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Summary. With the prevalence of gene expression studies and the relatively low reproducibility caused by insufficient
sample sizes, it is natural to consider joint analysis that could combine data from different experiments effectively to achieve
improved accuracy. We present in this article a model-based approach for better identification of differentially expressed
genes by incorporating data from different studies. The model can accommodate in a seamless fashion a wide range of
studies including those performed at different platforms by fitting each data with different set of parameters, and/or under
different but overlapping biological conditions. Model-based inferences can be done in an empirical Bayes’ fashion. Because
of the information sharing among studies, the joint analysis dramatically improves inferences based on individual analysis.
Simulation studies and real data examples are presented to demonstrate the effectiveness of the proposed approach under a
variety of complications that often arise in practice.
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1. Introduction
Microarray technology has presented unprecedented oppor-
tunities in genomic studies of complex diseases. It allows re-
searchers to simultaneously monitor thousands of transcripts
and discover novel biomarkers and genes. Despite their suc-
cesses, these studies are often hampered by their relatively low
reproducibility. This deficiency is often attributed to the high
variability of gene expression measurements. Sources of distor-
tion and noise are involved in almost every step along the pro-
cess of taking gene expression measurements. It has long been
recognized (e.g., Lee et al., 2000; Mukherjee et al., 2003) that
such a problem could be alleviated through increased sample
size. However, experiments with limited sample sizes remain
common due to economic considerations. The recent explo-
sion of popularity of high-throughput gene expression studies
offers a more cost-effective alternative to this problem. With
studies of the same diseases carried out independently by dif-
ferent research groups, it is natural to consider efficient ways
of combining these data and jointly analyzing them. Through
information sharing across studies, the accuracy of inferences
could be greatly improved.

Because of its great potential, joint analysis of multiple ex-
periments has attracted much attention in recent years. See,
for example, Choi and Ghosh (2008) for a recent review. It
is most commonly done through cross-experiment data nor-
malization and transformation, which aims at translating and
normalizing measurements from different sources on a com-
mon scale to allow for integration. In particular, Jiang et al.
(2004) present a gene shaving method based on random forest
(Breiman, 2001) and Fisher’s linear discrimination analysis.

Warnat, Eils, and Brors (2005) and Shabalin et al. (2008)
also discuss different ways of integrating data through cross-
experiment transformation. In general, however, it is difficult
to integrate data without information loss and this would
heavily bias each study. For example, van’t Veer et al. (2002)
and Wang et al. (2005) ended up with different predictive
gene subsets with only three genes in common and there is
no clear guidelines as to how it can be performed efficiently.
Alternatively, one can also combine individual analysis results
summarized by t-statistic, p-value, scored gene list, and so on
(e.g., Rhodes et al., 2002; Choi et al., 2003; Ghosh et al., 2003;
Parmigiani et al., 2004; Shen, Ghosh, and Chinnaiyan, 2004;
Pyne, Futcher, and Skiena, 2006; Garrett-Mayer et al., 2007).
In particular, Choi et al. (2003) propose to combine the effect
size of genes from each study and conduct a permutation test
to determine the significance level. Rhodes et al. (2002) and
Pyne et al. (2006) consider ways of combining p-values of each
study. Due to the small sample size of each study, the sum-
mary statistics obtained inevitably have high variations and
subsequently these methods are subject to loss of efficiency in
information sharing. This happens such as the studies of van’t
Veer et al. (2002) and Wang et al. (2005) mentioned above. It
is also demonstrated by Mah et al. (2004) that detected genes
on different platforms could have poor overlap. See Hong and
Breitling (2008) for a comparison of methods and Rhodes
et al. (2004), Parmigiani et al. (2004), and Scharpf et al.
(2009) for other approaches.

There are also several major practical hurdles to joint anal-
ysis. In particular, there is no general consensus on how gene
expression experiments should be conducted. As a result, the
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choice of sample cohorts (e.g., age, ethnicity, and phase of dis-
ease), experiment platforms (e.g., cDNA or oligonucleotide),
and processing facilities may all be different, and the scale of
observations may not be comparable. These variations among
experiments prohibit us from treating them as if they were
simple replicates from a single study. In particular, a recent
study in Kuo et al. (2002) compared Affymetrix and spot-
ted cDNA and it was claimed that the correlation between
the measurements from the two platforms was fairly low so
it was unlikely that the two types of data could be trans-
formed or normalized into a common standardized index. In
practice, integrating multiple studies can be further compli-
cated by missing data and sometimes, mismatch in biological
conditions.

