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We propose an empirical Bayes method for variable selection and coefficient estimation in linear regression models. The method is based
on a particular hierarchical Bayes formulation, and the empirical Bayes estimator is shown to be closely related to the LASSO estimator.
Such a connection allows us to take advantage of the recently developed quick LASSO algorithm to compute the empirical Bayes estimate,
and provides a new way to select the tuning parameter in the LASSO method. Unlike previous empirical Bayes variable selection methods,
which in most practical situations can be implemented only through a greedy stepwise algorithm, our method gives a global solution
efficiently. Simulations and real examples show that the proposed method is very competitive in terms of variable selection, estimation
accuracy, and computation speed compared with other variable selection and estimation methods.
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1. INTRODUCTION

We consider the problem of variable selection and coeffi-
cient estimation in the common normal linear regression model
where we have n observations on a dependent variable Y and
p predictors (x1, x2, . . . , xp), and

Y = Xβ + ε, (1)

where ε ∼ Nn(0, σ 2I) and β = (β1, . . . , βp)
′. Throughout this

article, we center each input variable so that the observed mean
is 0 and scale each predictor so that the sample standard devia-
tion is 1.

The underlying notion behind variable selection is that some
of the predictors are redundant, and therefore only an unknown
subset of the β coefficients are nonzero. By effectively iden-
tifying the subset of important predictors, variable selection
can improve estimation accuracy and enhance model inter-
pretability. Classical variable selection methods, such as Cp,
the Akaike introduction criterion, and the Bayes information
criterion, choose among possible models using penalized sum
of squares criteria, with the penalty being a constant multiple
of the model dimension. George and Foster (2000) showed that
these criteria correspond to a hierarchical Bayes model selec-
tion procedure under a particular class of priors. This gives a
new perspective on various earlier model selection methods and
puts them in a unified framework. The hierarchical Bayes for-
mulation puts a prior on the model space, then puts a prior on
the coefficients given the model. This approach is conceptually
attractive. George and Foster (2000) proposed estimating the
hyperparameters of the hierarchical Bayes formulation with a
marginal maximum likelihood criterion or a conditional maxi-
mum likelihood (CML) criterion. The resulting empirical Bayes
criterion uses an adaptive dimensionality penalty and compares
favorably with the penalized least squares criteria with fixed
dimensionality penalty. However, even after the hyperparame-
ters are estimated, the resulting model selection criterion must
be evaluated on each candidate model to select the best model.
This is impractical for even a moderate number of predictors,
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because the number of candidate models grows exponentially
as the number of predictors increases. In practice, this type of
method is implemented in a stepwise fashion through forward
selection or backward elimination. In doing so, one contents
oneself with the locally optimal solution instead of the globally
optimal solution.

A number of other variable selection methods have been in-
troduced in recent years (George and McCulloch 1993; Foster
and George 1994; Breiman 1995; Tibshirani 1996; Fan and
Li 2001; Shen and Ye 2002; Efron, Johnston, Hastie, and
Tibshirani 2004). In particular, Efron et al. (2004) proposed
an effective variable selection algorithm, LARS (least-angle re-
gression), that is extremely fast, and showed that with slight
modification the LARS algorithm can be used to efficiently
compute the popular LASSO estimate for variable selection,
defined as

β̂LASSO(λ) = arg min
β

(

‖Y − Xβ‖2 + λ
∑

|βi|
)

, (2)

where λ > 0 is a regularization parameter. By using the
L1 penalty, minimizing (2) yields a sparse estimate of β if
λ is chosen appropriately. Consequently, a submodel of (1)
containing only the covariates corresponding to the nonzero
components in β̂LASSO(λ) is selected as the final model. The
LARS algorithm computes the whole path of the LASSO with
a computational load in the same magnitude as the ordinary
least squares. Therefore, computation is extremely fast, which
facilitates the choice of the tuning parameter with criteria such
as Cp or generalized cross-validation (GCV).

In this article we adopt a hierarchical Bayes framework sim-
ilar to that of George and McCulloch (1993) and George and
Foster (2000), but with new prior specifications. We show that
the resulting empirical Bayes estimator is closely related to the
LASSO estimator and is quickly computable. We introduce a
method for choosing the hyperparameters, which in turn leads
to an alternative method for choosing the tuning parameter in
the LASSO. Unlike earlier methods, including that of George
and Foster (2000) and the LASSO tuned with Cp, where the er-
ror variance σ 2 is assumed known or fixed at the estimate from
the saturated model, in our method it is estimated together with
the other parameters. Therefore, our method potentially can be
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used in situations when the dimension is larger than the sample
size.

The rest of the article is structured as follows. In Section 2 we
introduce a hierarchical Bayes formulation for variable selec-
tion. In Section 3 we present an analytic approximation to the
posterior probabilities in the Bayesian formulation that turns
out to be connected to the LASSO estimate. We further jus-
tify this connection theoretically under the condition of orthog-
onal design in Section 4. In Section 5 we propose a method for
choosing the hyperparameters. In Section 6 we conduct simu-
lation studies to compare our method with some related model
selection methods. We illustrate the performance of our method
on several real datasets in Section 7, and provide a summary in
Section 8.

2. HIERARCHICAL MODEL FORMULATION

A hierarchical model formulation for variable selection in
linear models consists of the following three main ingredients:

1. A prior probability, P(M), for each candidate model M
2. A prior, P(θM|M), for parameter θM associated with

model M
3. A data-generating mechanism conditional on (M, θM),

P(Y|M, θM).

