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Abstract

The objective of this paper is to quantify the complexity of rank and nuclear norm

constrained methods for low rank matrix estimation problems. Specifically, we derive

analytic forms of the degrees of freedom for these types of estimators in several com-

mon settings. These results provide efficient ways of comparing different estimators

and eliciting tuning parameters. Moreover, our analyses reveal new insights on the be-

havior of these low rank matrix estimators. These observations are of great theoretical

and practical importance. In particular, they suggest that, contrary to conventional

wisdom, for rank constrained estimators the total number of free parameters underes-

timates the degrees of freedom, whereas for nuclear norm penalization, it overestimates

the degrees of freedom. In addition, when using most model selection criteria to choose

the tuning parameter for nuclear norm penalization, it oftentimes suffices to entertain a

finite number of candidates as opposed to a continuum of choices. Numerical examples

are also presented to illustrate the practical implications of our results.
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1 Introduction

The problem of low-rank matrix estimation naturally arises in a number of statistical and

machine learning tasks. Prominent examples include multivariate linear regression, factor

analysis, relational learning, multi-task learning, and matrix completion among many others.

Numerous estimation methods have been developed in these contexts. Two of the most

popular approaches are the rank constrained estimator, also called as reduced rank regression

in the context of multivariate linear regression; and the nuclear norm regularized estimator,

oftentimes referred to as matrix Lasso. A challenge common to both methods is how to

effectively choose the tuning parameter and more fundamentally, how to assess the accuracy

of an estimator having constructed it from a set of observations. It is well known that this

goal cannot be achieved by simply measuring the estimator’s fidelity to the same data on

which it is computed, which inevitably leads to overoptimism about its performance (see, e.g.,

Efron, 1983; 1986). This issue is usually addressed by recalibrating the goodness of fit of an

estimating procedure according to its complexity, a familiar idea behind the likes of Akaike

information criterion (Akaike, 1973), Mallow’s Cp (Mallows, 1973), Bayesian information

criterion (Schwartz, 1978), generalized cross-validation (Craven and Wahba, 1979), Stein’s

unbiased risk estimate (Stein, 1981), and risk inflation criterion (Foster and George, 1994),

to name a few. A recurring notion among these techniques is the so-called degrees of freedom

which measures the complexity of an estimating procedure.

The importance of degrees of freedom in model assessment has long been recognized.

Donoho and Johnstone (1995) derived an unbiased estimator of the degrees of freedom for

soft thresholding and used it to find the optimal shrinkage factor in a wavelet denoising

setting. More recently Efron (2004) showed that when using the correct degrees of freedom,

a Cp type of statistic provides unbiased estimator of the prediction error, and in many cases

offers substantial improvement over alternative techniques such as cross-validation. The

significance of degrees of freedom has also been noted by Ye (1998), Shen and Ye (2002),

Shen, Huang and Ye (2004), Zou, Hastie and Tibshirani (2007), among others.

The concept of degrees of freedom is most well-understood for linear estimators in the

usual regression setting where it is identified with the trace of the so-called “hat” matrix

(see, e.g., Hastie and Tibshirani, 1990). In particular, when considering the classical lin-

ear regression or the analysis of variance (ANOVA), it is often associated with the number
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of variables in the model. In general, degrees of freedom can be rigorously defined in the

framework of Stein’s unbiased risk estimate (see, e.g., Ye, 1998; Efron, 2004). Its interpre-

tation, however, is unclear in the context of low rank matrix estimation problems where the

estimators are highly nonlinear in nature. Consider, for example, the popular reduced rank

regression for multivariate linear regression. The number of free parameters in specifying

a low rank matrix is often used as the degrees of freedom in this case (see, e.g., Reinsel

and Velu, 1994). Although intuitive, it remains an open problem to what extent this ap-

propriately measures the complexity of the rank constrained estimator. The main goal of

this paper is to address such issues in a large class of low rank matrix estimation problems

including among others the noisy singular value decomposition, reduced rank regression, and

the more recently developed nuclear norm penalization.

Low rank matrix estimation methods often draw comparison with approaches for vari-

able selection in the classical linear regression. In particular, the rank constrained estimator

and the nuclear norm regularized estimator are reminiscent of the subset selection and the

Lasso for linear regression whose degrees of freedom can be conveniently interpreted as the

number of variables (Stein, 1981; Zou, Hastie and Tibshirani, 2006). This connection seem-

ingly vindicates the number of free parameters as the degrees of freedom for their matrix

analogues. However, as we show here, the number of free parameters incorrectly measures

the complexity of either estimator. For the rank constrained estimator, the number of free

parameters underestimates the degrees of freedom, whereas for the nuclear normal penaliza-

tion, it overestimates the degrees of freedom. Furthermore, we provide explicit bias correc-

tion terms to rectify such a problem. Unlike the earlier developments where the degrees of

freedom are estimated only through computationally intensive numerical methods such as

data-perturbation or resampling procedures, we derive easily computable analytic forms of

the degrees of freedom for several commonly used estimation procedures. In addition to the

reduction of computational cost, our results reveal interesting insights about the behavior of

these methods. These insights are of great theoretical and practical importance. For exam-

ple, they suggest that when eliciting the tuning parameters for nuclear norm penalization, it

may suffice to entertain a finite number of candidates rather than entertaining a continuum

of choices.

The rest of the paper is organized as follows. We start in the next section with a canonical
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low rank approximation/estimation problem where the goal is to estimate a low rank Gaus-

sian mean matrix. Examples of such a problem include singular value decomposition with

noise (Hoff, 2006), the analysis of relational data (Harshman et al., 1982), biplot (Gabriel,

1971; Gower and Hand, 1996), and reduced-rank interaction models for factorial designs

(Gabriel 1978, 1998), among many others. We propose closed-form degrees of freedom esti-

mators for both the rank constrained and nuclear norm penalized estimators.