Consider, for illustration purpose, the study of prostate
cancer, the most diagnosed cancer in men. There are a host
of gene expression studies of prostate cancer. To motivate
our work, microarray data were collected from four pub-
licly available prostate cancer gene expression datasets gen-
erated independently by Dhanasekaran et al. (2001), Luo
et al. (2001), Magee et al. (2001), and Welsh et al. (2001),
respectively. One of the goals common to all four studies is
in determining which genes are differentially expressed be-
tween locally advanced prostate cancer and benign tissue.
The experiments, however, are done with different technolo-
gies. Dhanasekaran et al. (2001) and Luo et al. (2001) studies
used spotted cDNA microarrays; whereas the other two ex-
periments utilized Affymetrix GeneChips. In particular, the
experiment from Magee et al. (2001) was conducted using
HU6800 chip and Welsh et al. (2001) was done on U95A chip.
Furthermore, these studies were performed on different but
overlapping sets of genes. To overcome this problem, existing
methods (see, e.g., Rhodes et al., 2002; Ghosh et al., 2003;
Warnat et al., 2005) focus only on genes that are present
in all studies. As we shall see in Section 4, such practice
may result in more than 75% of the genes being discarded
in some studies. Moreover, the remaining 25% of genes con-
tain missing data, i.e., not all genes have complete observa-
tions from the samples tested. If the methods applied cannot
allow missing data, this will reduce to only one gene (sat-
isfying both intersection and complete data). This is clearly
not an effective way of using the data. Another complica-
tion in combining the four experiments is the mismatch in
biological conditions. Although all four studies include com-
parisons between locally advanced prostate cancer and be-
nign prostate, Dhanasekaran et al. (2001) and Magee et al.
(2001) also included a third biological condition: metastatic
prostate cancer. Earlier attempts to combine these studies
have either chosen to discard data collected from this condi-
tion or combine it with locally advanced cancer to form a new
hypothesis.

These aforementioned limitations prompt us to develop
a new technique. In this article, we propose a model-
based method to integrate information from multiple exper-
iments for the purpose of identifying differentially expressed
genes among multiple biological conditions. Following Newton
et al. (2001) and Kendziorski et al. (2003), we model the data
from each individual study by a parametric empirical Bayes’
model to share information across transcripts. These separate

models are flexible to be applicable to different platforms and
multiple biological conditions. Latent variables are then in-
troduced to model the pattern of expression for a particu-
lar transcript and to share information across experiments.
The modeling framework is fairly flexible and can handle a
variety of practical issues including those mentioned above
with ease.

The rest of this article is organized as follows. In the next
section, we introduce the general modeling framework and
show how statistical inferences can be efficiently conducted.
Section 3 presents simulation studies to demonstrate the mer-
its and versatility of the proposed method. We revisit the
prostate cancer examples in Section 4 as well as another real
data example before concluding with some remarks and dis-
cussions in Section 5.

2. Model and Inference
2.1 Parametric Empirical Bayes’ Model for a Single Study
We begin with modeling gene expression data from a single
study. Various methods have been developed for such pur-
poses. Interested readers are referred to Parmigiani et al.
(2003), Allison et al. (2006), and Do, Müller, and Vannucci
(2006) for recent surveys. Here we adopt a parametric empir-
ical Bayes’ approach introduced by Newton et al. (2001) and
Kendziorski et al. (2003).

Let xgcr be the gene expression measurement taken from the
rth replicate under condition c for gene g. Take the data from
Dhanasekaran et al. (2001) as an example, three biological
conditions (c = 1, 2, or 3), namely benign prostate, localized
prostate cancer, or metastatic prostate cancer; 4839 genes
(g = 1, 2 , . . . , 4839) are considered. A total of 14 repli-
cates (r = 1, 2 , . . . , 14) are obtained for benign prostate;
14 for localized; and 20 for metastatic prostate cancer,
respectively.

To fix ideas, we focus on two conditions (c = 1 or 2) in what
follows. Sensible expression patterns concerning the compar-
ison between two conditions for a particular gene include
equivalent expression and differential expression. This can be
formulated through latent variables μgc representing a popula-
tion level of expression for gene g under biological condition c.
Equivalent expression means that μg1 = μg2 whereas differen-
tial expression indicates μg1 �= μg2. Our goal is therefore to in-
fer such expression patterns from xg 1· = (xg 11, xg 12, . . . , xg 1n 1 )
and xg 2· = (xg 21, xg 22, . . . , xg 2n 2 ), where n1 and n2 are the num-
ber of replicates obtained under each condition, respectively.
It is not hard to see that the marginal distribution of (xg1·,
xg2·)

f (xg 1·,xg 2·) = (1 − π)f (xg 1·,xg 2· |EE) + πf (xg 1·,xg 2· |DE),

(1)

where we use f to denote a generic density function, marginal,
or conditional; and π = P(DE). The two conditional dis-
tributions can be modeled through a two-level hierarchical
model:
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f (xg 1·,xg 2· |EE) =
∫ {

n 1∏
k=1

f (xg 1k |μg 1 = μ; θ)

}

×
{

n 2∏
k=1

f (xg 2k |μg 2 = μ; θ)

}
f (μ; τ ) dμ;

(2)

f (xg 1·,xg 2· |DE) =
∫ {

n 1∏
k=1

f (xg 1k |μg 1; θ)

}{
n 2∏

k=1

f (xg 2k |μg 2; θ)

}

× f (μg 1; τ )f (μg 2; τ ) dμg 1 dμg 2,
(3)

where θ and τ are parameters shared by all genes and deter-
mined by the experiment characteristics.

