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Among the first microarray experiments were those measuring expression over time, and time course experiments remain common. Most
methods to analyze time course data attempt to group genes sharing similar temporal profiles within a single biological condition. However,
with time course data in multiple conditions, a main goal is to identify differential expression patterns over time. An intuitive approach to
this problem would be to apply at each time point any of the many methods for identifying differentially expressed genes across biological
conditions and then somehow combine the results of the repeated marginal analyses. But considering each time point in isolation is ineffi-
cient, because it does not use the information contained in the dependence structure of the time course data. This problem is exacerbated
in microarray studies, where low sensitivity is a problematic feature of many methods. Furthermore, a gene’s expression pattern over time
might not be identified by simply combining results from repeated marginal analyses. We propose a hidden Markov modeling approach
developed to efficiently identify differentially expressed genes in time course microarray experiments and classify genes based on their
temporal expression patterns. Simulation studies demonstrate a substantial increase in sensitivity, with little increase in the false discovery
rate, compared with a marginal analysis at each time point. This increase is also observed in data from a case study of the effects of aging
on stress response in heart tissue, where a significantly larger number of genes are identified using the proposed approach.
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1. INTRODUCTION

In the mid to late 1990s, advances in DNA microarray
technology generated tremendous enthusiasm within the sci-
entific community. Microarrays were referred to as “the first
great hope” for providing global views of biological processes
(Lander 1999) and were expected to revolutionize genomics.
[The Chipping Forecast (1999) summarizes expectations at that
time.] The enthusiasm was not misguided. Microarrays are now
the most widely used tool in genomics to efficiently measure an
organism’s gene expression levels.

Among the first microarray experiments were those mea-
suring expression over time (DeRisi, Iyer, and Brown 1997;
Chu et al. 1998; Spellman et al. 1998), and time course
microarray experiments remain common. In fact, they com-
prise more than one-third of the experiments catalogued in
the Gene Expression Omnibus, the expression database main-
tained by the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov/geo/ ).

A general goal common to many time course experiments
is to characterize temporal patterns of gene expression within
a single biological condition and group genes by these pat-
terns. Doing so could provide insight into the biological func-
tion of genes if one assumes that genes with similar temporal
patterns of expression share similar function. To accomplish
these tasks, many have used unsupervised learning methods,
such as hierarchical clustering (Eisen, Spellman, Brown, and
Botstein 1998; Spellman et al. 1998) or k-means clustering
(Tavazoie, Hughes, Campbell, Cho, and Church 1999), self-
organizing maps (Tamayo et al. 1999), and singular value de-
composition (Alter, Brown, and Botstein 2000; Wall, Dyck, and
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Brettin 2001). Cyclic patterns in particular have been identified
using numerical scores based on a Fourier transform followed
by correlation to known cyclic genes (Spellman et al. 1998;
Whitfield et al. 2002).

Model-based approaches have also been developed. Ramoni,
Sebastiani, and Kohane (2002) considered each gene’s expres-
sion profile as output from an autoregressive (AR) process;
genes with the highest posterior probability of being gener-
ated by the same AR process are clustered together. The to-
tal number of clusters is identified using an iterative procedure
that begins with each profile in its own cluster. At each step,
chosen profiles are merged into a single cluster if doing so in-
creases a marginal likelihood function. Schliep, Schönhuth, and
Steinhoff (2003) addressed similar goals. In their work, par-
tially supervised learning is used to identify an initial set of
clusters at each time point, represented by a hidden Markov
model (HMM). An iterative procedure then determines the par-
ticular assignment of data to clusters that maximizes the joint
likelihood of the clustering; cluster number is determined by
state splitting and state deletion in HMM “model surgery.”
Zhao, Prentice, and Breeden (2001) introduced the application
of the single-pulse model to identify genes undergoing a tran-
scriptional response to a stimulus. Resulting estimates of the
mean time of cycle activation and deactivation provide informa-
tion on individual transcript profiles and can be used to assess
the quality of clusters.

A second, more recent goal of many time course experi-
ments is to collect profiles in multiple biological conditions
and identify temporal patterns of differential expression. The
previously described approaches consider data within one con-
dition and thus cannot provide information on differential ex-
pression among conditions. To address this, at each time point
one could apply any of the many methods for identifying dif-
ferentially expressed genes across biological conditions. (For a
review of these methods, see Parmigiani, Garrett, Irizarry, and
Zeger 2003.) However, a consideration of each time point in
isolation can be inefficient, because it does not use the informa-
tion contained in the dependence structure of the time course
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data. This problem is exacerbated in microarray studies, where
low sensitivity is a problematic feature of many methods. In
addition, a gene’s expression pattern over time might not be
identified by simply combining results from repeated marginal
analyses.

The method presented here was developed to efficiently iden-
tify differentially expressed genes in time course microarray
experiments and classify genes based on their temporal expres-
sion patterns. It was motivated by an experiment to investigate
the transcriptional response to oxidative stress in the heart and
how it changes with age (Edwards et al. 2003). The question is
of interest for a number of reasons, a main one being evidence
relating longevity with the ability to resist oxidative stress. Al-
though it is well known that age confers increased susceptibility
to various forms of stress, little is known about the genetic ba-
sis for this change. The details of the experiment are given in
Section 5.

In Section 2 we describe the general model and fitting pro-
cedure for analyzing time course microarray data. We consider
a specific model implementation in Section 3, followed by a
simulation study to illustrate and evaluate the approach. We an-
alyze the case study in Section 5. In Section 6 we provide a
discussion and outline open questions.