Once these three components are specified, one can combine
data and priors to form the posterior,

P(M|Y) = P(M)
∫

P(Y|M, θM)P(θM|M)dθM
∑

M′
∫

P(Y|M′, θM′)P(θM′ |M′)dθM′P(M′)
.

(3)

We begin by indexing each candidate model with one binary
vector, γ = (γ1, . . . , γp)

′. An element γi takes value 0 or 1 de-
pending on whether or not the ith predictor is excluded from
the model. Adopting this notation, under model γ , (1) can be
written as

Y|γ ,β ∼ N
(
Xγ βγ , σ 2I(n)

)
, (4)

where subscript “γ ” indicates that only those columns or el-
ements with the corresponding γ element of 1 are included.
Notice that βγ is of dimension |γ |, where |γ | denotes

∑
γi.

Now we specify the priors for β and γ . By the definition
of γ , it is natural to force βi = 0 if γi = 0. But if γi = 1, then
we give a double-exponential prior for βi, that is,

βi|γi = (1 − γi)δ(0) + γiDE(0, τ ), j = 1, . . . ,p, (5)

where DE(0, τ ) has density function τ exp(−τ |x|)/2. In
contrast with the commonly used normal prior βi|γi = 1 ∼
N(0, τ 2), the double-exponential prior can better accommodate
large regression coefficients because of its heavier tail proba-
bility. The double-exponential prior can also be presented as a
two-level hierarchical model (Andrews and Mallows 1974). At
the first level, the regression coefficient βi is assumed to fol-
low βi|γi = 1 ∼ N(0, ηi). At the second level, an exponential
prior is assumed for η’s, ηi ∼ exp(τ 2/2). From this, we can see
that the double-exponential prior introduces different variance
parameters for different regression coefficients. In a wavelet
setup, Johnstone and Silverman (2005) argued that the double-
exponential prior can achieve the adaptive minimax conver-
gence rates not obtainable using normal priors.

We remark that there is another approach to variable selec-
tion in linear models. Instead of putting a degenerate prior on βj
for j’s with γj = 0, one can put a prior on the full set of β’s and
then exclude variables with small effects. This smoother alter-
native to our formulation and has been adopted by George and
McCulloch (1993), among others.

For γ , a widely used prior is P(γ ) = q|γ |(1 − q)p−|γ |, with
a prespecified q. This prior assumes that each predictor enters
the model independently with a prior probability q, whether or
not the predictors are correlated. The prior models the prior in-
formation on the model sizes but does not distinguish models
with the same size. However, it is often the case that highly cor-
related predictors are to be avoided simply because those pre-
dictors are providing similar information on the response. To
achieve this, we propose the following prior for γ :

P(γ ) ∝ q|γ |(1 − q)p−|γ |√det(X′
γ Xγ ), (6)

where det(X′
γ Xγ ) = 1 if |γ | = 0. Note that when the correla-

tion between two covariates goes to 1, the prior described in (6)
converges to a prior that allows only one of the two variables
in the model. To better appreciate the effect of correlation be-
tween predictors in our prior specification, consider the condi-
tional prior odds ratio for γj = 1,

P(γj = 1|γ [−j])
P(γj = 0|γ [−j])

= q

1 − q

√
√
√
√

det(X′
γ [−j],γj=1

Xγ [−j],γj=1)

det(X′
γ [−j],γj=0

Xγ [−j],γj=0)
, (7)

where superscript “[−j]” indicates that the jth component is re-
moved. If Xj is highly correlated with the current covariates,
Xγ [−j],γj=0, then the second factor of the right side of (7) will be
small. Therefore, it is more likely that Xj will be removed from
the full model. This is desirable, because Xj does not contain
much “additional” information.

Our Bayesian formulation consists of (4), (5), and (6). Three
parameters need to be specified for this formulation, namely q,
τ , and σ 2. From a hierarchical Bayesian standpoint, one can ei-
ther use prespecified values or put a higher level prior for them.
Both of these approaches require human expertise. To avoid the
need for expert information, we take the empirical Bayes ap-
proach and use an automatic default prior parameter choice.
The automatic choice of the hyperparameters is introduced in
Section 5.

With our formulation, the joint distribution P(γ ,βγ ,Y) is

P(γ ,βγ ,Y)

∝
(

1√
2πσ 2

)n
√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−‖Y − Xγ βγ ‖2 + λ
∑

i∈γ |βi|
2σ 2

)

(1 − q)pw|γ |.

Therefore,

P(γ |Y) = C(Y)w|γ |

×
∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−‖Y − Xγ βγ ‖2 + λ
∑

i∈γ |βi|
2σ 2

)

dβγ , (8)
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where

w =
(

q

1 − q

τ

2

√

2πσ 2

)

,

λ = 2σ 2τ , and C(Y) is a constant not depending on γ . We pick
the model γ that maximizes P(γ |Y). In principle, exact eval-
uation of the posterior probability P(γ |Y) could be obtained;
however, this task cannot be performed in closed form. To com-
pute the high-dimensional integrals involved in P(γ |Y), analyt-
ical or numerical approximation methods are needed.

3. POSTERIOR ANALYSIS

The major difficulty in posterior inference for our Bayesian
model comes from the high-dimensional integration in (8). Be-
cause no analytically tractable solution to this integral exists in
general, we have to use approximations. Because the posterior
probability is expected to spread over a large number of pos-
sible models, it is not possible to construct analytical approx-
imations that do uniformly well for all candidate models. We
propose to focus on a subset of candidate models containing
the model with the highest posterior probability, whose poste-
rior probabilities can be approximated very well.