In Section 3, we consider a couple related low rank matrix estimation problems, namely

reduced rank regression for the multivariate linear regression (see, e.g., Reinsel and Velu,

1998) and nuclear norm penalization for matrix completion under uniform sampling at ran-

dom (see, e.g., Koltchinskii, Lounici and Tsybakov, 2011). We show that analytic forms

of unbiased degrees of freedom estimators can also be derived in these settings. Numerical

experiments are reported in Section 4 to demonstrate the efficacy of the proposed estimators

and their practical merits. All technical derivations are relegated to Section 5.

2 Canonical Low Rank Matrix Estimation

Many low rank matrix estimation problem can be formulated in the canonical form where

the goal is to estimate a m1 × m2 matrix M given a noisy observation Y = M + E, where

the noise matrix E follows a matrix norm distribution N(0, τ 2Im1
⊗ Im2

). Without loss of

generality, we shall assume that m1 ≤ m2 hereafter.

2.1 Degrees of Freedom

Let M̂ be an estimate of M based on Y . Its degrees of freedom can be motivated as follows.

Consider assessing the performance of M̂ by ‖M̂ − M‖2
F, where ‖ · ‖F stands for the usual

matrix Frobenius or Hilbert-Schmidt norm. Observe that

‖M̂ − M‖2
F = ‖M̂ − (Y − E)‖2

F

= ‖M̂ − Y ‖2
F + 2〈M̂ − Y, E〉 + ‖E‖2

F

= ‖M̂ − Y ‖2
F + 2〈M̂, E〉 + (terms not depending on M̂),

where 〈·, ·〉 is the inner product associated with Frobenius norm, i.e., 〈A, B〉 = trace(ATB).

It is clear that the first term measures the goodness of fit of M̂ to the observations Y . The
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second term can then be interpreted as the cost of the estimating procedure leading to the

following definition of degrees of freedom

df(M̂) =
1

τ 2

m1∑

i=1

m2∑

j=1

cov(M̂ij , Eij).

See Ye (1998) and Efron (2004) for further discussions. Once the degrees of freedom are

defined, various performance evaluation criteria can be constructed for M̂ . In particular, the

previous derivation suggests the following Cp type statistic:

Cp(M̂) = ‖M̂ − Y ‖2
F + 2τ 2df(M̂).

Another popular alternative which we shall also focus on is the so-called generalized cross

validation:

GCV(M̂) = ‖M̂ − Y ‖2
F/{m1m2 − df(M̂)}2.

Compared with other criteria, GCV has the advantage of not requiring τ 2 which is typically

not known apriori and needs to be estimated from the data.

Generally speaking, the degrees of freedom as defined above are not directly computable.

Stein (1981) solves this problem by constructing an unbiased estimator for it. In our context,

his results indicate that

df(M̂) = E

(
m1∑

i=1

m2∑

j=1

∂M̂ij

∂Eij

)
,

and suggest the following unbiased estimator of degrees of freedom:

d̂f
S
(M̂) =

m1∑

i=1

m2∑

j=1

∂M̂ij

∂Eij
.

However, with few exceptions, it is typically difficult to derive analytical expressions of

d̂f
S
(M̂). One often has to resort to numerical methods such as data perturbation and

resampling techniques to compute it. These approaches, however, can be computationally

prohibitive in large scale problems. It is therefore of great interests to derive, if possible

at all, rigorous analytical results on the degrees of freedom. We now show that this indeed

is possible for two of the most common low rank matrix estimators – rank regularized and

nuclear norm regularized estimators.
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2.2 Rank Regularized Estimator and Its Degrees of Freedom

We begin with rank constrained estimator. In the current context, it is given by:

M̂ rank(K) = argmin
A∈Rm1×m2 :rank(A)≤K

‖A − Y ‖2
F;

where K ∈ {1, . . . , m1} is a tuning parameter. The Eckart-Young Theorem shows that

M̂ rank(K) is related to the singular value decomposition of Y and can be computed explicitly.

More specifically, let Y = UΣV T be its singular value decomposition, i.e., Σ is a diagonal

matrix with diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σm1
≥ 0 and the column vectors of U and V are

orthonormal. The reduced rank estimator M̂ rank(K) is well defined whenever σK > σK+1,

which holds true with probability one. Moreover,

M̂ rank(K) =
K∑

k=1

σkukv
T

k ,

where uk and vk are the kth columns of U and V respectively.

Theorem 1 Let σ1 ≥ σ2 ≥ . . . ≥ σK > σK+1 ≥ σm1
be the singular values of Y = M + E

where E ∼ N(0, τ 2Im1
⊗ Im2

). Then an unbiased estimator of the degrees of freedom for

M̂ rank(K) is

d̂f(M̂ rank(K)) = (m1 + m2 − K)K + 2
K∑

k=1

m1∑

l=K+1

σ2
l

σ2
k − σ2

l

. (1)

Several interesting observations can be made from Theorem 1. First of all, it indicates

that the number of free parameters in specifying a low rank matrix underestimates the

degrees of freedom for M̂(K). To see this, note that the number of free parameters to

specify an m1 × m2 matrix of rank K is (m1 + m2 − K)K, i.e., the first term on the right

hand side of (1). Because the second term on right hand side of (1) is always nonnegative,

df(M̂ rank(K)) = Ed̂f(M̂ rank(K)) ≥ (m1 + m2 − K)K.