2. GENERAL MODEL

The general data structure and primary questions of the case
study described earlier are similar to many time course microar-
ray experiments. There are multiple time points, and for each
time point there are microarray measurements from at least
two biological conditions. Intensity values are background cor-
rected and normalized to account for known sources of vari-
ation, leaving a single summary score of expression for each
replicate measurement of each gene at each time in each condi-
tion. The primary goals of the study are to identify genes with
different levels of expression at each time and to classify genes
into temporal expression patterns. The approach discussed here
is developed to accomplish these goals.

2.1 Modeling and Inference

Consider K different biological conditions and T time points.
Let xt be an m × n matrix of expression values for m genes
probed with n arrays at time t. Clearly, n ≥ K, and the equality
holds if and only if there are no replicates within any biological
condition. The heart has K = 2 biological conditions (young
and old), T = 5 time points, m = 12,588 genes, and n = 6 arrays
at each time point (3 replicates in each biological condition).
The full set of observed expression values is then denoted by

X = (x1,x2, . . . ,xT).

With slight abuse of notation, let xg denote one row of this ma-
trix containing data for gene g over time, xgt contains data for
gene g at time t, and xgtc consists of data for gene g at time t
under condition c. Our interest lies in the relationship among
the K latent mean levels of expression for each gene g at each
time t denoted by µgt1,µgt2, . . . ,µgtK .

Equality and inequality relationships among the means
across conditions induce distinct expression patterns, or states.
For example, if K = 2, as in the heart study, then there are two

potential expression states for a given gene: equivalent expres-
sion (µgt1 = µgt2) and differential expression (µgt1 �= µgt2).

The goal of the experiment that we are concerned with can be
restated as questions about these underlying states. In short, for
each gene g at each time t, we would like to estimate the proba-
bility of each state [πk(g, t) = P(sgt = k)] for k = 1,2, . . . ,BK ,
and also estimate the most likely configuration of expression
states over time (sg1, sg2, . . . , sgT). Note that the most likely
configuration of states need not equal the collection of states
that maximize πk(g, t) marginally at each t.

The most natural estimates for sgt are the maximum a poste-
riori (MAP) estimates, or the estimates obtained by the Bayes
rule under 0–1 loss (Berger 1985). Depending on the quantity
to be estimated, the MAPs are given by

( ŝgt : g = 1, . . . ,m) = arg max
(sgt : g=1,...,m)

P(sgt : g = 1, . . . ,m|X),

t = 1, . . . ,T, (1)

and

( ŝg· : g = 1, . . . ,m) = arg max
(sg·:g=1,...,m)

P(sg· : g = 1, . . . ,m|X),

(2)
where sg· = (sg1, sg2, . . . , sgT).

To compute the MAPs, we propose a model for the set of
expression measurements taken on a gene g. For a fixed time t,
we consider xgt arising from a conditional distribution

xgt|sgt = i ∼ fit(xgt).

The time course xg is then governed by two interrelated prob-
abilistic mechanisms: the conditional distributions at each time
and the process describing the evolution of states over time
(sg1, . . . , sgT). Assuming that the expression pattern (or state)
process for each gene can be described by a Markov chain, that
the observed expression vector can be characterized by distribu-
tions conditional on the underlying state process, and that there
is conditional independence in the expression data over time,
the proposed model is an HMM; an example is shown in Fig-
ure 1. Gene subscripts are dropped for convenience.

Computing the MAPs directly is difficult in the context of the
HMM model, because the states are not directly observable and
parameters π0, fit, and the transition matrix A are usually un-
known. For example, consider an HMM with just two states and
five time points. There are 25 = 32 possible expression pattern
vectors, and thus one might consider modeling the expression
vectors as a mixture with 32 components. In principle, parame-
ter estimation could be done using EM, which would require
maximizing the complete data likelihood. Tremendous comput-
ing effort would be required to conduct such a maximization
directly. In addition, numerical accuracy would be questionable
as the number of components increased.

Fortunately, the Baum–Welch algorithm can be used to esti-
mate A, π0, and fit (Durbin, Eddy, Krogh, and Mitchison 1998).
The Baum–Welch algorithm exploits the Markov structure of
HMMs. The algorithm, a version of EM algorithm, estimates A,
π0, and fit by treating the pattern process as missing data. The
algorithm iterates between the E-step and the M-step. In the
E-step, given the current parameter estimates, an expectation
over the missing data is taken; this is followed by an M-step to
obtain a new set of estimates (see Durbin et al. 1998 for details).
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Figure 1. Expression Measurements for a Single Gene g Simulated in Two Biological Conditions (pink and blue, three replicates in each condition)
Over Time. The expression patterns, or states, are also shown (µgt1 �= µgt2 and µgt1 = µgt2 ). In practice, the states are not observed. For the HMM
model, the unobserved states are expected to change over time according to a Markov process. At time t, the observed output is the expression
vector xgt .

After obtaining parameter estimates, (1) can be evaluated. In
other words, the most probable expression state for each gene
at each time can be identified marginally. Because the most
likely expression pattern over time might not be the collection
of states that are most probable marginally, evaluation of (2)
does not follow directly. To compute the most likely paths of
expression states for each gene [given by (2)], the Viterbi algo-
rithm (Durbin et al. 1998) can be used. Like the Baum–Welch
algorithm, the Viterbi algorithm makes use of the Markov prop-
erty of the pattern process. Details have been given by Durbin
et al. (1998), among many others.

2.2 Extensions

The general HMM approach proposed earlier for expression
data in two biological conditions can be extended to other types
of measurements in multiple conditions. Implementation in a
specific setting requires a number of decisions:

1. Data matrix X. In this article we focus on the cases where
X represents the expression scores. In some applications, how-
ever, instead of working on the expression vector itself, some
sort of dimension-reduction technique may serve as a pre-
processing step (Efron, Tibshirani, Storey, and Tusher 2001;
Pan, Lin, and Lee 2003; Allison et al. 2002). A popular choice
is a summary statistic ygt, such as the t-statistic or correspond-
ing p value for xgt1, . . . , xgtK . Under these models, the observed
random process is {ygt} instead of xgt.

