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Abstract

In this paper, we study the statistical properties of method of regularization with

radial basis functions in the context of linear inverse problems. Radial basis function

regularization is widely used in machine learning because of its demonstrated effec-

tiveness in numerous applications and computational advantages. From a statistical

viewpoint, one of the main advantages of radial basis function regularization in gen-

eral and Gaussian radial basis function regularization in particular is their ability to

adapt to varying degree of smoothness in a direct problem. We show here that similar

approaches for inverse problems not only share such adaptivity to the smoothness of

the signal but also can accommodate different degrees of ill-posedness. These results

render further theoretical support to the superior performance observed empirically for

radial basis function regularization.

Keywords: Inverse problem, minimax rate of convergence, radial basis function, regular-

ization.
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1 Introduction

Radial basis function regularization is one of the most popular tools in machine learning (see,

e.g., Girosi, Jones, and Poggio (1993); Smola, Schölkopf, and Müller (1998); Wahba (1999);

Evgeniou, Pontil, and Poggio (2000); Lin and Brown (2004); Zhang, Genton and Liu (2004);

Lin and Yuan (2006); Shi and Yu (2006)). Let Φ(x) = φ(‖x‖) for vector x ∈ R
d be a radial

basis function where φ : [0,+∞) → R is a univariate function. Typical examples include

φ(r) = r2m log(r) (thin plate spline), φ(r) = e−̺r2/2 (Gaussian), and φ(r) = (c2 + r2)1/2

(multiquadrics) among others. When KΦ(x, y) = Φ(x−y) is (conditionally) positive definite

in that for any n ∈ Z and any distinct x1, ..., xn ∈ R
d,

n
∑

j=1

n
∑

k=1

ajakK(xj , xk) > 0,

Φ can be identified with a reproducing kernel Hilbert space (Aronszajn (1950)), denoted by

HΦ. The squared norm in HΦ can be written as

J(f) = (2π)−d/2

∫

Rd

|f̃(ω)|2/Φ̃(ω)dω

for any function f ∈ HΦ, where f̃ stands for the Fourier transform of f , that is,

f̃(ω) = (2π)−d/2

∫

Rd

f(x)e−ixTωdx.

The method of regularization with a radial basis function estimates a functional parameter

by the solution to

min
f∈HΦ

{L(f, data) + λJ(f)},

where L is the empirical loss, often taken to be the negative log-likelihood. The tuning

parameter λ > 0 controls the trade-off between minimizing the empirical loss and obtaining

a smooth solution.

Consider in particular estimating a periodic function f0 : [−π, π] → R based on noisy

observations of Af where A is a bounded linear operator, i.e.,

dY (t) = (Af0)(t)dt + ǫdW (t), t ∈ [−π, π]. (1)

Here ǫ > 0 is the noise level and W (t) is a standard Brownian motion on [−π, π]. The

white noise model (1) connects to a number of common statistical problems in the light
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of results on its equivalence to nonparametric regression (Brown and Low, 1996), density

estimation (Nussbaum, 1996), spectral density estimation (Golubev and Nussbaum, 1998),

and nonparametric generalized regression (Grama and Nussbaum, 1997). The radial basis

function regularization in this case gives the following estimate of f0:

f̂λ = argmin
f∈HΦ

{

‖Y − Af‖2L2
+ λJ(f)

}

.

Lin and Brown (2004) and Lin and Yuan (2006) recently studied the statistical properties

of f̂λ in a special case when A is the identity operator. They found that when f is a member of

any finite-order Sobolev spaces, the method of regularization with many radial basis functions

is rate optimal when the tuning parameter is appropriately chosen, which partially explains

the success of such methods in this particular setting. Of course in many applications, A is

not an identity operator but rather a general compact operator. Problems of this type can

be found in almost all areas of science and engineering (see, e.g., Chalmond (2008); Kaipo

and Somersalo (2004); Ramm (2009)). These problems, commonly referred to as inverse

problems, are often ill-posed and therefore, fundamentally more difficult than the case when

A is the identity, often referred to as direct problems (see, e.g., Cavalier (2008)). In this

paper, we study the statistical properties of radial basis function regularization estimator f̂λ

in this setting.

Similar to direct problems, the difficulty in estimating f0 in an inverse problem is de-

termined by the complexity of the functional class it belongs to. Differing from direct

problems, in an inverse problem, the difficulty of estimating f0 also depends on the degree

of ill-posedness of the linear operator A. We consider a variety of combinations of functional

classes and linear operators and show that for many common choices of radial basis functions,

f̂λ is rate optimal whenever λ is appropriately tuned. Our results suggest that the superior

statistical properties established earlier for the direct problems continue to hold in the in-

verse problems and therefore further make clear why the radial basis function regularization

is so effective in a wider range of applications.

The rest of this article is organized as follows. In the next section, we describe in more

details the parameter spaces and the ill-posedness of the problem. We study in Section 3

the statistical properties of radial basis function regularization. All proofs are relegated to

Section 6. Section 4 reports results from numerical experiments to illustrate the implications

of our theoretical development.
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2 Radial Basis Function Regularization in Linear In-

verse Problems

The white noise model (1) can be expressed in terms of the corresponding Fourier coefficients

and leads to a sequence model that is often more amenable to statistical analysis (see, e.g.,

Johnstone, 1998).