Moreover, since with probability one σm1
> 0, the inequality is strict unless K = 0 or m1. To

further demonstrate the necessity of the bias correction, we now conduct a small numerical

experiment.

In this experiment, we fix m1 = m2 = 50, and the underlying truth M = ABT where

A and B are independently sampled from N(0, I50 ⊗ I5) so that M has rank five. We then
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simulate Y ∼ N(M, I50 ⊗ I50) and compute M̂(K) for K = 1, 2, . . . , 50. We compare three

different ways of measuring the complexity of M̂(K):

• True degrees of freedom – E〈M̂(K), E〉 with the expectation estimated from 1000

simulated datasets;

• Unbiased estimate of degrees of freedom – d̂f(M̂ rank(K)) as given by (1);

• Naive estimate of degrees of freedom – Number of free parameters needed to specify a

rank K matrix.

The left panel of Figure 1 gives the degrees of freedom along with its two estimates

for a typical simulated dataset. It is clear that the unbiased estimate given in Theorem

1 is much more accurate than the naive estimate. To further confirm the unbiasedness of

d̂f(M̂ rank(K)). We repeat the experiment 1000 times and compute the sample expectation

of both estimates. As shown in the right panel of Figure 1, Ed̂f(M̂ rank(K)) agrees with the

true degrees of freedom fairly well.

To appreciate the practical implications of the unbiasedness of d̂f(M̂ rank(K)). We con-

sider using the unbiased risk estimate Cp(M̂
rank(K)) to select the appropriate rank K. When

using d̂f(M̂ rank(K)) as the estimated degrees of freedom, K = 5 is correctly identified for all

of the 1000 runs. In contrast, when using (m1 + m2 − K)K as the degrees of freedom, the

correct rank is chosen only 85% of the time. For the remaining 15% runs, the selected rank

is greater than K = 5. This may be attributed to the downward bias of the naive degrees of

freedom estimate and agrees with our earlier findings.

2.3 Nuclear Norm Penalization and Its Degrees of Freedom

Alternatively to the rank constraint, nuclear norm regularization is also widely used for low

rank matrix estimation:

M̂nuclear(λ) = argmin
A∈Rm1×m2

(
1

2
‖A − Y ‖2

F + λ‖A‖∗
)

,

where λ ≥ 0 is a tuning parameter, and ‖ · ‖∗ stands for the matrix nuclear norm, i.e.,

‖Y ‖∗ =

m1∑

k=1

σk.
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Figure 1: Degrees of freedom for reduced rank estimators: circles stand for the true degrees

of freedom; pluses represent the unbiased estimate of the degrees of freedom; triangles cor-

respond to the naive count of number of free parameters. The left panel is from a typical

simulated dataset and right hand side is based on results averaged over 1000 simulations.
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Similar to the rank constrained estimate, M̂nuclear(λ) can be expressed in closed form:

M̂nuclear(λ) =

m1∑

k=1

(σk − λ)+ukv
T

k ,

where (x)+ = max{x, 0}. Nuclear norm regularization also allows for closed-form degrees of

freedom estimator.

Theorem 2 Let σ1 ≥ σ2 ≥ . . . ≥ σm1
≥ 0 be the singular values of Y = M + E where

E ∼ N(0, τ 2Im1
⊗ Im2

) such that σK > λ ≥ σK+1. Then an unbiased estimator of the degrees

of freedom for M̂nuclear(λ) is

d̂f(M̂nuclear(λ)) = (m1 + m2 − K)K + 2

K∑

k=1

m1∑

l=K+1

σ2
l

σ2
k − σ2

l

−λ(m2 − m1)
K∑

k=1

1

σk

− 2λ
K∑

k=1

∑

l:l 6=k

σk

σ2
k − σ2

l

. (2)

Comparing (1) and (2), one recognizes that the first two terms on the right hand side

of (2) correspond to the degrees of freedom for the rank constrained estimator of the same

rank. The remaining two terms specify how much less complexity a nuclear norm regularized

estimator has when compared with rank constrained estimator of the same rank.

We note that the number of free parameters in specifying a low rank matrix again incor-

rectly measures the complexity of M̂nuclear(λ) because

d̂f(M̂nuclear(λ)) = (m1 + m2 − K)K + 2

K∑

k=1

m1∑

l=K+1

(
σ2

l

σ2
k − σ2

l

− λσk

σ2
k − σ2

l

)

−λ(m2 − m1)

K∑

k=1

1

σk
− 2λ

K∑

k,l=1
l 6=k

σk

σ2
k − σ2

l

= (m1 + m2 − K)K − 2

K∑

k=1

m1∑

l=K+1

λσk − σ2
l

σ2
k − σ2

l

−λ(m2 − m1)

K∑

k=1

1

σk
− 2λ

∑

1≤k<l≤K

1

σk + σl

≤ (m1 + m2 − K)K,

where the inequality is strict with probability one when K > 1 and K < m1.
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To further illustrate this observation, we repeat the experiment from the previous sub-

section. This time we apply the nuclear norm penalization to each simulated dataset. In the

left panel of Figure 2, we plot the true degrees of freedom, the proposed unbiased estimate

and the naive estimate by counting the number of free parameters needed to specify a low

rank matrix for a typical simulated dataset. It is clear that the unbiased estimator proposed

here enjoys superior performance and the naive estimate overestimate the complexity of the

nuclear norm penalization. The right panel of Figure 2 presents the results averaged over