2. Expression patterns. For the case of multiple biological
conditions, the number of states will be increased. For example,
if K = 3, then there are five possible states:

State 1: µgt1 = µgt2 = µgt3,
State 2: µgt1 �= µgt2 = µgt3,

State 3: µgt1 = µgt2 �= µgt3,
State 4: µgt1 = µgt3 �= µgt2,

and
State 5: µgt1 �= µgt2 �= µgt3.

More generally, the number of states as a function of the num-
ber of treatments K is equal to the Bell exponential number of
possible set partitions, BK . Because BK increases exponentially
in K, prior information to narrow down the states worth investi-
gating can be useful (see Kendziorski, Newton, Lan, and Gould
2003). There are situations in which ordered patterns might
be of interest. With K = 2, one might consider three states:
µgt1 = µgt2, µgt1 > µgt2, and µgt1 < µgt2.

3. Homogeneous or nonhomogeneous HMM. A homoge-
neous HMM (h-HMM) is one in which A(t) does not depend
on t. h-HMMs and nonhomogeneous HMMs (nh-HMMs) are
useful in different scenarios. Of course, the h-HMM is a special
case of the nh-HMM. Thus, to avoid model misspecification,
the nh-HMM is recommended unless there is a clear reason to
do otherwise. In Section 4 an example is considered where the
true data-generating mechanism is an h-HMM but an nh-HMM
is specified for the analysis. For that example, there is little loss
in efficiency.

4. Specification of the observational model, f . There is the-
oretically much flexibility in the chosen form for f . Of course,
practical constraints exist related to specifying a model that de-
scribes the data well and allows for efficient inferences. We
illustrate the approach described earlier using a parametric
hierarchical model for f .

3. PARAMETRIC EMPIRICAL BAYES MODELS

We described the utility of HMMs applied to time course
microarray experiments in multiple biological conditions in
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the preceding section. To illustrate the main ideas, here we
restrict our attention to a parametric empirical Bayes model
introduced by Newton, Kendziorski, Richmond, Blattner, and
Tsui (2001) and further developed by Kendziorski et al. (2003).
The approach identifies genes differentially expressed among
conditions measured at a single time point. For expositional
convenience, we consider microarray time course data only in
two biological conditions. The approach naturally handles data
in more than two conditions.

For gene g at a given time t, xgt = (xgt1, . . . , xgtn1,

xgt(n1+1), . . . , xgt(n1+n2)) denotes n1 replicated measurements
under the first condition and n2 under the second condition. As
discussed before, there are two expression states for this situ-
ation. If there is equivalent expression (State 1: EE) between
two conditions, then we consider xgt as n = n1 + n2 indepen-
dent samples from f0t(·|µgt), where µgt is the common mean;
µgt arises from some genome-wide distribution Gt(µgt). Con-
sequently, the marginal distribution for xgt under EE is

f1t(xgt) =
∫

f0t(xgt|µgt)dGt(µgt).

Alternatively, if there is differential expression (State 2:
DE), then (xgt1, . . . , xgtn1) are n1 independent samples from
f0t(·|µgt1) and (xgt(n1+1), . . . , xgt(n1+n2)) are n2 independent
samples from f0t(·|µgt2), where µgt1 and µgt2 are also from dis-
tribution Gt. The distribution for xgt under DE is then given by

f2t(xgt) =
∫

f0t
(
xgt1, . . . , xgtn1

∣
∣µgt1

)
dGt(µgt1)

×
∫

f0t
(
xgt(n1+1), . . . , xgt(n1+n2)

∣
∣µgt2

)
dGt(µgt2).

If pt represents the proportion of DE genes at time t, then the
marginal distribution of the data is given by

(1 − pt)f1t(xgt) + pt f2t(xgt).

Recall the MAP for gene g at time t: ( ŝgt) = arg max(sgt)
P(sgt|

X). In this modeling framework, with just two states, a gene g at
time t is classified into State 2 if P(sgt = 2|X)/P(sgt = 1|X) > 1
(according to the Bayes rule under 0–1 loss). If the data at other
time points (x−t) are not considered, then

P(sgt = 2|xt)

P(sgt = 1|xt)
= P(sgt = 2)f2t(xgt)

P(sgt = 1)f1t(xgt)
. (3)

But if all of the data are used, then (3) becomes

P(sgt = 2|X)

P(sgt = 1|X)
= P(sgt = 2|x−t)f2t(xgt)

P(sgt = 1|x−t)f1t(xgt)
.

A closer look at (3) and (4) demonstrates a main advantage of
the HMM approach. If x−t does not provide information on sgt,
then P(sgt|x−t) = P(sgt). Consequently, the Markov structure
in the pattern process disappears, and the data from differ-
ent time points are analyzed as if they were independent. Ac-
counting for time dependence can dramatically increase the
sensitivity of the marginal inferences. To see this, consider a
hypothetical example where the proportion of genes in State 2
at time t is .05 [P(sgt = 2) = .05]. Suppose that gene g ex-
hibits only moderate evidence of DE at time t. Then a marginal

analysis [by (3)] at time t would not classify g into State 2,
because to do so requires that P(sgt = 2|xt)/P(sgt = 1|xt) > 1,
which implies that f2t(xgt)/f1t(xgt) must be larger than 19. How-
ever, in some cases, by accounting for dependence over time,
P(sgt = 2|x−t) will increase. This would happen when, for ex-
ample, P(sgt = 2|sg,t−1 = 2) is large and there is much evidence
for gene g to be DE at time t − 1. For P(sgt = 2|x−t) >= .5,
a gene g is classified into State 2 with much less evidence mar-
ginally [f2t(xgt)/f1t(xgt) > 1]. This increase in efficiency is ver-
ified numerically in Section 4.