2.1 Sequence model via singular value decomposition

Let A∗ be the adjoint operator of A. Because of the compactness of A, A∗A admits spectral

decomposition

A∗Af =
∞
∑

k=1

b2k〈f, ϕk〉L2ϕk (2)

for any square integrable periodic function f , where the eigenfunctions {ϕ1, ϕ2, . . .} consti-

tute an orthornormal basis of L2, the collection of square integrable periodic functions, and

the eigenvalues {b21, b
2
2, . . .} are arranged in a non-increasing order without loss of generality.

Denote by ψk the normalized image of ϕk, that is, Aϕk = bkψk. It is easy to show that

A∗ψk = bkϕk.

From the singular value decomposition, we can convert the linear inverse problem (1) into a

sequence model. More specifically,

yk := 〈Y, ψk〉L2 = 〈Af0, ψk〉L2 + 〈ǫW, ψk〉L2 = bk〈f0, ϕk〉L2 + ǫ〈W,ψk〉L2 =: bkθk + ǫξk

for k = 1, 2, . . ..

Unlike the direct problem where all singular values are one, in an inverse problem, bk → 0

as k → ∞. The vanishing singular values poses challenges in inverting the linear operator A

and makes the problem ill-posed. As a result, the estimation of f0 becomes fundamentally

more difficult for an inverse problem than for a direct problem. The rate of decay of {bk :

k ≥ 1} quantifies the ill-posedness. Typically, an inverse problem is called mildly ill-posed

if bk ∼ k−β and severe ill-posed if bk ∼ exp(−βk) for some parameter β > 0 often referred

to as the degree of ill-posedness. Hereafter, ak ∼ bk means that both ak/bk and bk/ak are

bounded away from zero.
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2.2 Parameter spaces

In addition to the ill-posedness, the difficulty of estimating f0 in (1) is also determined

by the parameter space for the functional parameter. It is often convenient to describe

the parameters space using the Fourier coefficient with respect to the basis {ϕk : k ≥ 1}.

Typically, f0 belongs to the functional class corresponding to an ellipsoid Θ in the space of

Fourier coefficients {θk : k ≥ 1}:

Θ =

{

(θk : k ≥ 1) :
∑

k≥1

a2kθ
2
k ≤ Q

}

, (3)

for a non-deceasing sequence 0 ≤ a1 ≤ a2 ≤ . . . such that ak → ∞ as k → ∞, and a positive

constant Q.

It is instructive to consider the case when {ϕk : k ≥ 1} is the usual trigonometric basis,

that is, ϕ1(t) = (2π)−1/2, ϕ2l(t) = π−1/2 sin(lt) and ϕ2l+1(t) = π−1/2 cos(lt) for l ≥ 1. In this

case, the usual Sobolev spaces are perhaps the most popular examples of Θ. Let Sm(Q) be

the mth order Sobolev space of periodic functions on [−π, π], that is,

Sm(Q) =

{

f ∈ L2 : f is 2π−periodic, and

∫ π

−π

f 2 + (f (m))2 ≤ Q

}

.

Simple calculation shows that Sm(Q) can also be equivalently expressed as

Sm(Q) =

{

f ∈ L2 : f =
∑

k≥1

θkϕk,
∑

k≥1

a2kθ
2
k ≤ Q, a1 = 1, a2l = a2l+1 = k2m + 1

}

.

In the same spirit, analytic functions or sometimes referred to as infinit-order Sobolev space

can be described as

S∞(α;Q) =

{

f ∈ L2 : f =
∑

k≥1

θkϕk,
∑

k≥1

a2kθ
2
k ≤ Q, a1 = 1, a2l = a2l+1 = eαl

}

.

See Johnstone (1998) for details.

Appealing to this connection, in what follows, we shall write

Θα(Q) =

{

(θk : k ≥ 1) :
∑

k≥1

a2kθ
2
k ≤ Q, a1 = 1, a2l = a2l+1 = kα + 1

}

as Sobolev type of spaces of order α; and

Θ∞(α;Q) =

{

(θk : k ≥ 1) :
∑

k≥1

a2kθ
2
k ≤ Q, a1 = 1, a2l = a2l+1 = eαk

}

to represent spaces similar to S∞.
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2.3 Radial basis function regularization

We now describe the radial basis functions and the reproducing kernel Hilbert spaces they

induce. Because we focus here on periodic functions, it is natural to consider periodized

radial basis functions

Φ0(r) =
∑

k∈Z

Φ(r − 2πk),

where Φ is a radial basis function. See Smola, Schölkopf and Müller (1998), Lin and Brown

(2004) among others for further discussion of periodized radial basis functions and their

applications in machine learning. As shown in Lin and Yuan (2006), Φ0 (or equivalently

KΦ0) is positive definite so long as Φ is positive definite and furthermore the norm of HΦ0

can be given by

‖f‖2HΦ0
=
∑

k≥1

γkθ
2
k,

where θks are the Fourier coefficients of f , and γ1 = (2π)−1/2{Φ̃(0)}−1, γ2l = γ2l+1 =

(2π)−1/2{Φ̃(l)}−1, l = 1, 2, . . .. When {ϕk : k ≥ 1} is taken to be the classical trigono-

metric basis, the method of regularization with radial basis function Φ0 can be equivalently

expressed in terms of the sequence of Fourier coefficients:

f̂λ = argmin
f=

∑
k≥0 θkϕk∈HΦ0

{

∑

k≥1

(yk − bkθk)
2 + λ

∑

k≥1

γkθ
2
k

}

.