1000 runs. It again shows the unbiasedness of d̂f(M̂nuclear(λ)) given in (2).
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Figure 2: Degrees of freedom for nuclear norm penalization: solid grey lines correspond to

the true degrees of freedom; solid black lines represent the unbiased estimate of the degrees

of freedom; and the dashed block lines correspond to the naive count of number of free

parameters. The left panel is from a typical simulated dataset and right hand side is based

on results averaged over 1000 simulations.
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The characterization of the degrees of freedom for nuclear norm penalization provided in

Theorem 2 also has important practical implications. Clearly the performance of the nuclear

norm penalization depends critically on the choice of the tuning parameter λ. In practice, λ is

often selected by optimizing a performance evaluation or model selection criterion such as Cp

or GCV. Such a criterion typically can be expressed as a bivariate function of the goodness-of-

fit ‖Y −M̂nuclear(λ)‖2
F and the degrees of freedom, i.e., C(‖Y −M̂nuclear(λ)‖2

F, d̂f(M̂nuclear(λ)))

in such a way that C is an increasing function of both arguments. One then chooses an λ

that minimizes C. The following corollary of Theorem 2 shows that for such a purpose, it

suffices to consider a finite number of choices for λ. Since M̂nuclear(λ) = 0 for all λ ≥ σ1, we

shall assume that 0 ≤ λ ≤ σ1 without loss of generality.

Corollary 3 Let σ1 ≥ σ2 ≥ . . . ≥ σm1
be the singular values of Y = M + E where E ∼

N(0, τ 2Im1
⊗ Im2

). Denote by

λ̂ = argmin
0≤λ≤σ1

C(‖Y − M̂nuclear(λ)‖2
F, d̂f(M̂nuclear(λ))),

where C is an increasing function of both of its arguments and d̂f(M̂nuclear(λ)) is given by

(2), then

λ̂ ∈ {σ1, σ2, . . . , σm1
}.

3 Other Low Rank Matrix Estimation Problems

Thus far, we have focused on the canonical low rank matrix estimation problem. The

technique we developed, however, can be extended to other related problems as well. We

now consider a couple examples.

3.1 Multivariate Linear Regression and Reduced Rank Regression

One of the most classical examples of low rank matrix estimation is the reduced rank re-

gression for multivariate linear regression (see, e.g., Reinsel and Velu, 1998). Consider the

following multivariate linear regression:

Y = XM + E,
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where Y = (y1, . . . , yn)
T is an n× q response matrix, X = (x1, . . . , xn)T is an n× p covariate

matrix, M is a p× q coefficient matrix, and the regression noise E ∼ N(0, τ 2In ⊗ Iq). Let M̂

be an estimator of M , then the fitted value can be given as Ŷ = XM̂ . It is clear that when

X = I, the multivariate linear regression becomes the canonical low rank matrix estimation

problem investigated in the previous section. Following the same rationale as before, the

prediction performance of M̂ can be assessed using the following Cp type statistic:

Cp(M̂) = ‖Y − XM̂‖2
F + 2τ 2df(M̂),

where the degrees of freedom for M̂ is defined as

df(M̂) :=
1

τ 2

n∑

i=1

q∑

j=1

cov(Ŷij, Yij).

Low rank estimation has been studied extensively in the context of multivariate linear

regression. Numerous methods have been proposed over the year. See Hotelling (1935; 1936),

Anderson (1951), Massy (1965), Izenman (1975), Wold (1975), Frank and Friedman, (1993),

Brooks and Stone (1994), Breiman and Friedman (1997), Yuan et al. (2007) and Bunea et

al. (2011) among many others. In particular, reduced rank regression is one of the most

commonly used in practice (see, e.g., Reinsel and Velu, 1998). The reduced rank regression

estimate of M is given by

M̂RR(K) := argmin
A∈Rm1×m2 :rank(A)≤K

‖Y − XA‖2
F.

The estimate M̂RR(K) can be written explicitly as

M̂RR(K) = (XTX)−1XTY V V T,

where V = (V1, . . . , VK) and Vk is the kth eigenvector of Y TX(XTX)−1XTY .

The following theorem shows that analytic forms for the unbiased estimator of the degrees

of freedom also exist in reduced rank regression.

Theorem 4 Let λ1 ≥ λ2 ≥ λK > λK+1 ≥ . . . ≥ λm be the eigenvalues of Y TX(XTX)−1XTY

where m = min{p, q}. Then an unbiased estimator of the degrees of freedom for M̂RR(K) is

d̂f(M̂RR(K)) = (p + q − K)K + 2

K∑

k=1

m∑

l=K+1

λl

λk − λl
. (3)

12



3.2 Matrix Completion and Nuclear Norm Penalization

We now turn to the problem of matrix completion under uniform sampling at random. The

goal is to recover a low random matrix M ∈ R
m1×m2 (m1 ≤ m2) based on n independent

random pairs (Xi, Yi), i = 1, 2, . . . , n, satisfying

Yi = 〈Xi, M〉 + ǫi,

where the observational noise ǫi are i.i.d. N(0, τ 2), and Xis are i.i.d. following a uniform

distribution over

X :=
{
ej(m1)ek(m2)

T : 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
,

and ej(m) is the jth canonical basis for R
m. Problems of this type have received considerable

attention in the past several years. See Candés and Recht (2008), Candés and Tao (2009),

Candés and Plan (2009), Recht (2010), Gross (2011), Rohde and Tsybakov (2011), and

Koltchinskii, Lounici and Tsybakov (2011) among others.