The particular version of the general mixture model consid-
ered here is the gamma–gamma (GG) model. In the GG model,
f0t is assumed to be a gamma distribution with shape parameter
αt > 0 and rate parameter λt = αt/µgt, that is,

f0t(z|µgt) = 1

�(αt)
λαt zαt−1 exp(−λtz), z > 0.

Fixing αt, λt is assumed to follow a gamma distribution with
shape parameter α0t and rate parameter νt. Thus there are three
unknown parameters involved θ t = (αt, α0t, νt). For the GG
model, explicit forms for f1t and f2t exist (see Kendziorski
et al. 2003).

4. SIMULATION STUDY

We carried out a simulation study to investigate the general
performance of the proposed approach and to consider the po-
tential loss in efficiency resulting from model misspecification.
Datasets were simulated from an h-HMM model with six time
points and two biological conditions. The GG mixture model is
specified at each time by θ = (10, .9, .5); transition probabili-
ties are defined as P(st = DE|st−1 = EE) = .1 for t > 1 [P(s1 =
DE) = .1]. A total of 100 datasets were simulated for each
k = 1,2,3,4, where P(st = DE|st−1 = DE) = .1 + .2 × (k − 1),
for a total of 400 simulated datasets; each set contains 1,500
genes.

Each simulated dataset was analyzed under three assump-
tions, summarized in terms of A(t):

I. Independent analysis (IA). P(st = DE|st−1 = DE) =
P(st = DE|st−1 = EE) and there is no dependence over
time. This is equivalent to a separate analysis at each
time point using the hierarchical GG model.

II. h-HMM. A(t) does not depend on t.
III. nh-HMM. A(t) can depend on t.

Table 1 shows the average number of genes found by each
method. When P(st = DE|st−1 = DE) = P(st = DE|st−1 =
EE) = .1, there is no dependence over time; as expected, there
is little difference among the results of the three methods. As
P(DE|DE) increases, both HMM-based methods identify more
genes than the IA. In fact, the bigger the difference between
P(st = DE|st−1 = DE) and P(st = DE|st−1 = EE), the greater
the number of genes identified.

The increase in sensitivity does not involve a substantial in-
crease in the false discovery rate (FDR), as shown in Figure 2.
The left column of Figure 2 gives the FDR for different meth-
ods under different settings. Mostly, the difference among dif-
ferent methods is within 1%. Similar patterns can be observed
from the specificities shown in the right column. The sensi-
tivities plotted in the middle column, however, show a dra-



Yuan and Kendziorski: Hidden Markov Models 1327

Table 1. Homogeneous HMM Simulations: The Average Number of Genes Found by Each Method (average taken over 100 simulations)

P(DE | DE) Method Time 1 Time 2 Time 3 Time 4 Time 5 Time 6

.1 I 81.65(1.3) 82.33(1.2) 82.52(1.2) 82.39(1.3) 80.01(1.3) 82.41(1.2)
II 81.69(1.3) 82.18(.94) 82.15(.95) 82.29(.94) 80.50(.98) 81.88(.87)
III 81.75(1.3) 82.43(1.2) 82.79(1.2) 82.74(1.3) 80.04(1.3) 82.50(1.2)

.3 I 82.15(1.2) 100.8(1.3) 106.0(1.4) 105.5(1.3) 106.3(1.5) 105.4(1.3)
II 83.14(1.2) 103.2(1.0) 108.7(1.0) 108.5(1.0) 109.0(1.2) 106.4(1.0)
III 83.29(1.2) 103.2(1.3) 109.2(1.4) 108.6(1.4) 109.7(1.5) 106.6(1.3)

.5 I 84.05(1.4) 120.7(1.5) 134.1(1.6) 142.6(1.6) 144.4(1.6) 145.3(1.8)
II 88.12(1.4) 133.4(1.2) 152.0(1.3) 161.7(1.3) 163.4(1.3) 154.5(1.4)
III 88.27(1.4) 133.8(1.5) 151.4(1.8) 162.3(1.7) 163.1(1.6) 154.9(1.8)

.7 I 82.58(1.2) 140.8(1.6) 178.5(1.8) 197.7(1.7) 216.6(1.9) 225.6(2.2)
II 91.68(1.3) 170.8(1.4) 222.9(1.5) 252.9(1.5) 269.5(1.9) 262.9(2.0)
III 91.75(1.3) 171.8(1.8) 223.1(2.0) 252.4(2.0) 271.4(2.4) 266.8(2.9)

NOTE: Standard errors are in parentheses.

matic increase using HMM-based methods. The increase of
sensitivity can be as large as 15% depending on the transition
probabilities and time points. Furthermore, although the true
data-generating mechanism is an h-HMM, Figure 2 shows that
there is little decrease in sensitivity when using the nh-HMM
approach.