Consider, for example, the periodic Gaussian kernel

G0(r) =
∑

k∈Z

G(r − 2πk),

where

G(r) =
1

√

2π̺2
exp

(

−
r2

2̺2

)

for some parameter ̺ > 0. Simple calculation yields that γ2l = γ2l+1 = el
2̺2/2. Other

popular examples include periodic multiquadratics and Wendland kernels (Wendland (1998))

that corresponds to γ2l = γ2l+1 = el̺ and γ2l = γ2l+1 = k̺ respectively. There are also

other common choices of radial basis functions for which γk behaves similarly to these three

examples. See Buhlmann (2003) for further details.
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3 Main Results

Following the discussion before, we shall focus on the following sequence model hereafter:

yk = bkθk + ǫξk, k = 1, 2, . . . . (4)

The inverse problem under investigation is either mildly or severely ill-posed, that is, bk ∼

k−β or bk ∼ e−βk respectively. We shall also consider Sobolev type of parameter spaces, that

is, (θk : k ≥ 1) ∈ Θα for some α > 1/2 or Θ∞(α,Q). Our primary interest is to evaluate the

statistical performance of radial basis function regularization:

(θ̂kλ : k ≥ 1) = argmin
(ηk :k≥1)

{

∑

k≥1

(yk − bkηk)
2 + λ

∑

k≥1

γkη
2
k

}

. (5)

In particular, we consider three different types of radial basis functions: (1) γk ∼ eγk
2
for

some γ > 0 with periodic Gaussian kernel as a typical example; (2) γk ∼ eγk with periodic

multiquadrics kernel as a typical example; and (3) γk ∼ kγ with periodic Wendland kernel

or the usual spline kernels (see, e.g., Wahba (1990)) as typical examples.

We begin with Gaussian type of kernel, that is, γk ∼ eγk
2
for some γ > 0.

Theorem 1 Assume that γk ∼ eγk
2
for some γ > 0.

(a) (Mildly ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp
(

−ǫ
4

2α+2β+1

)

,

then

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
4α

2α+2β+1 .

(b) (Mildly ill-posed with analytic functions) If bk ∼ k−β and

λ ∼ exp

(

−
γ

4α2

(

log
1

ǫ2

)2
)

,

then

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ2
(

log
1

ǫ2

)2β+1

.
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(c) (Severely ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp

(

−

(

log
1

ǫ2

)2
)

,

then

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼

(

log
1

ǫ

)−2α

.

(d) (Severely ill-posed with analytic functions) If bk ∼ e−βk and

λ ∼ exp

(

−
γ

(2α + 2β)2

(

log
1

ǫ2

)2
)

,

then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
2α

α+β .

We note that all the rates obtained in Theorem 1 are minimax optimal (see, e.g., Cavalier

(2008)). In other words, when the tuning parameter λ is appropriately chosen, Gaussian

radial basis function regularization is rate optimal for all combinations of ill-posedness as

well as parameter spaces. This result, together with similar results for direct problems (Lin

and Brown (2004)), partly explain its success in numerous applications.

Next we consider the case with a multiquadrics type of kernel.

Theorem 2 Assume that γk ∼ eγk for some γ > 0.

(a) (Mildly ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp
(

−ǫ−
2

2α+2β+1

)

,

then

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
4α

2α+2β+1 .

(b) (Mildly ill-posed with analytic functions) If bk ∼ k−β, then

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ2
(

log
1

ǫ2

)2β+1

.

provided that

λ ∼







ǫ
γ
α γ > α− 2β

ǫ γ ≤ α− 2β
.
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(c) (Severely ill-posed with Sobolev spaces) If bk ∼ k−β and λ ∼ ǫ2, then

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼

(

log
1

ǫ

)−2α

.

(d) (Severely ill-posed with analytic functions) Suppose that bk ∼ e−βk. If γ > α− 2β and

λ ∼ ǫ−
β+γ
α+β ,

then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
2α

α+β .

If γ ≤ α− 2β, then the best achievable rate is

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
4β+2γ
3β+γ ,

and it is attained when

λ ∼ ǫ
2β+γ
3β+γ .

From Theorem 2, regularization with multiquadrics type of kernel is also rate optimal for

finite-order Sobolev spaces. For analytic functions, however, its behavior is more complex.

When the inverse problem is mildly ill-posed, it can still achieve the optimal rate but different

tuning parameters are needed to attain the optimal rate depending on whether γ is larger

than α − 2β. However, for severely ill-posed problems, the minimax optimal rate can only

be achieved when γ > α− 2β. The transition point α− 2β is somewhat surprising. Observe

that HΦ0 ⊆ S∞(α,Q) if γ ≥ α and S∞(α,Q) ⊂ HΦ0 otherwise. Thus Theorem 2 essentially

states that regularization with multiquadrics type of kernel is always rate optimal if the

reproducing kernel Hilbert space induced by the radial basis function is smaller than the

parameter space. But even when the parameter space is larger than the induced space, that

is, γ < α, it is still capable of achieving the minimax optimal rate so long as γ > α− 2β.

Now consider the Wendland/spline type of kernel.