We shall consider here in particular the following version of nuclear norm penalization

introduced by Koltchinskii, Lounici and Tsybakov (2011):

M̂(λ) = argmin
A∈Rm1×m2

{
1

2
‖A‖2

F −
〈

m1m2

n

n∑

i=1

YiXi, A

〉

+ λ‖A‖∗
}

As shown by Koltchinskii et al. (2011), when λ is chosen appropriately, the resulting estimate

can achieve nearly optimal rate of convergence. The practical difficulty here of course is how

to select λ, which as we argued before, oftentimes relies on a good estimate of the degrees

of freedom for M̂(λ). As in the multivariate linear regression setting, the degrees of freedom

for the matrix completion problem can be defined as

df(M̂(λ)) :=
1

τ 2

n∑

i=1

cov(Ŷi, Yi),

where Ŷi = 〈Xi, M̂〉. The following theorem provides explicit forms of the unbiased estimate

of the degrees of freedom for M̂(λ).

Theorem 5 Let σ1 ≥ σ2 ≥ . . . ≥ σm1
be the singular values of (m1m2/n)

∑n
i=1 YiXi such

that σK > λ ≥ σK+1, and uk and vk be the left and right singular vectors corresponding to
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σk. Then an unbiased estimator of the degrees of freedom for M̂(λ) is

d̂f(M̂(λ)) =
m1m2

n

n∑

i=1

trace

[ ∑

k:σk>λ

(
1 − λ

σk

)(
uku

T

k XiX
T

i + XT

i Xivkv
T

k

)

+
∑

k:σk>λ

(
2λ

σk

− 1

)
XT

i uku
T

k Xivkv
T

k

+
∑

k:σk>λ

∑

l:l 6=k

(σk − λ)σl

σ2
k − σ2

l

(
XT

i ukv
T

k XT

i ulv
T

l + XT

i ulv
T

l XT

i ukv
T

k

)

+
∑

k:σk>λ

∑

l:l 6=k

(σk − λ)σ2
l

σk(σ2
k − σ2

l )

(
XT

i uku
T

k Xivlv
T

l + XT

i ulu
T

l Xivkv
T

k

)]
. (4)

4 Numerical Experiments

We now conduct some numerical experiments to illustrate the practical merits of our theo-

retical development. We begin with a simulation study designed to demonstrate the effect

of degrees of freedom estimates on tuning parameter selection for both the rank constrained

and nuclear norm regularized estimators. To fix ideas, we shall focus on the canonical model.

More specifically, we first simulated the true mean matrix M ∈ R
m1×m2 (m1 = m2 = 100)

such that its left and right singular vectors are uniform over the Steifel manifold. Its singular

values are independently sampled from a mixture distribution 0.9δ(0)+0.1E((
√

m1+
√

m2)α)

with α = 0.5, 1, 1.5 or 2, where δ(0) is a point mass at 0 and E(x) is the exponential distribu-

tion with mean x. The observation Y was then simulated from N(M, Im1
⊗Im2

). It is known

that the largest singular value of a m1 × m2 matrix of standard normals is approximately
√

m1 +
√

m2. Therefore the value α determines the difficulty in estimating M with α = 2

corresponding to the easiest situation whereas α = 0.5 to the most difficult task.

We consider both the rank regularized and nuclear norm regularized estimators with

tuning parameters, rank K for the rank regularized estimator and λ for the nuclear norm

regularized estimator, selected by either Cp or GCV. For each criterion, we consider using

either the proposed unbiased degrees of freedom estimator and the naive count of free pa-

rameters needed to specify a low rank matrix, giving a total of four selection methods for

each estimator. We compare these selection methods in terms of their relative efficiency,

that is,
‖M̂(K) − M‖2

F

mink ‖M̂(k) − M‖2
F

14



for rank regularized estimator M̂(K), and

‖M̂(λ) − M‖2
F

infθ ‖M̂(θ) − M‖2
F

for nuclear norm regularized estimator M̂(λ). By definition, the relative efficiency of an

estimator is no less than 1 and the closer it is to 1, the more accurate the corresponding

estimate is. The results, based upon two hundred runs of simulation, are summarized in

Figure 3.

It is evident from Figure 3 that when using the proposed unbiased degrees of freedom

estimates, both Cp and GCV achieve nearly optimal performance in that their relative ef-

ficiency either equals to or is very close to 1, for both rank regularized and nuclear norm

regularized estimators. Of course, in practice, we do not know the variance of the noise τ 2

and GCV may therefore provide a more attractive option. In comparison, when using the

naive degrees of freedom, both Cp and GCV perform suboptimally, confirming the benefit

of using a good degrees of freedom estimator.

We now consider an application to a previously published breast cancer study. The

dataset, reported by Hu et al. (2006), was based on 146 Agilent 1Av2 microarrays. After

initial filtering, normalization and necessary preprocessing, it contains log transformed gene

expression measurements of 117 samples and 13,666 genes. Interested readers are referred

to Hu et al. (2006) for details. Our interest here is in finding the possible low rank struc-

ture underlying the gene expression data. Such structures are common in gene expression

studies and are the basis of many standard analysis methods (see, e.g., Alter et al., 2000;

Raychaudhuri et al., 2000; Troyanskaya et al., 2001). To this end, we apply both the rank

constrained and nuclear norm regularized estimators to the data. For each estimator, we

consider using the GCV to select the tuning parameter. We chose GCV over Cp because it

does not require the knowledge of the noise variance. As before, we consider using both the

proposed unbiased estimators and the naive estimator for the degrees of freedom in GCV.

The results are given in Figure 4.