5. CASE STUDY

Of interest here is an experiment designed to better under-
stand the genetic basis underlying the relationship between
longevity and the ability to resist oxidative stress. Affymetrix
MG–U74A arrays were used to measure the expression levels

Figure 2. The Average Sensitivity, Specificity, and FDR for the IA (green), h-HMM (blue), and nh-HMM (pink) ( separate; h-HMM;
nh-HMM). Averages are taken over 100 simulations. The maximal increase in FDR for the HMM approach is less than 2%; most increases

are less than 1%. The maximal increase in sensitivity is near 15%. Note that the scales on the y-axis are different for different panels.
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of 12,588 genes in the heart tissue of young and old mice at
baseline and at four times after stress induction (1, 3, 5, and
7 hours). Three mice were considered for each time and age
combination, giving a total of 30 arrays. After data collection,
Affymetrix disclosed that approximately 20 % of the genes on
the MG–U74A arrays in the heart study were defective. As a
result, 2,545 probes were removed from the analysis, leaving
10,043 genes. Details of the data processing have been given
by Edwards et al. (2003). The data were normalized across ar-
rays using robust multi-array analysis (RMA) (Irizarry et al.
2003). The dataset was analyzed via the nh-HMM model. All
calculations were carried out in R 1.9.1 (R Development Core
Team 2004). Expression paths were assessed via the Viterbi al-
gorithm. An analysis assuming no dependence over time (IA)
was also done for comparison. The numbers of genes identified
with each method for the case study are presented in Table 2.

If there is no strong temporal dependence, then one would
expect the sets of DE genes identified by IA at different time
points to be quite different. This is certainly not the case here,
because most of the genes (732 out of 835) found to be DE at
Time 2 are also found to be DE at Time 1. Similar phenomena
are observed at the other time points. These observations indi-

Table 2. Patterns Identified by Each Method

State Method Time 1 Time 2 Time 3 Time 4 Time 5

1: EE IA 8,023 9,208 9,238 9,415 9,293
nh-HMM 8,050 8,796 8,829 8,910 8,889

Both methods 7,869 8,766 8,793 8,894 8,837

2: DE IA 2,020 835 805 628 750
nh-HMM 1,993 1,247 1,214 1,133 1,154

Both methods 1,839 805 769 612 698

cate that compared with an EE gene, a DE gene is more likely
to be DE at the next time point.

The nh-HMM often results in a dramatic increase in the num-
ber of genes showing some DE. The example discussed in Sec-
tion 3 suggests that this is due to the ability of the nh-HMM to
identify genes that are consistently DE over time, even if there
is little evidence of DE at any given time point.

Figure 3 demonstrates that this is the case. There were
11 genes identified as EE by the IA at each time, but as DE
by nh-HMM. Figure 3 shows the expression vectors for these
genes. As shown, there is little evidence for DE marginally, but
there is consistent evidence over time. In terms of fold change,
the nh-HMM approach is finding genes with an average fold

Figure 3. Eleven Genes Identified as EE at All Times via the IA and as DE at All Times via the nh-HMM Approach. The blue lines correspond to
the older group; the pink lines to the younger group. Note that the scales on the y-axis are different for different panels.
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change difference of .46; marginal analyses at each time are not
sensitive enough to identify changes of this magnitude.

Figure 3 was generated as follows:

1. The intensity level data were processed to give one sum-
mary score of expression for each gene at each time point
in each biological condition. Normalization was done us-
ing RMA (Irizarry et al. 2003).

2. A hierarchical GG mixture model was used to describe the
data at each time point. HMM assumptions as described in
Section 2 were considered appropriate for these data. The
GG model assumptions were checked using diagnostics
described by Newton and Kendziorski (2003).

3. The Baum–Welch algorithm was used to obtain parameter
estimates.

4. For each gene at each time, posterior probabilities of
the two possible states were calculated under the IA and
nh-HMM models.

5. A total of 11 genes were identified as State 1 (EE) via IA
but as State 2 (DE) via nh-HMM for every time point.

6. The expression vectors for these genes were averaged
over replicates, and the averages were plotted at each
time.

In addition to classifying genes into states, the posterior prob-
abilities can be used to identify particular expression patterns
over time. For example, investigators in this study are also in-
terested in identifying genes showing equivalent expression at
the earlier time points but differential expression later in the ex-
periment. Viterbi paths corresponding to this pattern were iden-
tified; the expression profiles for these 25 genes are shown in
Figure 4.

6. DISCUSSION

Microarray experiments that collect expression profiles over
time in multiple biological conditions are becoming increas-
ingly common. Many methods to date analyze time course data
within conditions and attempt to cluster genes with similar pro-
files over time. As a result, these methods do not apply to the
problems of identifying genes DE over time and classifying
genes based on their DE patterns. To do this, one could apply
at each time point any of the methods for identifying DE genes
across multiple conditions and combine results across time after
the marginal analyses. As we have shown here, this approach is
not efficient. An alternative approach would be to slightly mod-
ify the ANOVA methods for microarrays proposed by Kerr and
Churchill (2001) or Wolfinger et al. (2001) and identify genes
with significant condition-by-time interactions.

One might expect such an analysis to suffer from low power
because of few replicates and stringent adjustments for multi-
ple tests. Park, Yi, and Lee (2003) showed that this is the case
in a study of rat cortical stem cells in two biological condi-
tions over time. They performed an ANOVA on 3,840 genes
and found that none had a significant condition-by-time in-
teraction. To address this, these authors proposed a two-stage
approach in which the first stage removes the effect of time
and the second stage is used to identify DE genes. In partic-
ular, for their dataset, after initial identification of no signifi-
cant genes based on interaction coefficients, they fit a reduced
ANOVA model with the interaction term removed; p values for

the condition effects were then calculated in two ways. The first
way, which identified 53 genes with significant group effects
at the 5% level, was to assume normality of the test statistics
and use a Bonferroni correction; the second way involved ob-
taining residuals from a model with group effect only, calcu-
lating t-statistics after permutations of the residuals, and using
the t-statistics to determine adjusted p values by the method
of Westfall and Young (1993). This second approach identified
90 genes at a 5% significance level. To obtain some idea about
each gene’s temporal expression profile, the 53 genes identi-
fied after a Bonferroni correction were then clustered using
K-means.