Theorem 3 Assume that γk ∼ kγ for some γ > 1/2.

(a) (Mildly ill-posed with Sobolev spaces) Suppose that bk ∼ k−β. If γ > α− 2β and

λ ∼ ǫ
4α

2α+2β+1 ,
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then

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
4α

2α+2β+1 .

If γ ≤ α− 2β, the best achivable rate is

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
2(4β+2γ)
6β+2γ+1 ,

and it is attained when

λ ∼ ǫ
4β+2γ

6β+2γ+1 .

(b) (Mildly ill-posed with analytic functions) Suppose the bk ∼ k−β. If γ > α− 2β and

λ ∼ ǫ2
(

log
1

ǫ

)−2β−γ

,

then

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ2
(

log
1

ǫ

)2β+1

.

If γ ≤ α− 2β, the best achievable rate is

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
2(4β+2γ)
6β+2γ+1 ,

and it is attained when

λ ∼ ǫ
4β+2γ

6β+2γ+1 .

(c) (Severely ill-posed with Sobolev spaces) If bk ∼ e−βk

λ ∼ ǫ2

then

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼

(

log
1

ǫ

)−2α

(d) (Severely ill-posed with analytic functions) Suppose bk ∼ e−βk. If γ > α− 2β, then the

achievable rate is

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
2β

α+2β ,

and it is attained when

λ ∼ ǫ
4β

α+2β .
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When γ ≤ α− 2β, the best achievable rate is

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

∼ ǫ
4
3 ,

and it is attained when λ ∼ ǫ
2
3 .

Theorem 3 indicates that the method of regularization with Wendland or spline type of

kernel is also capable of attaining the minimax optimal rate but only so if γ is sufficiently

large, or equivalently, the reproducing kernel Hilbert space HΦ0 is sufficiently small.

Our main results are summarized in Table 1.

4 Numerical Experiments

To illustrate the performance of the radial basis function regularization estimates, we carried

out some numerical experiments. The main purpose is to demonstrate the actual convergence

rates when the noise level ǫ goes to zero.

All the simulations are made in the domain of the coefficients for the trigonometric basis

{ψk : k ≥ 1} of L2[−π, π], implying that all the parameters are generated as sequences in ℓ2.

We consider in particular, two functions f =
∑

k≥1 θkψk where

θk = k−2 or exp(−2k),

representing Sobolev type or analytic type of functions respectively. We also consider two

operators A corresponding to mildly or severly ill-posed situations respectively:

bk = k−2 or exp(−2k).

We also chose γ = 2 for all three types of kernels under consideration to ensure that γ >

α− 2β in each possible sccenario.

To understand the asymptotic behavior of the regularized estimator, we consider a set

of values for the noise level as ǫ = j/100 for j = 1, 2, · · · , 15. In each case we estimate the

parameter (θk : k ≥ 1) using (6) and calculate the integrated squared error by ‖θ̂λ−θ‖ℓ2 . We

performed 100 replications for each setting to obtain a fair approximation of the expected

risk. As usual in nonparametric estimators, the tuning parameter should be selected in order

to minimize the risk. To do so, in each setting we calculate (θ̂k : k ≥ 1) for each λ ∈ Λ,
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Kernel Type Θα Θ∞

Mildly Ill-posed Severely Ill-posed Mildly Ill-posed Severely Ill-posed

Gaussian λ exp
(

−ǫ−
4

2α+2β+1

)

exp
(

−
(

log 1
ǫ2

)2
)

exp
(

− γ
4α2

(

log 1
ǫ2

)2
)

exp
(

− γ
(2β+2α)2

(

log 1
ǫ2

)2
)

R(λ) ǫ
4α

2α+2β+1
(

log 1
ǫ

)−2α
ǫ2
(

log 1
ǫ2

)2β+1
ǫ

2α
α+β

Multiquadrics λ exp
(

−ǫ−
2

2α+1

)

ǫ2







ǫ
γ
α if γ > α− 2β

ǫ if γ ≤ α− 2β







ǫ−
β+γ
α+β if γ > α− 2β

ǫ
2β+γ
3β+γ if γ ≤ α− 2β

R(λ) ǫ
4α

2α+2β+1
(

log 1
ǫ

)−2α
ǫ2
(

log 1
ǫ2

)2β+1







ǫ
2α

α+β if γ > α− 2β

ǫ
4β+2γ
3β+γ if γ ≤ α− 2β

Wendland λ







ǫ
4β+2γ

2α+1β+1 if γ > α− 2β

ǫ
4β+2γ

6β+2γ+1 if γ ≤ α− 2β
ǫ2







(

log 1
ǫ

)−2β−γ
if γ > α− 2β

ǫ
4β+2γ

6β+2γ+1 if γ ≤ α− 2β







ǫ
4β

α+2β if γ > α− 2β

ǫ
2
3 if γ ≤ α− 2β

or Spline R(λ)







ǫ
4α

2α+2β+1 if γ > α− 2β

ǫ
4γ+8β

6β+2γ+1 if γ ≤ α− 2β

(

log 1
ǫ

)−2α







ǫ2
(

log 1
ǫ

)2β+1
if γ > α− 2β

ǫ
8β+4γ

6β+2γ+1 if γ ≤ α− 2β







ǫ
2α

α+2β if γ > α− 2β

ǫ
4
3 if γ ≤ α− 2β

Table 1: We list here, for different combinations of parameter spaces and radial basis functions, the best achievable convergence

rates of R(λ) = sup(θk:k≥1)∈Θα(Q)

∑

k≥1E

(

θ̂kλ − θk

)2

and the order of the tuning parameter λ needed to attain the rate. α

reflects the smoothness of the parameter space, β determines the ill-posedness of the inverse problem and γ depends on the

choice of the radial basis function.
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where Λ = {λi : λi = exp(−i/5) , i = 1, · · · , 100}, and select the estimator θ̂λ∗ such that the

risk ‖θ̂λ − θ‖ℓ2 is minimized.