Two particular choices of f(· |μ; θ) and f(·; τ ) are advocated,
often referred to as the lognormal–normal (LNN) model and
gamma–gamma (GG) model. In the LNN model, f(· |μ; θ) is
a lognormal distribution, i.e.,

f (x |μ; θ) =
1√
2πθ

exp

{
− (ln x − μ)2

2θ

}
; (4)

whereas f(·; τ ) is also a normal distribution with τ = (τ 1, τ 2)′

represents the mean and variance parameter, respectively. Al-
ternatively for the GG model, f(· |μ; θ) is a gamma distribu-
tion, i.e.,

f (x |μ; θ) =
λθ

Γ(θ)
xθ−1 exp (−λx) , (5)

where the shape parameter is given by λ = θ/μ. f(·; τ ) is
chosen such that λ also follows a gamma distribution

f (λ; τ1, τ2) =
τ2

τ 1

Γ(τ1)
λτ 1−1

g exp (−τ2λ) . (6)

Closed form expression are available for f(xg1·, xg2· |μg1 = μg2)
and f(xg1·, xg2· |μg1 �= μg2) with both LNN and GG models.
The readers are referred to Kendziorski et al. (2003) for fur-
ther details.

2.2 Joint Modeling with Multiple Studies
We now consider multiple studies. For brevity, we shall first
assume that in each study, the same set of genes (g = 1,
2 , . . . , G) and the same set of conditions (c = 1, 2 , . . . , C) are
considered. This assumption will later be relaxed. With slight
abuse of notation, let Xs := {xsgcr : g = 1 , . . . , G; c = 1 , . . . , C;
r = 1 , . . . , nsc} be the gene expression measurements obtained
in the sth study (s = 1, 2 , . . . , S), where nsc is the number
of replicates under condition c in the study. Clearly Xs can
be modeled using the parametric empirical Bayes’ model dis-
cussed before. The hierarchical modeling can be summarized
by the diagram below:

expression pattern (DE or EE)

↓
latent expression level {μsg c}

↓
expression measurements {xsg cr }

The latent expression levels are determined stochastically
by the expression pattern through distribution f(μ; τ ) whereas
the expression measurement by the latent levels through con-
ditional distribution f(x |μ; θ). Parameters θ and τ reflect the
stochastic variation within a study and therefore are allowed
to be experiment dependent. This is, in particular, necessary
when handling studies from different platforms due to their
difference in scales. To this end, we shall write θs and τ s in
what follows to emphasize the dependence between these pa-
rameters and the study. On the other hand, given that the
same biological process is studied, a gene’s differential ex-
pression pattern should remain the same across all studies.

Let x·gc· = {xsgcr : s = 1 , . . . , S; r = 1 , . . . , nsc} be the collec-
tion of all expression measurements obtained from all studies
on gene g and condition c. Then the conditional distribution
of these measurements under the two differential expression
patterns can be given by

f (x·g 1·,x·g 2· |DE) =
S∏

s=1

f (xsg 1·,xsg 2· |DE) ; (7)

f (x·g 1·,x·g 2· |EE) =
S∏

s=1

f (xsg 1·,xsg 2· |EE) , (8)

where the experiment specific conditional distributions are
given in the previous subsection. In other words, for a ran-
domly picked gene, its marginal distribution will follow a two-
component mixture distribution:

f (x·g ··) = π

S∏
s=1

f (xsg 1·,xsg 2· |DE)

+ (1 − π)
S∏

s=1

f (xsg 1·,xsg 2· |EE) , (9)

where π is the probability that a randomly picked gene is
differentially expressed. Note that from (9), data collected
from different studies are not independent under our joint
modeling framework because

f (x·g ··) �=
S∏

s=1

f (xsg ··) ,

where f(xsg ··) is the marginal density of the data collected from
Study s as given by (1).

2.3 Empirical Bayes’ Inference
If the experiment specific parameters θs and τ s , s = 1 , . . . , S
are known, inference on a gene’s expression pattern can be
conducted through their posterior probabilities, i.e.,

P (DE |x·g 1·,x·g 2·)

=
πf (x·g 1·,x·g 2· |DE)

πf (x·g 1·,x·g 2· |DE) + (1 − π)f (x·g 1·,x·g 2· |EE)
,

(10)

where π = P(DE) is the probability that a randomly selected
gene is differentially expressed. According to Bayes’ rule,
we classify a gene as differentially expressed if the posterior
probability of differential expression is greater than 50% and
equivalent expression otherwise. These posterior probabilities
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provide a natural means of inferring differential expression by
integrating multiple studies.

Following Efron et al. (2001) and Newton et al. (2001),
parameters {θs , τ s : s = 1 , . . . , S} as well as π can be estimated
in an empirical Bayes’ fashion. Note that these parameters are
shared by all genes. The log-likelihood for all data can then
be given by

� (x··1·,x··2·) =
G∑

g =1

� (x·g 1·,x·g 2·) ,

where

� (x·g 1·,x·g 2·) = log {(1 − π)f (x·g 1·,x·g 2· |EE)

+ πf (x·g 1·,x·g 2· |DE)} .

The maximum likelihood estimator of all parameters θs and
τ s , s = 1 , . . . , S and π can be efficiently computed us-
ing expectation-maximization (EM) algorithm by treating
a gene’s differential expression pattern (i.e., EE or DE) as
missing.

