pathway, 19 to
the plastidal MEP pathway and five genes encoding proteins located in the mitochondria.
Since the expression measurements are always positive, it is a common practice to assume
normality for the log transformed expression. However, the qqplots in Figure 5 show that
the normal assumption seems very problematic even after log-transformation for this data.

To avoid the model misspecification, we make a less restrictive assumption that the
gene expression obtained from each GeneChip follows a Gaussian copula (Nelsen 1998),
meaning that there exist a set of monotone transformation g1, . . . , g40 so that
(
g1(X (1)), . . . , g40(X (40)

)′
follows a 40-dimensional multivariate normal distribution. A

particular choice of gi is 8−1(Fi (·)) where 8 and Fi are the cumulative distribution func-

824 M. YUAN

0 200 400 600 800 1000 1200

−
10

−
8

−
6

−
4

−
2

0
2

4
Entire Soln Path (graphLasso)

M

c i
j

0 5 10 15 20 25 30

−
0.
6

−
0.
4

−
0.
2

0.
0

0.
2

First 50 Steps (graphLasso)

M

c i
j

0 200 400 600 800 1000 1200

30
35

40
45

50
55

graphLasso

M

B
IC
(M

)

0 200 400 600 800 1000

−
10

−
8

−
6

−
4

−
2

0
2

4

Entire Soln Path (graphGarrote)

M

c i
j

0 5 10 15 20 25

−
2.
5

−
2.
0

−
1.
5

−
1.
0

−
0.
5

0.
0

First 50 Steps (graphGarrote)

M

c i
j

0 200 400 600 800 1000

25
30

35
40

45
50

55

graphGarrote

M

B
IC
(M

)

Figure 6. Gene Expression: solution paths and BIC scores. In each plot of the left or middle column, the y-
axis corresponds to the value of the off-diagonal entries of the estimated concentration matrix, and the x-axis
represents the value of the tuning parameter M . The two plots from the right column give the BIC scores for
different values of the tuning parameters.

tion of a standard normal distribution and X (i) respectively. When Fi is unknown, one can
replace it with its empirical version. Clearly, the methodology discussed before can be di-
rectly applied to Z ≡

(
g1(X (1)), . . . , g40(X (40)

)′
. Figure 6 presents the solution path and

the trajectory of the BIC scores for graphLasso and graphGarrote.
The models that minimize the BIC criterion contain 271 and 201 edges, respectively,

for graphLasso and graphGarrote. To gain more insight into the relationship among genes,
we consider the first 25 edges selected by the graphGarrote. We favored graphGarrote
for this task because it enjoys superior model-selection properties as shown before. The
corresponding graphical model is given in Figure 7. MEP path is given on the left side of
the plot and the MVA pathway on the right side. In the plot, the dashed lines and the dotted
lines correspond to the known pathway, and the solid lines and the dotted lines correspond
to the first 25 edges selected by graphGarrote. The dotted lines are on the known pathway
and also selected by garroteGarrote. The result is very similar when compared with the
previous analysis of Wille et al. (2004) and Li and Gui (2006).

EFFICIENT COMPUTATION OF `1 REGULARIZED ESTIMATES 825

DXPS1 DXPS2 DXPS3

DXR

MCT

CMK

MECPS

HDS

HDR

IPPI1

GPPS

GGPS2,6,8,10,11,12 PPDS1 PPDS2

AACT1 AACT2

HMGS

HMGR1

MK

MPDC1

IPPI2

FPPS1

DPPS1,3 GGPPS3,4
GGPS1,5,9

UPPS1

DPPS2

HMGR2

MPDC2

FPPS2

Figure 7. Gene Expression: known pathway and graphical model selected using graphGarrote. The dashed lines
and the dotted lines correspond to the known pathway, and the solid lines and the dotted lines correspond to
the first 25 edges selected by graphGarrote. The dotted lines are on the known pathway and also selected by
garroteGarrote.