Let

β∗
γ = arg min

βγ

(

‖Y − Xγ βγ ‖2 + λ
∑

i∈γ

|βi|
)

.

Denote βγ = β∗
γ + u. We can rewrite (8) as

P(γ |Y) = C(Y)w|γ |
∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−‖Y − Xγ βγ ‖2 + λ
∑

i∈γ |βi|
2σ 2

)

dβγ

= C(Y)w|γ |
∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−
(

‖Xγ u‖2 − 2Ỹ′
γ Xγ u

+ λ
∑

i∈γ

(|β∗
i + ui| − |β∗

i |)
)

/
(2σ 2)

)

du

× exp

(

−minβγ
(‖Y − Xγ βγ ‖2 + λ

∑

i∈γ |βi|)
2σ 2

)

,

(9)

where Ỹγ = Y − Xγ β∗
γ , and hereafter we omit the sub-

script “γ ” if no confusion occurs. Our main task is to evaluate

∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−
(

‖Xγ u‖2 − 2Ỹ′Xγ u

+ λ
∑

i∈γ

(|β∗
i + ui| − |β∗

i |)
)

/
(2σ 2)

)

du. (10)

Define

f (u) ≡ ‖Xγ u‖2 − 2Ỹ′Xγ u + λ
∑

i∈γ (|β∗
i + ui| − |β∗

i |)
σ 2

.

(11)

Note that the definition of f depends on γ implicitly, because it
has a |γ |-dimensional argument. Hereafter we omit this depen-
dence for notational convenience. From the definition of u, we
see that f (u) is minimized at u∗ = 0.

Now we consider the following two types of models sepa-
rately.

Definition 1. For a dataset (X,Y) and a given regularization
parameter λ,

(a) a model γ is called regular if and only if β∗
γ does not

contain 0’s or |γ | = 0 and
(b) a model γ is called nonregular if β∗

γ contains at least one
zero component.

3.1 Regular Models

For regular models, f (u) is differentiable at u = u∗, and

∂2f (u)

∂u ∂uT

∣
∣
∣
∣
u=u∗

= 1

σ 2
X′

γ Xγ . (12)

Applying the Laplace approximation to (10), we get, for sample
size n large enough,

∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−
(

‖Xγ u‖2 − 2Ỹ′Xγ u

+ λ
∑

i∈γ

(|β∗
i + ui| − |β∗

i |)
)

/
(2σ 2)

)

du ≈ 1. (13)

It is worth pointing out that we implicitly assume the nonsin-
gularity of X′

γ Xγ when using the Laplace approximation. This
should not be a loss of generality, however. The models that do
not satisfy this condition are not of interest from a variable se-
lection standpoint and have been assigned prior probability 0
[see (6)]. Therefore, the posterior probability for these models
is always 0.

Combining (9) and (13), for sample size n large enough, we
have

P(γ |Y)

≈ C(Y)w|γ |

× exp

(

−minβγ
(‖Y − Xγ βγ ‖2 + λ

∑

i∈γ |βi|)
2σ 2

)

. (14)

Although (14) is derived for large sample sizes, we find this ap-
proximation to be fairly accurate even for small sample sizes.
To elaborate on this, we simulated a dataset with p = 8 co-
variates and n = 20 observations. The regression coefficients
are generated independently from N(0,22), and the regression
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Table 1. Maximum Approximation Error of (14) for Different Sample Sizes

n Minimum First quartile Median Mean Third quartile Maximum

20 6.05% 9.37% 11.02% 11.42% 12.66% 23.89%
50 3.85% 5.82% 6.76% 7.00% 7.72% 14.25%

100 2.68% 4.04% 4.70% 4.83% 5.44% 9.34%

noise follows N(0,32). The design matrix is generated by or-
thogonalizing independent standard normal variables. The left
side of (13) represents the ratio of the exact posterior probabil-
ity to the corresponding approximation given by (14) for each
regular model given λ > 0. It can be factorized into univariate
integrals and thus is readily computable under orthogonal de-
sign. For every λ > 0, we computed this ratio for every regular
model and recorded the ratio that differs most from 1 over all
regular models. For a typical dataset, the largest discrepancy
between the recorded ratio and 1 taken over all λ > 0 is only
about 10%. We then repeated the experiment for three different
sample sizes, n = 20,50, and 100. Table 1 presents the sum-
mary statistics of the largest discrepancies taken over 100 runs.
We can see that (14) is quite accurate for sample sizes as small
as 20.

3.2 Nonregular Models

Although (14) provides a computationally efficient approx-
imation to P(γ |Y) for regular models, it does not apply to
nonregular models, because for these models, f (u) is not dif-
ferentiable at u = u∗. However, in what follows we show that
in our model selection procedure, we can concentrate on the
regular models.

It is beneficial to exclude complex models that do not re-
ceive more support from the data than their simpler coun-
terparts. For this reason, we compare a nonregular model γ

with a regular submodel of γ . Without loss of generality, as-
sume that γ is of the form (1, . . . ,1,0, . . . ,0), where the first
|γ | components are 1’s, and that only the first s components
of the |γ |-dimensional vector β∗

γ are nonzero. By the defin-
ition of nonregular models, we have s < |γ |. Let γ ∗ be the
p-dimensional binary vector representing a submodel of γ with
only the first s elements being 1. Our task here is to compare
P(γ |Y) and P(γ ∗|Y). Because f (u) is minimized at u = 0, for
any i ≤ s, we have

∂f

∂ui

∣
∣
∣
∣
u=0

= 0,

which leads to

2Ỹ′Xi = λ sign(β∗
γ ,i) if i ≤ s. (15)

In contrast, for s < i ≤ |γ |, the ith component of β∗
γ is 0, and

we have

∂f

∂ui

∣
∣
∣
∣
ui=0+;uj=0,∀ j 
=i

≥ 0 and
∂f

∂ui

∣
∣
∣
∣
ui=0−;uj=0,∀ j 
=i

≤ 0.