Denote by zg gene g’s differential expression pattern. Then
the log complete likelihood of parameter η := {π, θs , τ s : 1 ≤
s ≤ S} can be given as

�(η;x····, z·)

=

G∑
g =1

[
1(zg = DE)

{
log π+

S∑
s =1

log f (xs g ·· |DE; θs , τs )

}

+ 1(zg = EE)

{
log(1 − π) +

S∑
s =1

log f (xs g ·· |EE; θs , τs )

}]
.

Let {π[t ], θ
[t ]
s , τ

[t ]
s : 1 ≤ s ≤ S} be the parameter estimates ob-

tained from the tth iteration of the EM algorithm. Then in
the (t + 1)th iteration, we compute first the expectation of
log complete likelihood with respect to zgs given x and these
parameter estimates:

Q(η) = EZ g :1≤g ≤G �(θ;x····, Z·)

=

G∑
g =1

[
Tg

{
log π +

S∑
s =1

log f (xs g ·· |DE; θs , τs )

}

+(1 − Tg )

{
log(1 − π) +

S∑
s =1

log f (xs g ·· |EE; θs , τs )

}]
,

where

Tg =

π[t ]
S∏

s=1

f
(
xsg ··,xsg ·· |DE; θ[t ]

s , τ [t ]
s

)

π[t ]

S∏
s=1

f
(
xsg ··,xsg ·· |DE; θ[t ]

s , τ [t ]
s

)
+ (1 − π[t ])

S∏
s=1

f
(
xsg ··,xsg ·· |EE; θ[t ]

s , τ [t ]
s

) .

In the second step, also called the M-step, we maximize Q
with respect to θ to get an updated parameter estimation. In
particular, it is clear that

π[t+1] =
1
G

G∑
g =1

Tg ,

and (θs , τ s) can be updated by the maxmizer of

Qs (θs , τs ) :=
G∑

g =1

{Tg log f (xsg ·· |DE; θs , τs )

+ (1 − Tg ) log f (xsg ·· |EE; θs , τs )}.
In principle, a prior can also be assigned to these param-

eters and fully Bayesian inference can be made for the hier-
archical model. We opt for the empirical Bayes’ framework
to avoid sophisticated and sometimes subjective prior elicita-
tion.

2.4 Missing Data
As mentioned in Section 1, one of the most common diffi-
culties associated with joint analysis is missing data. Due to
limitations of technology and quality control, the set of genes
measured in one dataset may not be the same as another
dataset. In practice, only those genes measured across all ex-
periments are included in the joint analysis. This can be a sig-
nificant loss of information as we shall see in the prostate can-
cer data in Section 4, where 30% to 75% of the data from each
experiment are wasted if this approach is taken. In contrast,
this problem can be conveniently addressed within our frame-
work. Rather than considering only genes that are present
in all experiments, we include all genes that appears in at
least one experiment. If a particular gene is not present in
an experiment, we treat it as missing data. More specifically,
let Mg (⊂ {1, . . . , S}) be the collection of study indices where
gene g is missing. Then the log complete likelihood becomes

�(η;x····, z·)

=

G∑
g =1

⎡
⎣1(zg = DE)

⎧⎨
⎩log π +

∑
s /∈Mg

log f (xs g ·· |DE; θs , τs )

⎫⎬
⎭

+ 1(zg = EE)

⎧⎨
⎩log(1 − π) +

∑
s /∈Mg

log f (xs g ·· |EE; θs , τs )

⎫⎬
⎭

⎤
⎦.

The EM algorithm proceeds in exactly the same fashion as
before except that now the index s for the products and sum-
mations over studies now runs over s �= Mg instead of 1 ≤ s
≤ S for gene G.

2.5 Multiple Conditions and Condition Mismatch
The proposed framework for joint analysis can be easily
extended to handle more than two conditions. Consider, for

example, the data taken from Dhanasekaran et al. (2001),
where three biological conditions are investigated. For each
condition, we introduce a latent gene expression level, μsgc ,
c = 1, 2 or 3. When comparing these conditions for gene g,
we have the following equality or inequality conditions that
may hold:
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Pattern 1 : μsg 1 = μsg 2 = μsg 3,

Pattern 2 : μsg 1 = μsg 2 �= μsg 3,

Pattern 3 : μsg 1 �= μsg 2 = μsg 3,

Pattern 4 : μsg 1 = μsg 3 �= μsg 2,

Pattern 5 : μsg 1 �= μsg 2 �= μsg 3.

(11)

Similar to before, these latent expression level can be modeled
by an experiment-specific distribution f(μ; τ s), where under
pattern 1, all three latent expression levels are obtained as
a single sample from f(·; τ s); under pattern 2, μsg1 = μsg2

and μsg3 are two independent samples from f(·; τ s) and so
on. Similar formula as before can therefore be derived for
f(x·gc· |Pattern k):

f (x·g 1·,x·g 2·,x·g 3· |Pattern k)

=
S∏

s=1

f (xsg 1·,xsg 2·,x·g 3· |Pattern k) ,

where the conditional densities can be computed and the in-
ferences can also be conducted in a similar fashion as before.