The results are presented in Figure 1. In each plot, we include also the minimax optimal

rate adjusted by a constant. As can be seen, the simulated rates have a similar decay as the

theoretical minimax counterparts, indicating the estimate is rate optimal.
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Figure 1: Comparison of the risk of radial basis function regularization. The results are averaged

over 100 replications.
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5 Risk Analysis of Radial Basis Function Regulariza-

tion

We now set out to establish the results presented in the previous section. Recall that the

regularization estimator (θ̂kλ : k ≥ 1) is defined as

(θ̂kλ : k ≥ 1) = argmin
(ηk :k≥1)

{

∑

k≥1

(yk − bkηk)
2 + λ

∑

k≥1

γkη
2
k

}

.

It can be written explicitly as

θ̂kλ =
bk

b2k + λγ−1
k

yk , k = 1, 2, · · · . (6)

In particular, here we consider

bk ∼







k−β Mildly ill− posed

exp(−βk) Severely ill− posed
.

Furthermore, the true Fourier coefficients (θk : k ≥ 1) are assumed to be in an ellipsiod

Θ(Q) =

{

(θk : k ≥ 1) :
∑

k≥1

a2kθ
2
k ≤ Q

}

,

where

ak ∼







kα Θ = Θα(Q)

exp(αk) Θ = Θ∞(α;Q)
.

Observe that the risk of the radial basis function regularization estimator (θ̂kλ : k ≥ 1) can

be decomposed as the sum of the squared bias and the variance:

∑

k≥1

E

(

θ̂kλ − θk

)2

=
∑

k≥1

(

Eθ̂kλ − θk

)2

+
∑

k≥1

Var
(

θ̂kλ

)

=: B2
θ

(

θ̂λ

)

+Varθ

(

θ̂λ

)

. (7)

By (6), we can further write

B2
θ

(

θ̂λ

)

=
∑

k≥1

λ2γ−2
k θ2k

(

b2k + λγ−1
k

)2

and

Varθ

(

θ̂λ

)

= ǫ2
∑

k≥1

b2k
(

b2k + λγ−1
k

)2 .
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The squared bias and variance can be further bounded as follows:

B2
θ

(

θ̂λ

)

≤ max
k

{

λ2γ−2
k a−2

k
(

b2k + λγ−1
k

)2

}(

∑

k≥1

a2kθ
2
k

)

≤ max
k

(

λ2γ−2
k a−2

k

b4k + λ2γ−2
k

)

(

∑

k≥1

a2kθ
2
k

)

, (8)

and

Varθ

(

θ̂λ

)

≤ ǫ2
∑

k≥1

b2kγ
2
k

b4kγ
2
k + λ2

. (9)

5.1 Proof of Theorem 1

We begin with the case when γk ∼ eγk
2
for some γ > 0.

5.1.1 Mildly ill-posed with Sobolev spaces

In this case, bk ∼ k−β and ak ∼ kα. From (8)

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{

x2α−4β exp(−2γx2) + λ2x2α
}

)−1

. (10)

Hereafter we use C as a generic positive constant which may take different values at each

appearance. By the first order condition, the minimum on the right hand side is achieved

at the root of
(

2α− 4β

x
− 4γx

)

x2α−4β exp(−2γx2) +
2αλ2

x
x2α = 0,

implying that

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ C (− log λ)−α . (11)

Now consider Varθ

(

θ̂λ

)

. From (9)

Varθ

(

θ̂λ

)

≤ ǫ2
∑

k≥1

k−2β exp(−2γk2)

k−4β exp(−2γk2) + λ2
≈ ǫ2

∫ ∞

1

x−2β exp(−2γx2)

x−4β exp(−2γx2) + λ2
dx.

The integral on the rightmost hand side can be bounded by

∫ ∞

1

1

x−2β + λ2x2β exp(2γx2)
dx ≤

∫ x0

1

x2βdx+

∫ ∞

x0

λ−2x−2β exp(−2γx2)dx,

where x0 is the positive root of

x−2β = λ2x2β exp(2γx2),
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which is of the order (−γ−1 log λ)
1
2 . Because

∫ ∞

x0

λ−2x−2β exp(−2γx2)dx = o
(

x2β0

)

,

for small values of λ, we have

∑

k≥1

Var
(

θ̂kλ

)

= O

(

ǫ2
(

log
1

λ

)2α+ 1
2

)

(12)

as λ→ 0.

Combining (11) and (12), we have

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(

log
1

λ

)−α

+ ǫ2
(

log
1

λ

)β+1/2
)

as ǫ→ 0. Taking

λ = O
(

exp
(

−ǫ
4

2α+2β+1

))

yields

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

exp
(

−ǫ
4α

2α+2β+1

))

,

as ǫ→ 0.