This implies that

|2Ỹ′Xi| ≤ λ and β∗
γ ,i = 0 if s < i ≤ |γ |. (16)

By (15) and (16), from simple calculations, we get

∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ |

× exp

(

−
(

‖Xγ u‖2 − 2Ỹ′Xγ u

+ λ
∑

i∈γ

(|β∗
i + ui| − |β∗

i |)
)

/
(2σ 2)

)

du

<

∫ ∞

−∞
· · ·

∫ ∞

−∞

√

det(X′
γ Xγ )

(
√

2πσ 2 )|γ | exp

(

−‖Xγ u‖2

2σ 2

)

du = 1.

Thus

P(γ |Y)

< C(Y)w|γ |

× exp

(

−minβγ
(‖Y − Xγ βγ ‖2 + λ

∑

i∈γ |βi|)
2σ 2

)

. (17)

Now, because Ỹγ = Ỹγ ∗ and β∗
γ ,i = β∗

γ ∗,i for any i ≤ s, ap-
plying (14) to the regular model γ ∗ and (17) to the nonregular
model γ , we conclude that, asymptotically,

P(γ |Y)

P(γ ∗|Y)
≤ w|γ |−s.

If w ≤ 1, the data do not give more support to the bigger
model γ than to γ ∗, and thus we would pick γ ∗. Consequently,
we can avoid computing P(γ |Y) for nonregular model γ .

4. CONNECTION BETWEEN THE LASSO
ALGORITHM AND THE BAYESIAN FRAMEWORK

Summarizing the foregoing analysis, we find that if w is set
to 1, then the following assumptions hold:

1. To search for the model with the highest posterior proba-
bility, we can concentrate on the regular models.

2. For regular models, the posterior probability, P(γ |Y), can
be approximated by C(Y) exp[−h(γ )/(2σ 2)], where

h(γ ) = min
βγ

(

‖Y − Xγ βγ ‖2 + λ
∑

i∈γ

|βi|
)

.

In general, these conclusions are good approximations. For
the special case of orthogonal design matrix X, they can be
proved rigorously.

Theorem 1. Suppose that w = 1. Under orthogonal design,
that is, X′X = (n − 1)Ip, the following results hold:

a. If model γ is nonregular, then there exists a γ ∗ such that
P(γ |Y) < P(γ ∗|Y).
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b. Suppose that λ = o(
√

n ). If model γ is regular, then, as
n → ∞,

P(γ |Y) ∼ C(Y) exp

(

−‖Y − Xγ β∗
γ ‖2 + λ

∑

i∈γ |β∗
i |

2σ 2

)

.

We note the (n − 1) factor in the condition X′X = (n − 1)Ip

is just to conform to our convention we stated at the beginning
of the article that the data be scaled to have sample standard
deviation 1.

By parts a and b, we can now focus on searching for the reg-
ular model γ with the smallest h(γ ). A straightforward search
involves going through each of the large number of candidate
models to identify regular models and to minimize h over all of
the regular models, which would be computationally very de-
manding. Fortunately, such a search is not necessary, and the
following proposition provides the key to a simple and explicit
recipe for finding a regular model that minimizes h(γ ). The
proof of the proposition is relegated to the Appendix.

Proposition 1. Let β̂ = arg minβ(‖Y−Xβ‖2 +λ
∑p

i=1 |βi|),
and let model γ̂ be such that γ̂i = I(β̂i 
= 0), where I(·) is
the indicator function. Then γ̂ is the regular model that min-
imizes h(γ ).

Interestingly, γ̂ is exactly the same model selected by the
LASSO algorithm. In other words, the model selected by the
LASSO algorithm has the highest posterior probability under
our Bayesian model (6) with w = 1. Therefore, we can use
the LASSO algorithm to select a model with approximately
the largest posterior probability when w = 1. The LASSO al-
gorithm also gives the maximum a posteriori estimate of the
regression coefficients for the selected model at the same time.
Thus, if our goal is to select a model and estimate the regres-
sion coefficient, then we can use the LASSO algorithm to fulfill
the task. This equivalence allows us to take advantage of the
recently developed fast LASSO algorithm to compute the so-
lution for our Bayesian formulation. The connection with the
LASSO estimator also highlights a distinction between our em-
pirical Bayes methods and earlier proposals, such as that of
George and Foster (2000) which can be implemented only in a
stepwise fashion in most practical situations. Using the LASSO
algorithm to calculate the Bayesian solution would save tremen-
dous computational effort and make our procedure suitable for
large datasets with high dimensionality.

The close relationship also gives a new Bayesian interpreta-
tion to the LASSO algorithm. Tibshirani (1996) mentioned that
the LASSO algorithm has another Bayesian interpretation with
an independent double-exponential prior on each regression co-
efficient. Tibshirani’s formulation is somehow less natural as
a Bayesian variable selection procedure, because it puts prior
probability 1 on the full model. Consequently, the correspond-
ing posterior probability for the full model will also be 1 even
if the posterior modal estimates of some regression coefficients
are 0.