Although a standard ANOVA approach is intuitive, there are
a number of questions that it does not address. Time depen-
dence is not considered explicitly (i.e., identical results would
be obtained if the columns were reordered); there is no infor-
mation indicating which time points contribute most to a gene
being identified as DE across conditions; and the cluster analy-
sis provides no quantitative information on temporal patterns of
differential expression.

The HMM approach presented here addresses these ques-
tions directly. In particular, the unobserved expression patterns
over time are assumed to follow a Markov process, with in-
tensity values taken from some distribution conditional on the
expression pattern state. The posterior probability of each ex-
pression pattern (DE or EE for two conditions; multiple pat-
terns for more than two conditions) is reported at each time for
every gene. These posterior probabilities, specific to gene and
time, prove very useful for identifying genes that are in a partic-
ular pattern at each time. The Viterbi algorithm is used to iden-
tify the most likely temporal expression path, and a posterior
probability associated with each path is reported. As we have
shown, this posterior probability can be useful in organizing
genes into groups and provides a quantitative way to evaluate
a gene’s membership in any given group. Another strength of
the proposed approach is its ability to handle both EE and DE.
In practice, often a gene is classified as EE if it fails some test
of DE. This is not correct, of course, because lack of evidence
for DE does not necessarily imply EE. For this HMM approach,
the posterior probability of EE can be used to better quantify the
uncertainty in classifying a gene as EE.

A comparison with marginal analyses repeated each time has
shown that the HMM approach substantially increases the num-
ber of genes identified as DE. Simulations suggest that this in-
crease is due almost completely to an increase in sensitivity,
because there is very little change in the FDR. In the mar-
ginal analyses, the reported FDRs are near 10%, whereas in
the HMM approach, the FDRs are around 11–12%. (Recall that
the Bayes rule was used to classify a gene as DE; control of
FDR was not targeted.) If desired, adjusting the threshold to
target a specific FDR can be done (Genovese and Wasserman
2003; Storey and Tibshirani 2003; Newton, Noueiry, Sarkar,
and Ahlquist 2004). For example, the expected posterior FDR
associated with a list of size N at time t is (1/N)

∑N
l=1 1 −

P(slt = DE|X). One could simply choose the largest number
of genes for which the FDR is below some prespecified level.
When error rates other than FDR are of interest, thresholds can
be determined by considering appropriate loss functions that
quantify an investigator’s tolerance for both false positives and
false negatives.
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Table 3. Simulation With Gene-Specific Transition Probabilities: The Average Number of Genes Found, the FDR, and the Sensitivity and
Specificity of Each Method (average taken over 100 simulations)

P(DE|DE) Method Time 1 Time 2 Time 3 Time 4 Time 5 Time 6

Number of I 79.45(1.4) 138.4(1.1) 183.5(2.2) 207.0(1.2) 219.9(1.7) 225.9(1.5)
DE genes II 89.05(1.4) 158.7(1.0) 215.1(1.6) 244.4(1.2) 257.3(1.2) 265.3(1.7)

III 89.10(1.4) 158.2(1.3) 217.2(2.3) 245.2(1.5) 258.5(1.4) 261.9(2.2)

FDR I .1050 .0942 .1125 .0996 .1057 .1098
II .1148 .0922 .0984 .0884 .0865 .1283
III .1163 .0943 .1045 .0911 .0891 .1237

Sensitivity I .4711 .5234 .5459 .5597 .5589 .5625
II .5231 .6016 .6524 .6694 .6684 .6467
III .5225 .5979 .6531 .6692 .6695 .6410

Specificity I .9936 .9897 .9823 .9823 .9796 .9783
II .9923 .9884 .9823 .9814 .9805 .9701
III .9921 .9881 .9807 .9808 .9798 .9713

NOTE: Standard errors (SEs) are shown in parentheses for number of DE genes; for FDR, sensitivity, and specificity, SEs < .003, .006, .0007.

The approach can be extended to account for different orders,
different parametric assumptions, and more biologically rele-
vant transition matrices. Here we have here considered Markov
chains of order 1 because for this case study, there are rela-
tively few time points, and HMMs of higher order were not
necessary. In some applications, first-order HMMs might not
be sufficient and techniques presented by Durbin et al. (1998)
may prove useful. For illustration purposes, we have also re-
stricted our attention to the GG model. Model diagnostics have
been discussed in detail by Newton and Kendziorski (2003),
and we recommend checking the parametric assumptions on a
case-by-case basis.

An extension that we have not yet considered extensively
is to allow distinct probability transition matrices for individ-
ual genes or clusters of genes. This would allow one to ac-
count for processes evolving at different time scales and also
possibly allow for the incorporation of gene groups known
to have similar expression patterns. Under consideration are
possible approaches for identifying such groups of genes and
incorporating this into our analyses. One possibility is to clus-
ter genes and assume that genes in each cluster follow the
same transition matrix. To investigate how the method proposed
here performs if A(t) does vary across genes, we simulated
100 datasets in a similar fashion as described in Section 4.
Instead of fixing the transition matrix for all genes, we simu-
lated gene-specific transition probabilities from a beta distrib-
ution with shape parameters 7 and 3 such that the mean is .7
if a gene is differentially expressed at the previous time point
and beta(1,9) otherwise. Table 3 reports the number of identi-
fied differentially expressed genes, the FDR, and the specificity
and sensitivity averaged over 100 datasets. The results are sim-
ilar to those given in Table 1. The proposed approach continues
to show a substantial increase in sensitivity with very little in-
crease in the FDR. Further work in this area is underway.