A practical challenge that often arises with multiple biolog-
ical conditions is the possible condition mismatch. Different
experiments are designed to address and compare different
but overlapping conditions. The overlap in biological condi-
tions makes information sharing possible but the difference in
biological conditions makes the information sharing difficult.
For example, among the four prostate cancer studies we dis-
cussed earlier in the introduction, Dhanasekaran et al. (2001)
considered three conditions including benign prostate, local-
ized prostate cancer, and metastatic prostate cancer; whereas
Luo et al. (2001) only investigated the first two conditions. A
common practice is to ignore data obtained under the third
condition from Dhanasekaran et al. (2001) and compare the
first condition through a joint analysis. Although a convenient
and sensible solution, it is clearly not the most efficient way of
using data. In general, following this practice, when including
multiple studies, we can only use those conditions that are
present in all studies. Furthermore, as we shall demonstrate
by simulations in the next section, doing so may result in loss
of efficiency as well.

The problem of condition mismatch can also be handled
conveniently within our proposed framework of joint analysis.
For illustration purposes, we assume the one study has three
conditions but the other one missed the third condition. With
the third condition missing, it is evident that the expression
measurements obtained from the second study have the fol-
lowing conditional distributions:

f (x2g 1·,x2g 1· |Pattern k) =

{
f (x2g 1·,x2g 1· |EE) k = 1, 2

f (x2g 1·,x2g 1· |DE) k = 3, 4, 5
,

where f(x2g1·, x2g1· |EE) and f(x2g1·, x2g1· |DE) are defined by
(2) and (3), respectively. The posterior probability of pattern
k can therefore be evaluated as

P (Pattern k |x·g ··)

=
πk f (x1g ·· |Pattern k) f (x2g ·· |Pattern k)
5∑

j=1

πj f (x1g ·· |Pattern j) f (x2g ·· |Pattern j)

.

Parameter estimation can also be carried out in the same
fashion as before.

3. Simulation Studies
3.1 Benefit of Joint Analysis
To demonstrate the effectiveness of the proposed method, we
first conducted several sets of simulation studies. To demon-
strate the benefit of joint analysis, we begin with a simple set-
ting: two biological conditions, and no missing data. A total of
G = 5000 genes and S = 4 experiments were simulated. For
each experiment, nsc = 3 replicates were simulated under each
condition. The gene expression data were simulated from the
LNN or GG model. Due to their similarity in performance,
we report here only the results from LNN models. The sim-
ulation settings for each experiment are similar to those pre-
viously employed by Kendziorski et al. (2003) to mimic the
real gene expression data and represent different experimental
variations in practice. Denote η = (τ 1, τ 2, θ) the parameters
associated with the LNN model. The parameters of the four
experiments are set at η1 = (2, 0.52, 0.152), η2 = (5, 0.62,
0.252), η3 = (15, 12, 0.352), η4 = (30, 1.22, 0.452), respec-
tively. These parameters are selected to mimic some of the
main characteristics of the real data example to be presented
later. Note that τ 2 reflects the variation of the latent mean
of the gene expression levels such that larger values of τ 2 cor-
respond to better separation between the two conditions for
differentially expressed genes. In particular, the four studies
used in this simulation set have average effect sizes of 1.62,
1.8, 2.64, and 3.23, respectively, where the average effect size
is defined as the median of the effect sizes of differential ex-
pressions. A randomly chosen π = 10% genes are set to be
differentially expressed. Both the joint and separate analyses
were conducted. In the separate analysis, each experiment is
analyzed separately using the empirical Bayes’ approach of
Kendziorski et al. (2003), referred to as EBarrays. We also
apply the proposed approach for joint analysis. The operat-
ing characteristics of both analyses based upon 100 runs are
summarized in Table 1.

We observe that joint analysis can significantly improve the
separate analysis. Among the four experiments, experiment 4
has the strongest signal to noise ratio, which is also reflected
by its superior performance to the other three experiments
when analyzed separately. A possible misconception is that it
is fruitless to combine such a good-quality experiment with
others with relatively poor quality. Our result clearly suggests
otherwise. It indicates that joint analysis can greatly improve
even the experiment with the best quality.

To gain further insight of the merits of the proposed
method, we now compare it with several alternative strategies
of joint analysis. The first method is to naively combine the
separate analysis of the four experiments by using the largest
posterior probability of differential expression. The other two
methods are taken from Choi et al. (2003) and Choi et al.
(2007), respectively. Unlike the proposed method, these alter-
natives no longer connect with the posterior probability of dif-
ferential expression and therefore it is unclear what a Bayes’
rule means in these context. Nonetheless, each of these meth-
ods does provide a score, similar to the posterior probabilities,
measuring the strength of evidence for differential expression.
It is therefore of interest to know to what extent these scores
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Table 1
Operating characteristics of joint analysis and separate analysis. The results are summarized from 100 runs and all units are in

percentages. The numbers in parentheses are the standard errors.