Although setting w = 1 substantially eases the computational
burden, it potentially may incur loss of efficiency in terms of
prediction accuracy. However, we found that this potential loss
of efficiency is usually small. To illustrate, we conducted a
small experiment where yi = βi + εi, i = 1, . . . ,500. The noise
εi follows a standard normal distribution. Notice that any linear

Table 2. Relative Efficiency by Forcing w = 1

Minimum First quartile Median Mean Third quartile Maximum

66.67% 92.66% 97.32% 95.01% 99.36% 100.00%

regression problem with orthogonal design can be transformed
into this form. In our experiment, the first 50 βi’s are generated
from N(0,1), and the rest are set at 0. This orthogonal design al-
lows us to restrict our attention on a sequence of 500 submodels
instead of all 2500 submodels and perform exact posterior analy-
sis. For each of 100 equally spaced λ ∈ [0,max |yi|] and any
w ≥ 0, we computed the model with the highest posterior prob-
ability together with its associated coefficient estimate β̂w,λ.
Consequently, we can compute β̂opt = arg minw,λ ‖β̂w,λ − β‖2

and β̂opt,w=1 = arg minλ ‖β̂1,λ−β‖2. The summary statistics of

the relative estimation efficiency ‖β̂opt − β‖2/‖β̂opt,w=1 − β‖2

over 100 runs are reported in Table 2.
As Table 2 clearly indicates, the loss of efficiency caused

by forcing w = 1 is small. Therefore, it is reasonable to set w
to 1, given the great computational advantage that setting w = 1
brings about.

5. PRIOR ELICITATION

After setting w = 1, we still need to specify σ 2 and λ. The
later is exactly the tuning parameter selection problem faced
by the LASSO algorithm. Tibshirani (1996) proposed a GCV
score for selecting λ. In what follows, we adopt an empirical
Bayesian approach for selecting both σ 2 and λ.

From an empirical Bayesian standpoint, one could choose σ 2

and λ by maximizing the marginal likelihood

f (Y|σ 2, λ) =
∑

γ

∫ ∞

−∞
P(Y,γ ,βγ )dβγ .

This can be implemented when the number of variables is small.
But in situations where the number of variables is moderately
large, the summation is over a large number of items and is
not practical for large datasets. In such situations we follow an
approach related to the CML approach proposed by George and
Foster (2000). The conditional density of Y given a model γ is

f (Y|γ , σ 2, λ)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
1√

2πσ 2

)n

exp

(

−‖Y − Xγ βγ ‖2

2σ 2

)

×
(

λ

4σ 2

)|γ |
exp

(

−λ
∑

i∈γ |βi|
2σ 2

)

dβγ .

For a given λ, denote the selected model by γ̂ λ. We choose
σ 2 and λ as the maximizer of f (Y|γ̂ λ, σ

2, λ). Strictly speaking,
f (Y|γ̂ λ, σ

2, λ) is neither a likelihood nor a conditional likeli-
hood, and we denote the resulting criterion by CML only be-
cause of its similarity to the approach of George and Foster
(2000). Because γ̂ λ is regular, we can use (9) and (13) to ap-
proximate f (Y|γ̂ λ, σ

2, λ),

f (Y|γ̂ λ, σ
2, λ)

≈
(

1√
2πσ 2

)n−|γ̂ λ|(
λ

4σ 2

)|γ̂ λ|(
det

(
X′̂

γ λ
Xγ̂ λ

))−1/2
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× exp

(

−minβ(‖Y − Xγ̂ λ
βγ̂ λ

‖2 + λ
∑

i∈γ̂ λ
|βi|)

2σ 2

)

=
(

1√
2πσ 2

)n−|γ̂ λ|(
λ

4σ 2

)|γ̂ λ|(
det

(
X′̂

γ λ
Xγ̂ λ

))−1/2

× exp

(

−minβ(‖Y − Xβ‖2 + λ
∑p

i=1 |βi|)
2σ 2

)

.

Simple calculations show that this is equivalent to choosing λ

by minimizing

CML(λ)

≡ (n + |γ̂ λ|)
[

ln

(
minβ(‖Y − Xβ‖2 + λ

∑p
i=1 |βi|)

n + |γ̂ λ|
)

+ 1

]

+ ln
(
det

(
X′̂

γ λ
Xγ̂ λ

)) − 2|γ̂ λ| ln(
√

2πλ/4),

and the estimate of σ 2 is minβ(‖Y − Xβ‖2 + λ
∑p

i=1 |βi|)/
(n + |γ̂ λ|).

Remark 1. Both Cp used by Efron et al. (2004) and the
empirical Bayes approach previously proposed by George and
Foster (2000) need to estimate σ 2 by fitting the full model and
thus can be applied only in the situation where p < n. Our pro-
posed approach avoids this problem.

Remark 2. It is interesting to notice that the derivation for
CML does not work for the Bayesian interpretation given by
Tibshirani (1996) mentioned at the end of Section 4, because
the approximation applies only to regular models. However, it
is tempting to maximize f (Y|̂βλ, γ̂ λ, σ

2, λ) instead. Unfortu-
nately, this leads to a criterion,

min
β

(

‖Y − Xβ‖2 + λ

p∑

i=1

|βi|
)

,

that is trivially minimized at λ = 0.

6. SIMULATIONS

In this section we compare the proposed empirical Bayes
procedure with several other popular approaches for variable
selection and estimation. The methods compared include:

• EBC, our approximate empirical Bayes estimate with hy-
perparameters selected by CML

• LCP, the LASSO with λ selected by Cp

• LGCV, the LASSO with λ selected by GCV
• GFF, the empirical Bayes approach proposed George and

Foster (2000) and implemented in a forward-selection
fashion. George and Foster proposed a conditional maxi-
mum likelihood method for choosing the hyperparameters
in their Bayes formulation.