For the rank constrained estimators, GCV with the unbiased degrees of freedom estimator

chose a model with rank 21 whereas GCV with the naive degrees of freedom chose a model

of rank 37, as indicated by the vertical grey lines in the left panel of Figure 4. Based on

our theoretical development as well as the earlier simulation study, the former model might
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Figure 3: Effect of degrees of freedom estimators on tuning parameter selection for low

rank matrix estimation: results from each panel are based on 200 simulations. For each

simulated dataset, we apply rank constrained and nuclear norm regularized estimators with

the tuning parameter selected by either GCV or Cp. For each tuning criterion, the degrees

of freedom are estimated either by the proposed unbiased estimators or the naive count of

free parameters. Reported here are the relative efficiency of each method when compared

with the optimal choice of tuning parameter.
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Figure 4: Breast cancer data analysis: GCV criterion was evaluated for the rank constrained

and nuclear norm regularized estimators using both the proposed unbiased estimator and

the naive estimator of the degrees of freedom.
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be more appropriate. Similarly for the nuclear norm penalization, the tuning parameter

selected with the unbiased degrees of freedom is 39.99. When using the naive degrees of

freedom, the tuning parameter chosen is 42.75. Moreover, when using GCV as the model

assessment criterion, rank constrained estimate is preferable for this dataset as it yields a

smaller GCV score when both are appropriately tuned.

5 Proofs

5.1 Proof of Theorem 1

For brevity, we shall assume that τ 2 = 1 in the proof. Write

J =



 0 Y

Y T 0



 ,

the Jordan-Wielandt matrix corresponding to Y . Then ±σ1,±σ2, . . . ,±σm1
together with

m2 − m1 zeros are the eigenvalues of J . Furthermore, the eigenvectors corresponding to σk

and −σk are (uT

k ,vT

k )T/
√

2 =: ηk and (uT

k ,−vT

k )T/
√

2 =: ζk respectively. For brevity, we

shall assume that there are no ties among σ1, . . . , σm1
, and σm1

> 0 in the rest of the proof.

The same argument applies to the more general situation but is more tedious in notation.

By Cauchy residue formula, for a simple closed curve C in the complex plane that does

not go through any of the eigenvalues of J ,

1

2iπ

∮

C

dσ

σI − J
=

m1∑

k=1

(
ηkη

T

k × 1

2iπ

∮

C

dσ

σ − σk
+ ζkζ

T

k × 1

2iπ

∮

C

dσ

σ + σk

)

=
∑

k:σk∈int(C)

ηkη
T

k +
∑

k:−σk∈int(C)

ζkζ
T

k +

(

I −
m1∑

k=1

(ηkη
T

k + ζkζ
T

k )

)

I {0 ∈ int(C)} .

Therefore, for any C such that its interior contains only a single eigenvalue σk of J ,

σkηkη
T

k =
1

2iπ

∮

C

σdσ

σI − J
,

again by Cauchy residue formula.

Now denote by J̃ the Jordan-Wielandt matrix corresponding to Y with a small pertur-

bation – Y + δA where δ > 0 and A ∈ R
m1+m2 , i.e.,

J̃ =



 0 Y + δA

(Y + δA)T 0



 ,
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Similar to before, let Y + δA = Ũ Σ̃Ṽ T be its singular value decomposition. When δ is small

enough, we can choose C appropriately such that σ̃k is also the only eigenvalue of J̃ that

falls into the its interior. Write

B =



 0 A

AT 0



 .

Following a similar argument as before, we have

σ̃kη̃kη̃
T

k =
1

2iπ

∮

C

σdσ

σI − (J + δB)
.

Therefore,

σ̃k η̃kη̃
T

k − σkηkη
T

k = δ

∮

C

σ(σI − J)−1B(σI − J)−1dσ + O(δ2)

= δηkη
T

k Bηkη
T

k + δσkηkη
T

k B(σkI − J)† + δσk(σkI − J)†Bηkη
T

k + O(δ2).

Similarly

σ̃kζ̃kζ̃
T

k − σkζkζ
T

k = δζkζ
T

k Bζkζ
T

k + δσkζkζ
T

k B(σkI + J)† + δσk(σkI + J)†Bζkζ
T

k + O(δ2).

With slight abuse of notation, let M̂(K; A) be the reduced rank estimate of M with

observation M + A. Then

1

δ







 0 M̂(K; E + δA)

M̂(K; E + δA)T 0



−



 0 M̂(K; E)

M̂(K; E)T 0









=
1

δ

K∑

k=1

(
σ̃kη̃kη̃

T

k − σkηkη
T

k

)

=
K∑

k=1

(
ηkη

T

k Bηkη
T

k + ζkζ
T

k Bζkζ
T

k

)

+

K∑

k=1

σk

(
ηkη

T

k B(σkI − J)† + ζkζ
T

k B(σkI + J)†
)

+

K∑

k=1

σk

(
(σkI − J)†Bηkη

T

k + (σkI + J)†Bζkζ
T

k

)
+ O(δ).

Recall that ηk = (uT

k ,vT

k )T/
√

2. We get

ηkη
T

k =
1

2



 uku
T

k ukv
T

k

vku
T

k vkv
T

k



 .
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Therefore,

ηkη
T

k Bηlη
T

l =
1

4



 ∗ uk

(
vT

k ATul + uT

k Avl

)
vT

l

∗ ∗



 .

Similarly,

ζkζ
T

k Bζlζ
T

l =
1

4



 ∗ uk

(
vT

k ATul + uT

k Avl

)
vT

l

∗ ∗



 ,

and

ηkη
T

k Bζlζ
T

l =
1

4



 ∗ uk

(
uT

k Avl − vT

k ATul

)
vT

l

vk

(
vT

k ATuk − uT

k Avk

)
uT

k ∗



 .