5.1.2 Mildly ill-posed with analytic function

For this case, bk ∼ k−β and ak ∼ exp(αk). First observe that the variance Varθ

(

θ̂λ

)

does

not change with the parameter space and can still be bounded as in (12). On the other

hand, from (8),

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{

x−4β exp(2αx− 2γx2) + λ2 exp(2αx)
}

)−1

,

and following the first order condition for the minimization on the right hand side, we have

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

= O

(

exp

[

−2α

(

−
1

γ
log λ

)1/2
])

, (13)

as λ→ 0. Summing up, we have

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

exp

[

−2α

(

−
1

γ
log λ

)1/2
]

+ ǫ2
(

log
1

λ

)β+1/2
)

, (14)
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as ǫ→ 0. Consequently, if λ takes the optimal value

λ = O

(

exp

(

−
γ

2α2

(

log
1

ǫ2

)2
))

,

the risk is minimax rate optimal, i.e.,

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

ǫ2
(

log
1

ǫ

)2β+1
)

,

as ǫ→ 0.

5.1.3 Severely ill-posed with Sobolev spaces

In this case, bk ∼ exp(−βk) and ak ∼ kα. Inequality (8) implies

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{

x2α exp(−4βx− 2γx2) + λ2x2α
}

)−1

,

where, after minimizing the function inside the brackets, we get

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

= O
(

(− log λ)−α) as λ→ 0. (15)

The variance Varθ

(

θ̂λ

)

can be bounded using (9). In particular,

Varθ

(

θ̂λ

)

≤ ǫ2
∑

k≥1

exp(−2βk − 2γk2)

exp(−4βk − 2γk2) + λ2

≈ ǫ2
∫ ∞

1

exp(−2βx− 2γx2)dx

exp(−4βx− 2γx2) + λ2

≤ ǫ2ǫ2
(
∫ x0

1

exp(2βx)dx+

∫ ∞

x0

λ−2 exp(−2βx− 2γx2)dx

)

,

where x0 is the positive root of

exp(−2βx) = λ2 exp(2βx+ 2γx2).

It can be easily derived that

x0 = O
(

(

−γ−1 log λ
)1/2
)

as λ→ 0. Observing that
∫ ∞

x0

λ−2 exp(−2βx− 2γx2)dx = o (exp(2βx0)) ,
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we have

Varθ

(

θ̂λ

)

= O
(

ǫ2 exp
(

2β
(

−γ−1 log λ
)1/2
))

(16)

as ǫ→ 0. Combining (15) and (16), we have

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

(− log λ)−α + ǫ2 exp
(

2β
(

−γ−1 log λ
)1/2
))

(17)

as ǫ→ 0, attaining the minimax optimal rate of convergence

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(

log
1

ǫ

)−2α
)

,

when

λ = O

(

exp

(

−

(

log
1

ǫ2

)2
))

as ǫ→ 0.

5.1.4 Severely ill-posed with Analytic functions

For this case, bk ∼ exp(−βk) and ak ∼ exp(αk). Following similar arguments as before,

from Inequality (8)

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{

exp[(2α− 4β)x− 2γx2] + λ2 exp(2αx)
}

)−1

= O
(

exp
[

−2α
(

−γ−1 log λ
)1/2
])

as λ goes to 0. On the other hand, the variance can still be bounded by (16). Hence,

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

exp
[

−2α
(

−γ−1 log λ
)1/2
]

+ ǫ2 exp

(

2β

(

1

γ
log

1

λ

)1/2
))

(18)

as ǫ→ 0, which implies that if

λ = O

(

exp

(

−
γ

(2α + 2β)2

(

log
1

ǫ2

)2
))

,

the radial basis function regularization achieves the optimal rate of convergence

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
4α

2α+2β

)

as ǫ→ 0.
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5.2 Proof of Theorem 2

We now consider the case when γk ∼ eγk.

5.2.1 Mildly ill-posed with Sobolev spaces

Observe that bk ∼ k−β and ak ∼ kα. From (8),

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{xα−2β exp(−γx) + λxα}

)−2

.

By the first order condition, the minimun is acieved when x is the root of the equation

(

x−1(α− 2β)− γ
)

xα−2β exp(−γx) + αλxα−1 = 0,

whose solution, after simple algebraic manipulations, implies

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

= O
(

(− log λ)−2α) (19)

as λ becomes small. On the other hand, in the light of (9),

Varθ

(

θ̂λ

)

≤ ǫ2
∞
∑

k=1

k−2β exp(−2γk)

k−4β exp(−2γk) + λ2
≈ ǫ2

∫ ∞

1

dx

x−2β + λ2x2β exp(2γx)
,

where the integral on the right hand side can be bounded by

∫ x0

1

x2βdx+

∫ ∞

x0

λ−2x−2β exp(−2γx)dx,

and x0 is the positive root of

x−2β = λ2x2β exp(2γx).

It is easy to check that

x0 = O
(

−γ−1 log λ
)

as λ→ 0. Observing that

∫ ∞

x0

λ−2x−2β exp(−2γx)dx = o
(

x2β0

)

,

we have

Varθ

(

θ̂λ

)

= O
(

ǫ2 (− log λ)2β+1
)

(20)
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as ǫ→ 0. Combining (19) and (20), we have

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

(− log λ)−2α + ǫ2 (− log λ)2β+1
)

, (21)

which implies that if

λ = O
(

exp
(

−ǫ−
2

2α+2β+1

))

,

it achieves the minimax optimal rate of convergence

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
4α

2α+2β+1

)

as ǫ→ 0.