Separate analysis

Joint analysis Experiment 1 Experiment 2 Experiment 3 Experiment 4

Sensitivity 99.34 53.16 58.39 78.87 91.9
(0.037) (0.245) (0.258) (0.185) (0.109)

Specificity 99.99 99.48 99.49 99.78 99.92
(0.001) (0.013) (0.012) (0.007) (0.004)

FDR 0.1 8.06 7.24 2.44 0.77
(0.013) (0.173) (0.16) (0.073) (0.041)

can serve as proxies to identify differential expressed genes. A
natural measure is the so-called area under the receiver op-
erating characteristic curves (AUC). AUC, by definition, is
necessarily between 0 and 1. The closer the AUC score is to
one, the more effective the score is. For the proposed method
and its three alternatives, the AUC, summarized from 100
runs are 99.66% (0.01%), 99.47% (0.02%), 60.98% (0.13%),
and 83.41% (0.12%), respectively. The numbers in parenthe-
ses are the standard errors. Not surprisingly, the proposed
method outperforms the alternatives because our simulation
setting matches perfectly with the model settings.

To evaluate the robustness of the proposed method, we
consider a more complex simulation set-up where the experi-
mental data were generated as follows:

Experiment 1: The latent gene expression levels were sim-
ulated from an inverse gamma distribution with shape
parameter 2 and location parameter 10. Then the gene ex-
pression measurements were simulated from a gamma dis-
tribution with the latent means and shape parameter 20.

Experiment 2: The latent means were simulated so that A :=
log ((μ2g1μ2g2)1/2) follows a uniform distribution between 5
and 11; and M = log (μ2g1/μ2g2) follows a uniform distri-
bution between −1 and 1 for differentially expressed genes
and 0 for equivalently expressed genes. Then the observed
gene expression measurements were simulated from gamma
distribution with shape parameter 15.

Experiment 3: Similar to experiment 2 except that now M
follows a uniform distribution between −2 and 2 and the
expression measurements were simulated with shape pa-
rameter 25.

Experiment 4: Data were simulated from a LNN model with
parameter θ = 0.32 and τ = (2.3, 1.392).

The other settings are similar as before. The effect sizes of
the four studies are 2.09, 1.65, 2.71, and 7.69, respectively.
To gain further insights, we also consider three different per-
centages of differential expression: π = 5%, 10%, and 20%.
The sensitivity of joint four analysis ranges from 92% to 94%
and individual analysis has sensitivity from 22% to 76%. It is
evident that the joint analysis significantly outperforms sep-
arate analysis. We again compare the proposed method with
the alternative methods for joint analysis in terms of AUC.
Results are reported in Table 2. Similar to before, the pro-
posed method enjoys superior performance.

Table 2
AUC comparison of the proposed method (Proposed joint EB),

and identifying differential expression based on largest
posterior probability of separate analysis (Combined separate
EB) and the methods of Choi et al. (2003, 2007). Results are
based on 100 runs. All units are in percentages. The numbers

in parentheses are standard errors.

π = 5% π = 10% π = 20%

Proposed 99.63 (0.02) 99.61 (0.02) 99.59 (0.01)
joint EB

Combined 98.56 (0.04) 98.48 (0.03) 98.49 (0.02)
separate EB

Choi et al. (2003) 61.42 (0.19) 61.11 (0.14) 60.92 (0.12)
Choi et al. (2007) 57.94 (0.24) 58.86 (0.16) 60.15 (0.13)

3.2 Missing Data
We now consider the problem of missing data. To this end,
we consider the following simulation scheme with a total of
G = 5000 genes at two conditions. The proportion of DE genes
is 5%. Similar to before, three replicates were simulated at ev-
ery condition. Because of the robustness of the method, we
focus here only on the LNN model with the parameters given
before. The difference is now each experiment only involves a
subset of the genes. In particular, experiment 1 includes 4500
randomly selected genes; and each of the remaining three ex-
periments has 80% overlap with the first experiment and the
set of overlapping genes is drawn randomly. In addition, ex-
periments 2 and 3 each have 250 new genes randomly selected
from the 500 genes not included in experiment 1. Experiment
4 covers all 500 genes not available in experiment 1. As a
result, experiments 2 and 3 each have 3850 genes whereas
experiment 4 comprises 4100 genes.

Table 3 summarizes the results from 100 simulation runs.
It is clear that joint analysis dramatically improves the sensi-
tivity with lower false discovery rate.

The methods of Choi et al. (2003, 2007) focus only on genes
that are present in all studies. In the current setting, this re-
sults in discarding about half of the genes, which is clearly
undesirable. Alternatively, the strategy of taking the largest
posterior probability from separate analysis can still be ap-
plied, which yields an AUC of 93.07% (0.12%) based on 100
runs. This is to be combined with the proposed joint analysis
which results in an AUC of 98.87% (0.04%).
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Table 3
Performance comparison between joint and separate analysis when there are missing data. All units are in percentages. The

numbers in parentheses are standard errors.