Note also that

(σkI − J)† =
∑

l:l 6=k

ηlη
T

l

σk − σl
+

m1∑

l=1

ζlζ
T

l

σk + σl
+

1

σk

(

I −
m1∑

l=1

(ηlη
T

l + ζlζ
T

l )

)

=
1

σk
(I− ηkη

T

k ) +
∑

l:l 6=k

σlηlη
T

l

σk(σk − σl)
−

m1∑

l=1

σlζlζ
T

l

σk(σk + σl)
.

Similarly,

(σkI + J)† =
1

σk
(I − ζkζ

T

k ) −
m1∑

l=1

σlηlη
T

l

σk(σk + σl)
+
∑

l:l 6=k

σlζlζ
T

l

σk(σk − σl)
.
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Thus,

ηkη
T

k B(σkI − J)† + ζkζ
T

k B(σkI + J)†

=
1

σk

(
ηkη

T

k + ζkζ
T

k

)
B − 1

σk

(
ηkη

T

k Bηkη
T

k + ζkζ
T

k Bζkζ
T

k

)

+
∑

l:l 6=k

σl

σk(σk − σl)

(
ηkη

T

k Bηlη
T

l + ζkζ
T

k Bζlζ
T

l

)

−
m1∑

l=1

σl

σk(σk + σl)

(
ηkη

T

k Bζlζ
T

l + ζkζ
T

k Bηlη
T

l

)

=



 ∗ 1
σk

uku
T

k A

∗ ∗



−



 ∗ 1
σk

uku
T

k Avkv
T

k

∗ ∗





+
∑

l:l 6=k

σl

2σk(σk − σl)



 ∗ uk

(
vT

k ATul + uT

k Avl

)
vT

l

∗ ∗





−
m1∑

l=1

σl

2σk(σk + σl)



 ∗ uk

(
uT

k Avl − vT

k ATul

)
vT

l

∗ ∗





=



 ∗ 1
σk

uku
T

k A − 1
σk

uku
T

k Avkv
T

k

∗ ∗





+
∑

l:l 6=k

σl

σ2
k − σ2

l



 ∗ ukv
T

k ATulv
T

l

∗ ∗



+
∑

l:l 6=k

σ2
l

σk(σ
2
k − σ2

l )



 ∗ uku
T

k Avlv
T

l

∗ ∗





Following the same argument,

(σkI − J)†Bηkη
T

k + (σkI + J)†Bζkζ
T

k

=



 ∗ 1
σk

Avkv
T

k − 1
σk

uku
T

k Avkv
T

k

∗ ∗





+
∑

l:l 6=k

σl

σ2
k − σ2

l



 ∗ ulv
T

l ATukv
T

k

∗ ∗



+
∑

l:l 6=k

σ2
l

σk(σ
2
k − σ2

l )



 ∗ ulu
T

l Avkv
T

k

∗ ∗




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It can then be derived that

1

δ

{
M̂(K; E + δA) − M̂(K; E)

}

=
1

2

K∑

k=1

uk

(
vT

k ATuk + uT

k Avk

)
vT

k

+

K∑

k=1

(
uku

T

k A + Avkv
T

k − 2uku
T

k Avkv
T

k

)

+
K∑

k=1

∑

l:l 6=k

σkσl

σ2
k − σ2

l

(
ukv

T

k ATulv
T

l + ulv
T

l ATukv
T

k

)

+

K∑

k=1

∑

l:l 6=k

σ2
l

σ2
k − σ2

l

(
uku

T

k Avlv
T

l + ulu
T

l Avkv
T

k

)
+ O(δ)

=
K∑

k=1

((
uku

T

k A + Avkv
T

k

)
− uku

T

k Avkv
T

k

)

+

K∑

k=1

∑

l:l 6=k

σkσl

σ2
k − σ2

l

(
ukv

T

k ATulv
T

l + ulv
T

l ATukv
T

k

)

+
K∑

k=1

∑

l:l 6=k

σ2
l

σ2
k − σ2

l

(
uku

T

k Avlv
T

l + ulu
T

l Avkv
T

k

)
+ O(δ).

Thus,

∂M̂ij

∂Eij

=
K∑

k=1

(
u2

ik + v2
jk − u2

ikv
2
jk

)

+
K∑

k=1

∑

l:l 6=k

σkσluikuilvjkvjl

σ2
k − σ2

l

+

K∑

k=1

∑

l:l 6=k

σ2
l (u

2
ikv

2
jl + u2

ilv
2
jk)

σ2
k − σ2

l

.

Finally,

d̂f(M̂) =
∑

i,j

∂M̂ij

∂Eij

=

K∑

k=1

(m1 + m2) − K + 2

K∑

k=1

∑

l:l 6=k

σ2
l

σ2
k − σ2

l

= (m1 + m2 − K)K + 2

K∑

k=1

m1∑

l=K+1

σ2
l

σ2
k − σ2

l

.
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5.2 Proof of Theorem 2

Similar to before, it can be deducted from Cauchy residue formula that

(σ̃k − λ)+η̃kη̃
T

k − (σk − λ)+ηkη
T

k

= δI(σk > λ)ηkη
T

k Bηkη
T

k + δ(σk − λ)+ηkη
T

k B(σkI − J)†

+δ(σk − λ)+(σkI − J)†Bηkη
T

k + O(δ2);

and

(σ̃k − λ)+ζ̃kζ̃
T

k − (σk − λ)+ζkζ
T

k

= δI(σk > λ)ζkζ
T

k Bζkζ
T

k + δ(σk − λ)+ζkζ
T

k B(σkI + J)†

+δ(σk − λ)+(σkI + J)†Bζkζ
T

k + O(δ2).