5.2.2 Mildly ill-posed with analytic function

In this case, bk ∼ k−β and ak ∼ exp(αk). From (8),

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{x−4β exp(2αx− 2γx) + λ2 exp(2αx)}

)−1

.

By the first order condition, the minimum on the right hand side is attained at the root of

(

−4βx−1 + 2α− 2γ
)

x−4β exp(−2γx) + 2αλ2 = 0.

Thus,

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

=







O
(

exp
(

2α
γ
log(λ)

))

if γ > α− 2β

O (λ2) if γ ≤ α− 2β
. (22)

Combining (22) and the bound on the variance given in (20), we have

(a) if γ > α− 2β,

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

exp

(

2α

γ
log(λ)

)

+ ǫ2 (− log λ)2β+1

)

;

(b) if γ ≤ α− 2β.

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

λ2 + ǫ2 (− log λ)2β+1
)

.
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Taking

λ =







O
(

ǫ
γ
α

)

if γ > α− 2β

O(ǫ) if γ ≤ α− 2β
,

the radial basis function regularization achieves the minimax optimal rate of

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

ǫ2
(

log
1

ǫ

)2β+1
)

,

as ǫ→ 0.

5.2.3 Severely ill-posed with Sobolev spaces

Observe that bk ∼ exp(−βk) and ak ∼ kα. From (8),

sup
(θk :k≥1)∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{xα exp(−2βx− γx) + λxα}

)−2

= O
(

(− log λ)−2α)

as λ goes to 0. To bound the variance, note that from (9),

∑

k≥1

Var
(

θ̂kλ

)

≈ ǫ2
∫ ∞

1

dx

exp(−2βx) + λ2 exp(2βx+ 2γx)
,

where the integral on the right side can be bounded by
∫ x0

1

exp(2βx)dx+

∫ ∞

x0

λ−2 exp(−2βx− 2γx)dx,

and x0 is the positive root of

exp(−2βx) = λ2 exp(2βx+ 2γx).

It can be easily derived that

x0 = O
(

−(2β + γ)−1 log λ
)

as λ goes to 0. Using
∫ ∞

x0

λ−2 exp(−2βx− 2γx)dx = o (exp(2βx0)) ,

we conclude
∑

k≥1

Var
(

θ̂kλ

)

= O

(

ǫ2 exp

(

−
2β

2β + γ
log λ

))

. (23)
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In summary,

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(

log
1

λ

)−2α

+ ǫ2 exp

(

−2β

2β + γ
log λ

)

)

,

which attains the minimax optimal rate of

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(

log
1

ǫ

)−2α
)

if λ = O (ǫ2) as ǫ→ 0.

5.2.4 Severely ill-posed with Analytic functions

For this case, bk ∼ exp(−βk) and ak ∼ exp(αk). Similar to (8),

sup
(θk :k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{exp(2αx− 4βx− 2γx) + λ2 exp(2αx)}

)−1

.

By the first order condition, the minimum on the right hand side is achieved at the root of

(2α− 4β + 2γ) exp(−4βx− 2γx) + 2αλ2 = 0.

if and only if α < γ + 2β. Otherwise, it is achieved at one. Thus, for small values of λ,

sup
(θk :k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

=







O
(

exp
(

2α
2β+γ

log λ
))

if γ > α− 2β

O (λ2) if γ ≤ α− 2β
. (24)

Similarly, from (23), as ǫ goes to 0,

∑

k≥1

Var
(

θ̂kλ

)

= O

(

ǫ2 exp

(

−
2β

2β + γ
log λ

))

.

(a) if γ > α− 2β,

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

exp

(

2α

2β + γ
log λ

)

+ ǫ2 exp

(

−
2β

2β + γ
log λ

))

, (25)

which attains the optimal rate of convergence

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
2α

α+β

)

,

when

λ = O
(

ǫ−
β+γ
α+β

)

,

as ǫ→ 0.

22



(b) if γ ≤ α− 2β, following a similar argument as before, we note that

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

λ2 + ǫ2 exp

(

−
2β

2β + γ
log λ

))

. (26)

The best achievable rate is

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
4β+2γ
3β+γ

)

as ǫ→ 0,

and it is attained when

λ = O
(

ǫ
2β+γ
3β+γ

)

as ǫ→ 0. It is clear then that in this case the optimal minimax rate is not attained.

5.3 Proof of Theorem 3

In this setting γk ∼ kγ.

5.3.1 Mildly ill-posed with Sobolev spaces

Observe that bk ∼ k−β and ak ∼ kα. Similar to before,

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{xα−2β−γ + λxα}

)−2

,

where it is easy to see that if γ ≤ α−2β, the function inside the brackets is strictly increasing

on x ≥ 1. By the first order condition, for small values of λ,

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

=







O
(

λ
2α

2β+γ

)

if γ > α− 2β

O (λ2) if γ ≤ α− 2β
. (27)

Similarly, from inequality (9),

Varθ

(

θ̂λ

)

≤ ǫ2
∑

k≥1

k−2β−2γ

k−4β−2γ + λ2
≈ ǫ2

∫ ∞

1

dx

x−2β + λ2x2β+2γ
.