Separate analysis

Joint analysis Experiment 1 Experiment 2 Experiment 3 Experiment 4

Sensitivity 70.33 32.16 32.13 32.44 32.75
(0.351) (0.324) (0.372) (0.417) (0.349)

Specificity 99.73 99.75 99.74 99.75 99.75
(0.007) (0.009) (0.011) (0.01) (0.009)

FDR 6.78 12.86 12.96 12.39 12.62
(0.157) (0.365) (0.462) (0.422) (0.419)

3.3 Condition Mismatch
Our final simulation study is designed to illustrate the effect
of condition mismatch. We adopt a similar simulation set as
before, with 5000 genes and four experiments. There are a to-
tal of three biological conditions but one condition is missing
at each of the first three experiments. Specifically, the first ex-
periment has three replicates under the first condition, three
under the second condition, and none under the third condi-
tion. The second experiment has three replicates under each
of the first and third conditions, but none under the second
condition. The third experiment features three replicates un-
der each of the second and third conditions, and none under
the first condition. The last experiment has three replicates
under each of the three conditions. As we pointed out earlier,
such condition mismatch is a direct consequence of different
biological hypothesis of interest. In experiment 1, our interest
is in comparing the first two conditions. The goal is therefore
to determine genes that are differentially expressed between
these two conditions. Similarly, in experiment 2, we want to
identify genes that are differentially expressed between the
first and third conditions; and experiment 3, between the sec-
ond and third conditions. In the last experiment, there are five
possible patterns as we discussed before, all patterns except
for pattern 1 can be identified as differential expression.

Given the different hypotheses, the natural question is
whether or not a joint analysis of all four experiments can
be beneficial. For example, for the “investigators” of the first
experiment, combining with data on the first two conditions
from the last experiment might be helpful, but it is not im-
mediately clearly whether or not it helps if we include all four
experiments. To illustrate the merits of the proposed joint
analysis of all experiments, we apply three different strategies
here: separate analysis of the first experiment; joint analy-
sis of the first experiment and the last experiment with data
from the third condition discarded; and the proposed method
of joint analysis of all four experiments with missing condi-
tions handled as missing data as we discussed before. Table 4
summarizes the operating characteristics of all three meth-
ods averaged over 100 runs. It is clear that both joint anal-
yses improve upon the separate analysis with the proposed
method outperforms the joint analysis with only two exper-
iments. Similar comparisons were conducted from the angles
of the “investigators” of experiments 2 and 3 and the results
remain similar. Now consider the last experiment where the
goal is identify differentially expressed genes among all three

conditions. We compare the joint analysis that uses data from
all four experiments and the individual analysis that only uses
data from the last experiment. The results are also given in
Table 4, which suggests that joint analysis gives superior per-
formance. Note that existing methods for joint analysis are
not designed to handle condition mismatch and are therefore
not included in the comparison.

4. Real Examples
To further illustrate the merits of the proposed method, we
now return to the prostate cancer examples discussed be-
fore. As mentioned earlier, four public microarray datasets
generated independently by Dhanasekaran et al. (2001), Luo
et al. (2001), Magee et al. (2001), and Welsh et al. (2001)
were collected to determine genes that are differentially ex-
pressed between benign prostate and cancer tumors. As stated
before, the data were generated with different platforms:
Dhanasekaran et al. (2001) and Luo et al. (2001) employed
spotted cDNA microarrays whereas the other two experiments
utilized Affymetrix technology. All four studies include com-
parisons between locally advanced prostate cancer and benign
prostate. Dhanasekaran et al. (2001) and Magee et al. (2001)
also included a third biological condition: metastatic prostate
cancer. A total of 13,474 unique genes are present in at least
one of the experiments. There is, however, a severe mismatch
in the set of genes measured among the four experiments with
less than 10% (1322) of the genes presented in all four experi-
ments. Table 5 summarizes some basic information of the data
and gives the number of genes overlapped between the four
experiments.

We ran the joint analysis both with the LNN and GG model
and the results are similar. Therefore, we focus here on the
results from the LNN model. Similar to the simulation study
conducted before, there are two primary hypotheses concern-
ing differential expression. The goal is to identify genes that
are differentially expressed between either of the two types of
cancer tumors and benign prostate. In other words, among
the five expression patterns given in (11), we are interested
in identifying genes in patterns 2, 3, 4, and 5 as opposed to
pattern 1. Hereafter, we shall refer to genes with pattern 1
equivalently expressed genes; and the genes with other pat-
terns differentially expressed genes. Similar to earlier studies
(see, e.g., Choi et al., 2003), a large number of genes demon-
strate significant difference between prostate cancer and be-
nign prostate. To fix ideas, we focus on the top one hundred
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Table 4
Performance comparison of separate analysis and joint analysis with condition mismatch. All units are in percentages.

DE in conditions 1 and 2 DE in conditions 1 and 3

Sensitivity Specificity FDR Sensitivity Specificity FDR

Exp 1 69.87 99.62 2.97 Exp 2 85.92 99.85 0.99
(0.188) (0.011) (0.08) (0.136) (0.006) (0.037)

Exp 1 and 4 86.37 99.69 2.02 Exp 2 and 4 93.32 99.87 0.79
(0.135) (0.009) (0.056) (0.093) (0.005) (0.033)

All exp 94.74 99.64 2.12 All exp 96.29 99.83 0.98
(0.086) (0.008) (0.048) (0.067) (0.006) (0.037)

DE in Conditions 2 and 3 DE among three conditions

Sensitivity Specificity FDR Sensitivity Specificity FDR

Exp 3 88.01 99.88 0.79 Exp 4 64.22 99.31 4.11
(0.106) (0.005) (0.03) (0.173) (0.015) (0.089)

Exp 3 and 4 94.3 99.89 0.67
(0.087) (0.004) (0.026)

All exp 96.87 99.84 0.9 All exp 98.44 99.95 0.21
(0.063) (0.006) (0.034) (0.04) (0.003) (0.014)

Table 5
Basic information of the four prostate cancer datasets. D—data from Dhanasekaran et al. (2001); L—data from Luo et al.