Let M̂(λ; A) be the nuclear norm regularized estimate of M with observation M + A.

Then

1

δ







 0 M̂(λ; E + δA)

M̂(λ; E + δA)T 0



−



 0 M̂(λ; E)

M̂(λ; E)T 0









=
1

δ

m1∑

k=1

[
(σ̃k − λ)+η̃kη̃

T

k − (σk − λ)+ηkη
T

k

]

=
∑

k:σk>λ

(
ηkη

T

k Bηkη
T

k + ζkζ
T

k Bζkζ
T

k

)

+
∑

k:σk>λ

(σk − λ)
(
ηkη

T

k B(σkI − J)† + ζkζ
T

k B(σkI + J)†
)

+
∑

k:σk>λ

(σk − λ)
(
(σkI − J)†Bηkη

T

k + (σkI + J)†Bζkζ
T

k

)
+ O(δ).

Following similar calculation as in the proof of Theorem 1, we get

∂M̂ij(E; λ)

∂Eij

=
∑

k:σk>λ

(
σk − λ

σk

(u2
ik + v2

jk) +

(
2λ

σk

− 1

)
u2

ikv
2
jk

)

+
∑

k:σk>λ

∑

l:l 6=k

(σk − λ)σluikuilvjkvjl

σ2
k − σ2

l

+
∑

k:σk>λ

∑

l:l 6=k

(σk − λ)σ2
l (u

2
ikv

2
jl + u2

ilv
2
jk)

σk(σ2
k − σ2

l )
,
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which yields

d̂f(λ) = (m1 + m2 − K)K + 2
∑

k:σk>λ

∑

l:σl≤λ

σ2
l

σ2
k − σ2

l

−λ(m2 − m1)
∑

k:σk>λ

1

σk

− 2λ
∑

k:σk>λ

∑

l:l 6=k

σk

σ2
k − σ2

l

.

5.3 Proof of Corollary 3

Note that for any λ such that σk > λ ≥ σk+1,

‖Y − M̂nuclear(λ)‖2
F ≥ ‖Y − M̂nuclear(σk+1)‖2

F

and

d̂f(M̂nuclear(λ)) ≥ d̂f(M̂nuclear(σk+1)).

Because C is increasing in both of its argument, we get

C(‖Y − M̂nuclear(λ)‖2
F, d̂f(M̂nuclear(λ))) ≥ C(‖Y − M̂nuclear(σk+1)‖2

F, d̂f(M̂nuclear(σk+1))),

which implies the claim.

5.4 Proof of Theorem 4

Write

Z = (XTX)−1/2XTY.

and let Z = UDV T be its singular value decomposition. Then it is easy to verify that

M̂RR(K) = (XTX)−1/2Z(K)

where

Z(K) =
K∑

k=1

σkukv
T

k .

Now recall that an unbiased estimator of the degrees of freedom is given by

d̂f(M̂RR(K)) =
1

τ 2

∑

i,j

∂Ŷij

∂Yij
,

where

Ŷ (K) = XM̂RR(K) = X(XTX)−1/2Z(K) =: WZ(K).
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By the chain rule of differentiation,

∂Ŷij

∂Yij
=
∑

t

Wit
∂Ztj(K)

∂Yij
.

Note that

Z = (XTX)−1/2XTY = WTY.

Therefore,
∂Ztj(K)

∂Yij
=
∑

s,l

∂Ztj(K)

∂Zsl

∂Zsl

∂Yij
=
∑

s

Wis
∂Ztj(K)

∂Zsj
,

again by the chain rule. Thus,

∂Ŷij

∂Yij
=
∑

s,t

WisWit
∂Ztj(K)

∂Zsj
.

Together with the fact that WTW = I, we get

d̂f(M̂RR(K)) =
1

τ 2

∑

i,j,s,t

WisWit
∂Ztj(K)

∂Zsj
=

1

τ 2

∑

j,s,t

(WTW )st
∂Ztj(K)

∂Zsj
=

1

τ 2

∑

j,t

∂Ztj(K)

∂Ztj
.

Following the same calculation as that of Theorem 1, we can derive that

d̂f(M̂KK(K)) = (p + q − K)K + 2
K∑

k=1

m∑

l=K+1

σ2
l

σ2
k − σ2

l

,

which implies the desired statement by noting that λk = σ2
k.

5.5 Proof of Theorem 5

Write

Z =
m1m2

n

n∑

i=1

YiXi,

and let Z = UDV T be its singular value decomposition. Then

M̂(λ) =

m1∑

j=1

(σj − λ)+ujv
T

j .

Note that

Ŷi = 〈Xi, M̂(λ)〉
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Therefore,

∂Ŷi

∂Yi
=

〈

Xi,
∂M̂(λ)

∂Yi

〉

.

By the chain rule,
∂M̂ (λ)

∂Yi
=
∑

s,t

∂M̂ (λ)

∂Zst

∂Zst

∂Yi
.

Observe that

∂Zst

∂Yi
=





m1m2/n if Xi = ese

T

t

0 otherwise

Thus,

∂M̂jk(λ)

∂Yi
=

m1m2

n

〈

Xi,
∂M̂jk(λ)

∂Z

〉

.

Then
∂Ŷi

∂Yi

=

〈
Xi,

∂M̂(λ)

∂Yi

〉
=

m1m2

n

∂〈Xi, M̂(λ)〉
∂〈Xi, Z〉

In particular, if Xi = ese
T

t , then from the proof of Theorem 1,

∂Ŷi

∂Yi

=
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,

which implies the desired claim.
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