We compare these methods in terms of the size of selected
models, model error, and the computation time on a Pentium III
750-M computer. All simulations were conducted using R. The
path of the LASSO estimate was computed using the R package
LARS. The model error of an estimate β̂ is given by

ME(β̂) = (β̂ − β)′V(β̂ − β),

where V = E(X′X) is the population covariance matrix of X.
The models in our first simulation example were also used by
Tibshirani (1996).

Example 1. Consider the following four models:

I. β = (3,1.5,0,0,2,0,0,0)′ and σ = 3. The correlation
between X·i and X·j is ρ|i−j| with ρ = .5.

II. Same as model I except that βj = .85 for all j.
III. Same setup as before, but with β = (5,0,0,0,0,0,0,0)′

and σ = 2.
IV. A total of 40 correlated predictors are considered. xij =

zij + wi, where zij and wi are independent standard normal ran-
dom variables. The true regression coefficients are 2 for the first
20 predictors and 0 for the other predictors.

For models I–III, 200 datasets with sample size 20 were gener-
ated. For the model IV, 200 datasets with sample size 100 were
generated.

Table 3 gives the means and standard errors over the 200
simulated datasets. The table indicates that EBC tends to se-
lect models with relatively smaller size than the other methods.
To check see whether the choice of sparse models comes at a
sacrifice of prediction accuracy, we provide a pairwise predic-
tion accuracy comparison between EBC and the other methods

Table 3. Comparison of the Simulated Datasets

EBC LCP LGCV GFF

Model I
ME 3.99 (.24) 5.19 (.37) 4.52 (.26) 6.37 (.34)
Size 5.14 (.08) 5.29 (.11) 7.37 (.05) 5.66 (.21)
Time (sec) .11 (0) .05 (0) .23 (0) .27 (0)

Model II
ME 4.95 (.23) 5.60 (.32) 4.76 (.25) 6.55 (.33)
Size 5.68 (.08) 5.70 (.10) 7.22 (.06) 6.80 (.18)
Time (sec) .11 (0) .05 (0) .23 (0) .27 (0)

Model III
ME 1.19 (.09) 1.81 (.17) 1.70 (.10) .64 (.13)
Size 4.23 (.09) 4.06 (.16) 7.26 (.05) 1.32 (.09)
Time (sec) .11 (0) .05 (0) .23 (0) .29 (0)

Model IV
ME 61.18 (1.05) 80.22 (2.26) 87.18 (1.98) 183.47 (2.66)
Size 25.45 (.16) 27.26 (.32) 33.43 (.22) 6.89 (.09)
Time (sec) .87 (.01) .30 (0) 5.01 (.03) 8.96 (.01)

NOTE: Standard errors are in parentheses.
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Figure 1. Pairwise Prediction Accuracy Comparison Between EBC and Other Methods for Example 1.

for models I–IV in Figure 1, and also performed paired t-tests.
Table 4 reports the t statistics and p values.

Model I has a signal-to-noise ratio of approximately 5.7. The
first row of Figure 1 gives the pairwise comparison between
EBC and the other three methods based on the model errors
for the 200 simulated datasets. We can see that EBC performs
the best for this model. This is further confirmed by the paired
t-tests reported in Table 4, which show that EBC yields signifi-
cantly smaller model errors than the other methods.

Model II has a lower signal-to-noise ratio, approximately 1.8.
As demonstrated by Table 3 and the second row of Figure 1,
EBC achieves good prediction accuracy with small model size.
The paired t-test results also indicate that EBC performs signif-
icantly better than LCP and GFF and similar to LGCV.

Model III represents a setup well suited for stepwise subset
selection with a signal-to-noise ratio of about 7. In this case

GFF, which uses a stepwise procedure, performs the best, fol-
lowed by EBC.

Model IV is a bigger model, with a signal-to-noise ratio of
about 9. EBC performs the best. GFF selected models with too
few predictors, and consequently has a larger bias than the other
methods.

In summary, LGCV tends to select models with large sizes,
and its prediction performance is better in the situation where
most predictors are in the true model. Because the empirical
Bayes approach proposed by George and Foster (2000) can be
implemented only through a stepwise greedy search, it inher-
its both the advantages and disadvantages of the greedy search
methods. Because the algorithm is myopic, as was noted in ear-
lier studies (Chen, Donoho, and Sauders 1999), it might work
perfectly if the size of the true model is small, but in other cases
it might make suboptimal choices in the first several iterations

Table 4. Paired t-Test Comparing EBC With Other Methods

Model I Model II Model III Model IV

t value p value t value p value t value p value t value p value

EBC vs. LCP −4.7133 0 −2.6331 .0091 −5.5673 0 −9.3160 0
EBC vs. LGCV −3.8277 .0002 1.0483 .2958 −11.2438 0 −16.4213 0
EBC vs. GFF −11.0830 0 −6.5922 0 6.6381 0 −46.7975 0
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and end up spending most of its time correcting the mistakes
made in the first few terms. In general, EBC compares favor-
ably with other methods.

The simulation also indicates that EBC and LCP enjoy favor-
able computation speed. LGCV is slower, mostly because of the
evaluation of the trace of the information matrix.

We ran another set of simulations that are similar to those of
Breiman (1992).