(2001); M—data from Magee et al. (2001); and W—data from Welsh et al. (2001).

Number of replicates Pairwise overlap genes

Array type Benign Local PCA Metastatic PCA D L M W

D cDNA 14 14 20 4839 2642 1596 2126
L cDNA 9 16 0 6109 2895 3574
M Affy 4 8 3 5228 4963
W Affy 9 23 0 9071

genes identified to follow patterns 2, 3, 4, or 5 by joint anal-
ysis. All of these genes have posterior probabilities of differ-
ential expression greater than 99%. Among these genes, 31
genes are not identified by any studies; 69 are identified to
be differentially expression with posterior probability at least
95% in at least one of the fours studies when analyzing the
four datasets separately; 34 in at least two studies; 7 in three
studies; and 0 in all four studies. For the top 100 genes found
by joint analysis, the Venn diagram in Figure 1 shows the
availability in each of the individual analysis.

Joint analysis reveals significant genes agreed across studies
more than would be expected by chance. Also, among the
genes that are identified by joint analysis but appear not to
be differentially expressed in individual analysis of each of
the four studies is Hs.296638, a known prostate differentiation
factor.

A second example we consider here is the four liver can-
cer datasets from Choi et al. (2003). All data were generated
at two biological conditions: normal and tumor tissues. The
goal is to identify genes differentially expressed in normal and
tumor tissues. The datasets are of relatively poor quality when
compared with the prostate datasets and have been used ear-
lier in Choi et al. (2003) primarily to demonstrate the neces-
sity of a joint analysis. Table 6 gives some basic information
of the data and the number of genes that overlapped between
the four experiments.

D
L M

W

34

1 0

0

18

1

8

0

0

0

3

40

0

0

Figure 1. Venn diagram of differentially expressed genes for
the four prostate cancer datasets: 100 genes are selected by
joint analysis. Among them, 69 were identified by separate
analysis on at least one dataset. This figure shows how many
are identified by each one of the four datasets.

Similarly, the analysis is based on the LNN model. In joint
analysis, the top 18 genes have posterior probability of differ-
ential equation greater than 90%. We evaluate the information
of these genes and exclude genes of unknown functions. Then
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Table 6
Basic information of the four liver cancer datasets

Number of
replicates Pairwise overlap genes

Normal Tumor D L M W

D1 16 16 10,314 10,289 10,194 9,921
D2 23 23 10,311 10,202 9,906
D3 29 5 10,216 9,815
D4 12 9 9,931

Table 7
In liver cancer, list of 10 genes identified as differential

expressed in joint analysis but identified by at most one study.
The first gene failed to be selected by all studies.

Tissue Name

21.2.D.1 TATA box binding protein(TBP), mRNA
15.2.F.4 AL564975 cDNA
15.2.H.9 IL3-CT0219-271099-022-C02 cDNA
16.1.C.4 KIAA0107 gene product(KIAA0107), mRNA
19.4.D.12 KIAA0304 gene product(KIAA0304), mRNA
2.2.D.2 Thioredoxin reductase 1(TXNRD1), mRNA
20.2.A.9 Triosephosphate isomerase 1(TPI1), mRNA
22.3.A.4 Ribosomal protein L13a(RPL13A), mRNA
23.3.A.4 CD24 antigen (small cell lung carcinoma

cluster 4 antigen) (CD24), mRNA
7.1.E.7 Hepatocyte growth factor regulated tyrosine

kinase substrate (HGS), mRNA

we get 10 genes. In particular, 9 out of 10 are identified by
only one study and 1 is not by any studies. Table 7 shows the
information of these genes.

5. Conclusions
With the explosion of popularity of microarray experiments,
it becomes a necessity to develop statistical methods that can
effectively integrate data from multiple studies. Joint analy-
sis of multiple experiments can alleviate the low sample size
and high variability problem that is often faced in individual
studies. In this article, we propose a model-based joint analy-
sis of gene expression data from multiple studies to determine
differentially expressed genes between multiple biological con-
ditions. The proposed method shares information both among
genes within one study and across studies without data trans-
formation. The method is flexible to handle various practical
complications such as missing data and condition mismatch.
Simulation studies and real data examples show that the ac-
curacy of statistical inferences can be drastically improved
when using the proposed approach to combine multiple stud-
ies. It was demonstrated that combining data from multiple
sources leads to increased sensitivity and specificity. Even in-
corporating those seemingly less optimal experiments could
prove beneficial.

The aim of the proposed approach is to extract differential
expression, to a certain degree, agreed upon by multiple stud-
ies. In addition to these identified genes, others that are not
consensus choices sometimes may also be of interest. Discor-
dance across studies is often observed in practice (see, e.g.,

Parmigiani et al., 2004). It may be attributed to faulty probe
annotation (see, e.g., Dai et al., 2005) or hidden phenotypi-
cal heterogeneity or subtypes. Understanding such causes of
discordance can also be of great importance.
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