The proposed HMM approach should prove useful in a num-
ber of studies collecting gene expression profiles in multiple bi-
ological conditions over time. We have illustrated the approach
using a specific parametric model with assumptions that can be
checked. However, because the general approach makes few as-
sumptions, there is much flexibility regarding alternative mod-
els that could be considered within this HMM framework.

[Received December 2003. Revised November 2004.]

REFERENCES

Allison, D. B., Gadbury, G. L., Heo, M., Fernandez, J. R., Kee, C., Prolla, T. A.,
and Weindruch, R. (2002), “A Mixture Model Approach for the Analysis of
Microarray Gene Expression Data,” Computational Statistics & Data Analy-
sis, 39, 1–20.

Alter, O., Brown, P., and Botstein, D. (2000), “Singular Value Decomposition
for Genome-Wide Expression Data Processing and Modeling,” Proceedings
of the National Academy of Sciences, 97, 10101–10106.

Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, New
York: Springer-Verlag.

Chipping Forecast (1999), Nature Genetics Supplement, 21, 1–60.
Chu, S., DeRisi, J. L., Eisen, M., Mullholland, J., Botstein, D., Brown, P. O.,

and Herskowitz, I. (1998), “The Transcriptional Program of Sporulation in
Budding Yeast,” Science, 282, 699–705.

DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997), “Exploring the Metabolic
and Genetic Control of Gene Expression on a Genomic Scale,” Science, 278,
680–686.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998), Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids, London, U.K.:
Cambridge University Press.

Edwards, M. G., Sarkar, D., Klopp, R., Morrow, J. D., Weindruch, R., and
Prolla, T. A. (2003), “Age-Related Impairment of the Transcriptional Re-
sponse to Oxidative Stress in the Mouse Heart,” Physiological Genomics, 13,
119–127.

Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. (2001), “Empirical Bayes
Analysis of a Microarray Experiment,” Journal of the American Statistical
Association, 456, 1151–1160.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998), “Cluster
Analysis and Display of Genome-Wide Expression Patterns,” Proceedings of
the National Academy of Sciences, 95, 14863–14868.

Genovese, C., and Wasserman, L. (2003), “Bayesian and Frequentist Multi-
ple Testing,” in Bayesian Statistics 7: Proceedings of the Seventh Valen-
cia International Meeting, eds. M. J. Bayarri, A. P. Dawid, J. O. Berger,
D. Heckerman, A. F. M. Smith, and M. West, Oxford: Oxford University
Press, pp. 145–162.

Irizarry, R., Hobbs, B., Collins, F., Beazer-Barclay, Y. D., Antonellis, K. J.,
Scherf, U., and Speed, T. P. (2003), “Exploration, Normalization, and Sum-
maries of High-Density Oligonucleotide Array Probe Level Data,” Biostatis-
tics, 4, 249–264.

Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003), “On
Parametric Empirical Bayes Methods for Comparing Multiple Groups Using
Replicated Gene Expression Profiles,” Statistics in Medicine, 22, 3899–3914.

Kerr, M. K., and Churchill, G. A. (2001), “Statistical Design and Analysis of
Gene Expression Microarray Data,” Genetical Research, 77, 123–128.

Lander, E. S. (1999), “Array of Hope,” Nature Genetics Supplement, 21, 3–4.
Newton, M. A., and Kendziorski, C. M. (2003), “Parametric Empirical Bayes

Methods for Microarrays,” in The Analysis of Gene Expression Data:
Methods and Software, eds. G. Parmigiani, E. S. Garrett, R. Irizarry, and
S. L. Zeger, New York: Springer-Verlag, pp. 254–271.

Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and
Tsui, K. W. (2001), “On Differential Variability of Expression Ratios: Im-
proving Statistical Inference About Gene Expression Changes From Microar-
ray Data,” Journal of Computational Biology, 8, 37–52.

Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004), “Detecting
Differential Gene Expression With a Semiparametric Hierarchical Mixture
Method,” Biostatistics, 5, 155–176.

http://www.ingentaconnect.com/content/external-references?article=1465-4644()4L.249[aid=5676304]
http://www.ingentaconnect.com/content/external-references?article=1465-4644()4L.249[aid=5676304]
http://www.ingentaconnect.com/content/external-references?article=0277-6715()22L.3899[aid=6803290]
http://www.ingentaconnect.com/content/external-references?article=0016-6723()77L.123[aid=4739055]
http://www.ingentaconnect.com/content/external-references?article=1066-5277()8L.37[aid=6618250]
http://www.ingentaconnect.com/content/external-references?article=1465-4644()5L.155[aid=6205637]
http://www.ingentaconnect.com/content/external-references?article=0167-9473()39L.1[aid=7452681]
http://www.ingentaconnect.com/content/external-references?article=0167-9473()39L.1[aid=7452681]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()97L.10101[aid=2178554]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()97L.10101[aid=2178554]
http://www.ingentaconnect.com/content/external-references?article=1061-4036()21L.1[aid=3073381]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()282L.699[aid=193594]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()278L.680[aid=36488]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()278L.680[aid=36488]
http://www.ingentaconnect.com/content/external-references?article=1094-8341()13L.119[aid=7574084]
http://www.ingentaconnect.com/content/external-references?article=1094-8341()13L.119[aid=7574084]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()95L.14863[aid=36489]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()95L.14863[aid=36489]


1332 Journal of the American Statistical Association, December 2006

Pan, W., Lin, J., and Lee, C. T. (2003), “A Mixture Model Approach to De-
tecting Differentially Expressed Genes With Microarray Data,” Functional &
Integrative Genomics, 3, 117–124.