Example 2. A total of 40 predictors are generated from a
multivariate normal distribution with E(xixj) = .7|i−j|. The re-
gression noise follows a standard normal distribution. Given
a positive integer h, we first generate regression coefficients
β∗

10+i = β∗
20+i = β∗

30+i = (h − |i|)2 for integer i with |i| < h.
The other components of β∗ are set to 0. Then the coef-
ficients are multiplied by a constant so that the theoretical
R2 = β ′X′Xβ/(β ′X′Xβ + n) = .75, where n is the sample
size. The simulation was conducted for each combination of
three sample sizes n = 60,160,600 and five different values of
h = 1,2, . . . ,5.

Figure 2 summarizes the average model error over 200 runs
for each method. As the figure suggests, EBC has a clear ad-
vantage over the other methods when the sample size is small
(n = 60). EBC and LCP perform essentially the same when the

sample size is medium (n = 60) or larger (n = 600). Forward-
selection–based GFF does well when the true model is sparse
(h = 1,2), but suffers as the true model sizes increase.

7. REAL EXAMPLES

In this section we apply the methods from Section 6 to sev-
eral real datasets to compare their prediction performance. The
prostate dataset, used previously by Tibshirani (1996), consists
of the medical records of 97 male patients who were about to re-
ceive a radical prostatectomy. The response variable is the level
of prostate-specific antigen, and there are eight predictors. The
ozone data were used by Breiman and Friedman (1985), among
many others. The daily maximum 1-hour average ozone read-
ing and eight meteorologic variables were recorded in the Los
Angeles Basin for 330 days of 1976. The diabetes dataset was
used by Efron et al. (2004). Here 10 baseline measurements
were obtained for 442 diabetes patients to predict a quantita-
tive measure of disease progression 1 year after baseline. The
Boston housing dataset concerns housing values in the sub-
urbs of Boston (Harrison and Rubinfeld 1978), with 13 predic-
tors collected to predict the median value of owner-occupied
homes. The TLI math dataset contains math scores and de-
mographic data of 100 randomly selected students participat-
ing in the Texas Assessment of Academic Skills (TAAS). This

Figure 2. Prediction Accuracy for Example 2 ( EBC; LCP; LGCV; GFF).
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dataset is available in the R package XTABLE, and more in-
formation can be obtained from the Texas Education Agency
website, http://www.tea.state.tx.us. The dataset contains a con-
tinuous response variable, the math scores from TAAS, and four
categorical explanatory variables.

Both linear model and quadratic model were considered for
each of these datasets. Table 5 provides the prediction errors
(PEs), average model sizes, and average CPU time consumed
for different methods estimated by 10-fold cross-validation.
The results in the table show that EBC and LCP enjoy a great
computational advantage over LGCV and GFF. In general, EBC
compares favorably with the other methods. In all examples,
EBC outperforms LCP in terms of prediction accuracy.

As we pointed out earlier, a great advantage of EBC is its
ability to deal with situations where p ≥ n. To demonstrate this,
we applied it to the sugar data used by Brown, Vannucci, and
Fearn (2002). The goal of the experiment is to predict the com-
position of three sugars using near-infrared spectroscopy. There
are a total of 125 training samples and 700 covariates that rep-
resent the second-difference absorbance spectra from 1,100 to
2,498 nm at 2-nm intervals. There are 21 test samples to vali-
date the estimate. Applying EBC on the training sample results
in models with 14, 20, and 16 covariates for the three sugars.
The corresponding mean squared errors on the test samples are
.26, .47, and .43, which are comparable with the results ob-
tained by the much more computationally intensive approach
by Brown et al. (2002). In principle, LGCV can also be applied

in situations where p ≥ n; however, it selected too many predic-
tors in this example, and performed poorly on the test sample.

8. SUMMARY

We have developed an empirical Bayes method for vari-
able selection and estimation in linear regression models. The
method is based on a particular hierarchical Bayesian for-
mulation, and the parameters, including the error variance in
the linear model, are estimated with the data. Analytical ap-
proximations to the posterior probabilities reveal the intimate
relationship between the estimator from our Bayesian formula-
tion and the LASSO. This connection allows us to compute the
Bayesian estimate with the quick LASSO algorithm. The em-
pirical Bayes choice of the hyperparameters also provides a new
way to select the tuning parameter for the LASSO algorithm.

APPENDIX A: PROOF OF THEOREM 1

Here we use the same notation as used in Section 3. Under orthog-
onal design, (9) can be written as

C(Y)

∫ ∞
−∞

· · ·
∫ ∞
−∞

(√
n − 1

2πσ 2

)|γ |

× exp

(

−‖Y − Xγ βγ ‖2 + λ
∑

i∈γ |βi|
2σ 2

)

dβγ

= C(Y)

∫ ∞
−∞

· · ·
∫ ∞
−∞

(√
n − 1

2πσ 2

)|γ |

Table 5. Comparison on Real World Examples

EBC LCP LGCV GFF

Prostate Main effect PE .55 .57 .55 .59
(n = 97) (p = 8) Size 6.50 6.40 7.70 5.50

Time .06 .03 .19 .25

Quadratic PE .62 .71 .79 .67
(p = 36) Size 17.80 19.5 29.3 1.90

Time .76 .29 20.96 7.49

Diabetes Main effect PE 3,015.90 3,023.88 3,022.05 3,038.04
(n = 442) (p = 10) Size 7.90 7.30 9.10 8.70

Time .21 .10 8.10 .72

Quadratic PE 3,082.82 3,170.13 3,215.08 3,155.03
(p = 64) Size 27.90 23.80 46.80 5.80

Time 10.54 2.22 389.68 56.76

Ozone Main effect PE 21.07 21.08 21.02 20.88
(n = 330) (p = 8) Size 7.00 5.60 7.70 3.00