The integral on the right side can be bounded by
∫ x0

1

x2βdx+

∫ ∞

x0

λ−2x−2β−2γdx,

where x0 is the positive root of

x−2β − λ2x2β+2γ = 0,
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i.e., as λ goes to 0,

x0 = O
(

λ−
1

2β+γ

)

.

Observe that
∫ ∞

x0

λ−2x−2β−2γdx = o
(

x2β0

)

.

Thus, for small values of λ,

Varθ

(

θ̂λ

)

= O
(

ǫ2λ−
2β+1
2β+γ

)

. (28)

Combining (27) and (28),

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

=







O
(

λ
2α

2β+γ + ǫ2λ−
1+2β
2β+γ

)

if γ > α− 2β

O
(

λ2 + ǫ2λ−
1+2β
2β+γ

)

if γ ≤ α− 2β
,

implying that

(a) if γ > α− 2β, the estimator achieves the optimal rate in the minimax sense, that is

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
4α

2α+2β+1

)

,

provided that

λ = O
(

ǫ
4β+2γ

2α+2β+1

)

as ǫ→ 0;

(b) if γ ≤ α− 2β, the best achievable rate is

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
2(4β+2γ)
6β+2γ+1

)

,

and it is attained when

λ = O
(

ǫ
4β+2γ

6β+2γ+1

)

as ǫ→ 0.

5.3.2 Mildly ill-posed with analytic function

Similar to before,

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{x−4β−2γ exp(2αx) + λ2 exp(2αx)}

)−1

.
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Then, by the first order condition, the minimum on the right hand side is achieved at one if

γ ≤ α− 2β and at the root of

(

− (4β + 2γ) x−1 + 2α
)

x−4β−2γ + 2αλ2 = 0

otherwise. Thus, for small values of λ,

sup
(θk :k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

=







O
(

exp
(

−2αλ−
1

2β+γ

))

if γ > α− 2β

O (λ2) if γ ≤ α− 2β
.

Together with (28), this implies that

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

=







O
(

exp
(

−2αλ−
1

2β+γ

)

+ ǫ2λ−
1+2β
γ+2β

)

if γ > α− 2β

O
(

λ2 + ǫ2λ−
1+2β
γ+2β

)

if γ ≤ α− 2β
.

(29)

Thus,

(a) if γ > α− 2β, the estimator is optimal in the minimax sense, that is

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

ǫ2
(

log
1

ǫ

)2β+1
)

when

λ = O

(

(

1

2α
log

1

ǫ2

)−2β−γ
)

as ǫ goes to 0.

(b) if γ ≤ α− 2β, the best achievable rate is

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
2(4β+2γ)
6β+2γ+1

)

,

and it is attained when

λ = O
(

ǫ
4β+2γ

6β+2γ+1

)

as ǫ→ 0.
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5.3.3 Severely ill-posed with Sobolev spaces

Observe that

sup
θ∈Θα(Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{xα−γ exp(−2βx) + λxα}

)−2

= O
(

(− log λ)−2α)

as λ→ 0, and

∑

k≥1

Var
(

θ̂kλ

)

≈ ǫ2
∫ ∞

1

dx

exp(−2βx) + λ2 exp(2βx)x2γ

≤ ǫ2
(
∫ x0

1

exp(2βx)dx+

∫ ∞

x0

λ−2 exp(2βx)x2γdx

)

,

where x0 is the root of

exp(−2βx) = λ2 exp(2βx)x2γ,

and therefore

Varθ

(

θ̂λ

)

= O
(

λ−1ǫ2
)

(30)

as ǫ→ 0. Thus,

sup
(θk:k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(− log λ)−2α +
ǫ2

λ

)

.

It is minimax rate optimal, i.e.,

sup
(θk :k≥1)∈Θα(Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

(

log
1

ǫ

)−2α
)

,

if

λ = O
(

ǫ2
)

as ǫ→ 0.

5.3.4 Severely ill-posed with Analytic functions

In this case, bk ∼ exp(−βk) and ak ∼ exp(αk), and therefore,

sup
(θk :k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

≤ Cλ2
(

min
x≥1

{exp(2α− 4βx)x−2γ + λ2 exp(2αx)}

)−1

.

By the first order condition, we conclude that

sup
(θk :k≥1)∈Θ∞(α,Q)

B2
θ

(

θ̂λ

)

=







O
(

exp
(

α
2β

log λ
))

if γ > α− 2β

O (λ2) if γ ≤ α− 2β
(31)

as λ→ 0. Combining (30) and (31), we have
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(a) if γ ≥ α− 2β,

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O

(

exp

(

α

2β
log λ

)

+ λ−1ǫ2
)

. (32)

The best achievable rate is

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
2α

α+2β

)

,

and it can be attained when

λ = O
(

ǫ
4β

α+2β

)

as ǫ→ 0 ;

(b) if γ < α− 2β,

sup
(θk :k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

λ2 + λ−1ǫ2
)

.

The best achievable rate is

sup
(θk:k≥1)∈Θ∞(α,Q)

∑

k≥1

E

(

θ̂kλ − θk

)2

= O
(

ǫ
4
3

)

and it is attained when

λ = O
(

ǫ
4
3

)

as ǫ→ 0.
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