6. CONCLUSION

Covariance matrix estimation has always been an important problem in practice for
its use in various statistical applications. Increasingly, statisticians face covariance matrix
estimation problems in moderate or high dimensions. Traditional maximum likelihood es-
timate is known to perform poorly in such cases. Using the tool of Gaussian graphical
models, graphLasso, and graphGarrote tackle this problem by effectively reducing the di-
mensionality of the estimation problem. This article considers the efficient computation of
graphLasso and graphGarrote.

Despite its nice theoretical properties, these estimates encounter difficult optimization
problems. Instead of using the sophisticated interior-point algorithm introduced by Yuan
and Lin (2007a), we propose a faster algorithm that can potentially be applied to large scale
problems. This algorithm can also be used to efficiently produce an approximate solution
path of the `1 regularization.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant DMS-0624841.

[Received October 2006. Revised October 2007.]

REFERENCES

Boyd, S., and Vandenberghe, L. (2003), Convex Optimization, Cambridge: Cambridge University Press.

826 M. YUAN

Dempster, A. P. (1972), “Covariance Selection,” Biometrika, 32, 95–108.

Drton, M., and Perlman, M. (2004), “Model Selection for Gaussian Concentration Graphs,” Biometrika, 91, 591–
602.

Edwards, D. M. (2000), Introduction to Graphical Modelling, New York: Springer.

Efron, B., Johnstone, I., Hastie, T., and Tibshirani, R. (2004), “Least Angle Regression,” The Annals of Statistics,
32, 407–499.

Lauritzen, S. L. (1996), Graphical Models, Oxford: Clarendon Press.

Li, H., and Gui, J. (2006), “Gradient Directed Regularization for Sparse Gaussian Concentration Graphs, With
Applications to Inference of Genetic Networks,” Biostatistcs, 7, 302–317.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979), Multivariate Analysis, London: Academic Press.

Meinshausen, N., and Bühlmann, P. (2006), “Consistent Neighbourhood Selection for High-Dimensional Graphs
with the Lasso,” The Annals of Statistics, 34, 1436–1462.

Nelsen, R. (1998), An Introduction to Copulas, New York: Springer-Verlag.

Osborne, M.R., Presnell, B., and Turlach, B.A. (2000), “A New Approach to Variable Selection in Least Squares
Problems,” IMA Journal of Numerical Analysis, 20, 389–403.

Park, M., and Hastie, T. (2007), “L1-Regularized Path Algorithm for Generalized Linear Models,” Journal of the
Royal Statistical Society, Series B, 69, 659–677.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Soci-
ety, Series B, 58, 267–288.

Vandenberghe, L., Boyd, S., and Wu, S.-P., (1998), “Determinant Maximization with Linear Matrix Inequality
Constraints,” SIAM Journal on Matrix Analysis and Applications, 19, 499–533.

Whittaker, J. (1990), Graphical Models in Applied Multivariate Statistics, Chichester: Wiley.

Wille, A., Zimmermann, P., Vranova, E., Furholz, A., Laule, A., Bleuler, S., Hennig, L., Prelic, A., von Rohr, P.,
Thiele, L., Zitzler, E., Gruissem, W., and Buhlmann, P. (2004), “Sparse Gaussian Graphical Modelling of the
Isoprenoid Gene Network in Arabidopsis thaliana,” Genome Biology, 5, R92.

Wu, S.-P., Vandenberghe, L., and Boyd, S. (1996), “Software for Determinant Maximization Problems—User’s
Guild,” available online at http://www.stanford.edu/∼boyd/maxdet.

Yuan, M., and Lin, Y. (2007a), “Model Selection and Estimation in the Gaussian Graphical Model,” Biometrika,
94, 19–35.

(2007b), “On the Nonnegative Garrote Estimator,” Journal of the Royal Statistical Society, Series B, 69,
143–161.

http://www.stanford.edu/~boyd/maxdet
http://www.stanford.edu/~boyd/maxdet

	INTRODUCTION
	COMPUTING GRAPHLASSO AND GRAPHGARROTE
	APPROXIMATING SOLUTION PATHS
	NUMERICAL EXAMPLES
	Mathematics Marks Data
	Simulated Example

	APPLICATION
	CONCLUSION