Time .09 .04 2.02 .30

Quadratic PE 16.24 16.67 16.29 17.2
(p = 44) Size 24.50 22.40 33.40 6.40

Time 1.73 .53 67.44 12.99

Housing Main effect PE 23.51 23.53 23.47 23.50
(n = 506) (p = 13) Size 11.40 11.40 13.00 13.00

Time .26 .11 10.23 .96

Quadratic PE 11.19 11.25 11.13 13.45
(p = 103) Size 68.00 84.50 86.20 34.60

Time 24.11 4.43 887.30 171.64

TLI Main effect PE 216.66 226.26 213.47 207.66
(n = 100) (p = 10) Size 5.10 5.40 8.70 10.00

Time .08 .04 1.08 .34

Quadratic PE 222.14 265.05 319.76 247.14
(p = 42) Size 13.00 13.70 30.70 35.20

Time 1.06 .36 5.92 5.66

http://www.tea.state.tx.us
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× exp

(

−‖Xγ u‖2 − 2Ỹ′
γ Xγ u + λ

∑

i∈γ (|β∗
i + ui| − |β∗

i |)
2σ 2

)

du

× exp

(

−‖Y − Xγ β∗
γ ‖2 + λ

∑

i∈γ |β∗
i |

2σ 2

)

,

where Ỹγ = Y − Xγ β∗
γ . Denote

Q ≡
∫ ∞
−∞

· · ·
∫ ∞
−∞

(√
n − 1

2πσ 2

)|γ |

× exp

(

−‖Xγ u‖2 − 2Ỹ′
γ Xγ u + λ

∑

i∈γ (|β∗
i + ui| − |β∗

i |)
2σ 2

)

du

=
∏

i∈γ

∫ ∞
−∞

√
n − 1

2πσ 2

× exp

(

− (n − 1)u2
i − 2Ỹ′

γ xiui + λ(|β∗
i + ui| − |β∗

i |)
2σ 2

)

dui

≡
∏

i∈γ

Qi. (A.1)

a. Without loss of generality, suppose that j ∈ γ and β∗
j = 0. Let

γ ∗ be the submodel of γ with the jth predictor variable excluded; then
Ỹγ = Ỹγ ∗ and β∗

γ ∗,i = β∗
γ ,i, ∀ i ∈ γ ∗. By (9) and (A.1), we have

P(γ |Y)

P(γ ∗|Y)
= Qj.

By (15) and (16),

|2Ỹ′xj| ≤ λ.

This gives

P(γ |Y)

P(γ ∗|Y)
= Qj <

∫ ∞
−∞

√
n − 1

2πσ 2
exp

(

−
(n − 1)u2

j

2σ 2

)

duj = 1.

The proof of part a is now completed.
b. By (9) and (A.1), we need only show that Qi → 1, ∀ i ∈ γ . With-

out loss of generality, we assume that sgn(β∗
i ) > 0. Similar to the

derivation of (15), we have 2Ỹ′xi = λ,

Qi =
∫ ∞
−∞

√
n − 1

2πσ 2

× exp

(

− (n − 1)u2
i − 2Ỹ′xiui + λ(|β∗

i + ui| − |β∗
i |)

2σ 2

)

dui

=
∫ ∞
−∞

√
n − 1

2πσ 2

× exp

(

− (n − 1)u2
i + λ(|β∗

i + ui| − β∗
i − ui)

2σ 2

)

dui

=
∫ ∞
−β∗

i

√
n − 1

2πσ 2
exp

(

− (n − 1)u2
i

2σ 2

)

dui

+
∫ −β∗

i

−∞

√
n − 1

2πσ 2
exp

(

− (n − 1)u2
i − 2λ(β∗

i + ui)

2σ 2

)

dui

= 


(
β∗

i

σ/
√

n − 1

)

+ exp

(
λ2/(n − 1) + 2λβ∗

i

2σ 2

)




(

−β∗
i + λ/(n − 1)

σ/
√

n − 1

)

.

By the mean value theorem, for some ξ between −β∗
i +λ/(n−1)

σ/
√

n−1

and − β∗
i

σ/
√

n−1
,




(

−β∗
i + λ/(n − 1)

σ/
√

n − 1

)

− 


(

− β∗
i

σ/
√

n − 1

)

= −φ(ξ)λ/σ
√

n − 1 → 0,

given that λ = o(n1/2). Thus

Qi ≥ 


(
β∗

i

σ/
√

n − 1

)

+ 


(

−β∗
i + λ/(n − 1)

σ/
√

n − 1

)

→ 1.

In contrast,

∫ −β∗
i

−∞

√
n − 1

2πσ 2
exp

(

− (n − 1)u2
i − 2λ(β∗

i + ui)

2σ 2

)

dui

≤
∫ −β∗

i

−∞

√
n − 1

2πσ 2
exp

(

− (n − 1)u2
i

2σ 2

)

dui.

Therefore,

Qi ≤
∫ ∞
−∞

√
n − 1

2πσ 2
exp

(

− (n − 1)u2
i

2σ 2

)

dui = 1.

Thus Qi → 1 as n → ∞.

APPENDIX B: PROOF OF PROPOSITION 1

The proposition follows from two observations on h:

1. h is an decreasing function of γ . More specifically, if γ 1 is a
submodel of γ 2, then h(γ 1) ≥ h(γ 2).

2. h(γ̂ ) = h(1), where 1 = (1, . . . ,1) represents the full model.

Combining 1 and 2, we see that for any regular model γ ,

h(γ̂ ) = h(1) ≤ h(γ ).

Now the proof is completed by the fact that γ̂ is a regular model.

[Received May 2004. Revised February 2005.]
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