Park, T., Yi, S. G., and Lee, S. (2003), “Statistical Tests for Identifying Differ-
entially Expressed Genes in Time-Course Microarray Experiments,” Bioin-
formatics, 19, 694–703.

Parmigiani, G., Garrett, E. S., Irizarry, R., and Zeger, S. L. (eds.) (2003),
The Analysis of Gene Expression Data: Methods and Software, New York:
Springer-Verlag.

R Development Core Team (2004), “R: A Language and Environment for Sta-
tistical Computing, Vienna, Austria: R Foundation for Statistical Computing.

Ramoni, M. F., Sebastiani, P., and Kohane, I. S. (2002), “Cluster Analysis of
Gene Expression Dynamics,” Proceedings of the National Academy of Sci-
ences, 99, 9121–9126.

Schliep, A., Schönhuth, A., and Steinhoff, C. (2003), “Using Hidden Markov
Models to Analyze Gene Expression Time Course Data,” Bioinformatics, 19,
255–263.

Spellman, P. T., Sherlock, G., Zhang, M., Iyer, V. R., Anders, K., Eisen, M. B.,
Brown, P. O., Botstein, D., and Futcher, B. (1998), “Comprehensive Identifi-
cation of Cell-Cycle Regulated Genes of the Yeast Saccharomyces cerevisiae
by Microarray Hybridization,” Molecular Biology of the Cell, 9, 3273–3297.

Storey, J., and Tibshirani, R. (2003), “Statistical Significance for Genome-Wide
Studies,” Proceedings of the National Academy of Sciences, 100, 9440–9445.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E.,
Lander, E. S., and Golub, T. R. (1999), “Interpreting Patterns of Gene Expres-
sion With Self-Organizing Maps: Methods and Application to Hematopoi-
etic Differentiation,” Proceedings of the National Academy of Sciences, 96,
2907–2912.

Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M.
(1999), “Systematic Determination of Genetic Network Architecture,” Nature
Genetics, 22, 281–285.

Wall, M. E., Dyck, P. A., and Brettin, T. S. (2001), “Singular Value Decompo-
sition Analysis of Microarray Data,” Bioinformatics, 17, 566–568.

Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A.,
Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O.,
and Botstein, D. (2002), “Identification of Genes Periodically Expressed in
the Human Cell Cycle and Their Expression in Tumors,” Molecular Biology
of the Cell, 13, 1977–2000.

Westfall, P. H., and Young, S. S. (1993), Resampling-Based Multiple Testing,
New York: Wiley.

Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H.,
Bushel, P., Afshari, C., and Paules, R. (2001), “Assessing Gene Significance
From cDNA Microarray Expression Data via Mixed Models,” Journal of
Computational Biology, 8, 625–637.

Zhao, L. P., Prentice, R., and Breeden, L. (2001), “Statistical Modeling of Large
Microarray Data Sets to Identify Stimulus-Response Profiles,” Proceedings of
the National Academy of Sciences, 98, 5631–5636.

Discussion
Hongzhe LI and Fangxin HONG

We would like to congratulate Yuan and Kendzioski (YK for
short) on their interesting work on using the hidden Markov
model (HMM) to analyze microarray time course (MTC) gene
expression data. Because many important biological systems or
processes are dynamic systems, it is important to study the gene
expression patterns over time in a genomic scale to capture the
dynamic behavior of gene expression. DNA microarray tech-
nologies make it possible to monitor changes in gene expres-
sion levels over time during these biological processes. There
are many interesting statistical problems related to the analysis
of MTC gene expression data, including identification of genes
with certain expression patterns over time, identification of pe-
riodically regulated genes, clustering of MTC gene expression
data, and investigation of genetic networks using MTC data.
YK considered the important problem of identifying genes that
are temporally differentially expressed (TDE) between two or
more MTC experiments. They clearly demonstrated that such
MTC studies can potentially identify more genes that are dif-
ferentially expressed than considering gene expression levels at
one single time point. Their method therefore has many poten-
tial practical applications.

Our comments focus on the dependency structures of MTC
gene expression data and the assumptions made by YK in devel-
oping their HMM model. We also provide an alternative func-
tional hierarchical model for identifying TDE genes.

Hongzhe Li is Professor of Biostatistics, Department of Biostatistics
and Clinical Epidemiology, University of Pennsylvania School of Medicine,
423 Guardian Drive, 920 Blockley Hall, Philadelphia, PA 19104-6021 (E-mail:
hli@cceb.upenn.edu). His research is supported by National Institutes of Health
grant R01 ES009911. Fangxin Hong is Bioinformatics Scientist, Salk Institute,
La Jolla, CA 92037.

1. DEPENDENCY STRUCTURE OF MTC GENE
EXPRESSION DATA

What makes MTC gene expression data unique is the depen-
dency structure of the gene expression data measured over time.
Different study designs can induce different dependency struc-
tures. The real data examples considered in YK are all from
cross-sectional designs, where gene expression levels are mea-
sured from cells of different subjects. For such a design, a sim-
ple model for the log gene expression measurement yjikt can be
written as

yjikt = fji(t) + εjikt,

j = 1, . . . ,n genes,

i = 1,2 groups, (1)

k = 1, . . . ,K replications,

t = t1, . . . , tT time points,

where fji(t) is the true gene expression level at time t and εjikt is
the noise. In this model, the dependency of the gene expres-
sion measurements over time is modeled by the gene- and
experiment-specific mean function fji(t). The error terms εjikt

are usually assumed to be independent. However, for cDNA mi-
croarray data from reference designs, the error terms might be
dependent because the data are all measured relative to a pool of
common mRNAs. In addition, the error variances can increase
as time elapses; this is especially likely when cells are initially
synchronized.
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