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Summary. We introduce a general formulation for dimension reduction and coefficient esti-
mation in the multivariate linear model. We argue that many of the existing methods that are
commonly used in practice can be formulated in this framework and have various restrictions.
We continue to propose a new method that is more flexible and more generally applicable.
The method proposed can be formulated as a novel penalized least squares estimate. The
penalty that we employ is the coefficient matrix’s Ky Fan norm. Such a penalty encourages the
sparsity among singular values and at the same time gives shrinkage coefficient estimates and
thus conducts dimension reduction and coefficient estimation simultaneously in the multivariate
linear model.We also propose a generalized cross-validation type of criterion for the selection of
the tuning parameter in the penalized least squares. Simulations and an application in financial
econometrics demonstrate competitive performance of the new method. An extension to the
non-parametric factor model is also discussed.
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1. Introduction

Multivariate linear regressions are routinely used in chemometrics, econometrics, financial engi-
neering, psychometrics and many other areas of applications to model the predictive rela-
tionships of multiple related responses on a set of predictors. In general multivariate linear
regression, we have n observations on q responses y = .y1, . . . , yq/′ and p explanatory variables
x = .x1, . . . , xp/′, and

Y =XB+E .1/

where Y = .y1, . . . , yn/′ is an n × q matrix, X = .x1, . . . , xn/′ is an n × p matrix, B is a p × q

coefficient matrix, E= .e1, . . . , en/′ is the regression noise and the es are independently sampled
from N .0, Σ/. Throughout the paper, we centre each input variable so that there is no intercept
in equation (1) and also scale each input variable so that the observed standard deviation is 1.
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The standard approach to estimating the coefficient matrix B is by means of ordinary least
squares or maximum likelihood estimation methods (Anderson, 2003). The resulting estimates
are equivalent to regressing each response on the explanatory variables separately. Clearly such
estimates may perform suboptimally since they do not utilize the information that the responses
are related. It is also well known that this type of estimate performs poorly in the presence of
highly correlated explanatory variables or when p is relatively large.

A large number of methods have been proposed to overcome these problems. Most of these
methods are based on dimension reduction. A particularly attractive family of methods is lin-
ear factor regression in which the response Y is regressed against a small number of linearly
transformed predictors, which are often referred to as factors. These methods can be expressed
in the following way:

Y =FΩ+E, .2/

where F =XΓ, Γ is a p× r matrix for some r �min.p, q/ and Ω is an r ×q matrix. The columns
of F , Fj.j =1, . . . , r/, represent the so-called factors. Clearly equation (2) is an alternative repre-
sentation of equation (1) in that B=ΓΩ, and the dimension of the estimation problem reduces as
r decreases. Estimation in the linear factor regression most often proceeds in two steps: the fac-
tors, or equivalently Γ, are first estimated and then Ω is estimated by least squares for equation
(2). Many popular methods including canonical correlation (Hotelling, 1935, 1936), reduced
rank (Anderson, 1951; Izenman, 1975; Reinsel and Velu, 1998), principal components (Massy,
1965), partial least squares (Wold, 1975) and joint continuum regression (Brooks and Stone,
1994) among others can all be formulated in the form of linear factor regression. They differ in
the way in which the factors are determined.

It is obviously of great importance to be able to determine the number of factors, r, for
equation (2). For smaller numbers of factors, a more accurate estimate is expected since there
are fewer free parameters. But too few factors may not be sufficient to describe the predictive
relationships. In all of the aforementioned methods, the number of factors, r, is chosen in a
separate step from the estimation of equation (2) through either hypothesis testing or cross-
validation. The coefficient matrix is typically estimated on the basis of the number of factors
selected. Because of its discrete nature, this type of procedure can be very unstable in the sense
of Breiman (1996): small changes in the data can result in very different estimates.

There are also other approaches to improve on the least squares method. Variable selection
and ridge regression are among the most popular. Both types of method are most often studied
in the special case of equation (1) when q = 1, which amounts to classical linear regression.
In recent years, considerable effort has also been devoted to the more general situations with
q > 1 (Frank and Friedman, 1993; Bedrick and Tsai, 1994; Fujikoshi and Satoh, 1997; Brown
et al., 1998, 1999, 2002; Turlach et al., 2005; Lutz and Bühlmann, 2006). Variable selection is
most powerful when there are many redundant predictors that are common to all responses,
which can be unrealistic in many applications of the multivariate linear model (Reinsel and Velu,
1998). Ridge regression, however, oftentimes cannot offer easily interpretable models because
it does not perform dimension reduction and all elements of the estimated coefficient matrix are
typically non-zero.

In this paper, we propose a new technique for estimating the coefficient matrix that com-
bines and retains the advantages of the existing methods. To achieve parsimonious models with
enhanced interpretability, we introduce a formulation which is similar to but more general than
the linear factor regression (2). Instead of estimating the coefficient matrix in multiple steps,
as would be done in traditional linear factor regression methods, we simultaneously choose
the number of factors, determine the factors and estimate the factor loadings Ω. Similarly to
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ridge regression, the method proposed can be formulated as a penalized least squares estimate.
The penalty that we employ is the coefficient matrix’s Ky Fan norm defined as the sum of its
singular values. Such a penalty encourages sparsity among singular values and at the same time
gives shrinkage coefficient estimates and thus conducts dimension reduction and estimation
simultaneously in the multivariate linear model.

The rest of the paper is organized as follows. The methodology proposed is introduced in the
next section. An algorithm for solving the optimization problem in our formulation is relegated
to Appendix A. Our algorithm takes advantage of recent advances in convex optimization by
deriving an equivalent second-order cone program of the optimization problem in our formu-
lation, which is readily solvable by using standard software. We consider the special case of
orthogonal design in Section 3 to understand the new estimate better. A generalized cross-vali-
dation (GCV) type of statistic is introduced in Section 4 to choose the optimal tuning parameter
for the method proposed. Simulations and a real data example are given in Sections 5 and 6 to
illustrate the methodology. The method can also be extended to the non-parametric situation.
In particular, we consider an extension to the vector additive model in Section 7. We conclude
with some discussions in Section 8.

2. Factor estimation and selection

Denote by Yj, Bj and Ej the jth columns of Y , B and E respectively. From equation (1), the jth
response can be modelled by

Yj =XBj +Ej,

where Bj ∈Rp, j =1, . . . , q. The basic idea of dimension reduction is that the regression coeffi-
cients B1, B2, . . . , Bq actually come from a linear space B of dimension lower than p. A gen-
eral dimension reduction approach consists of two main ingredients: a set of basis elements
{η1, . . . , ηp} for Rp, and a subset A of {1, . . . , p} such that B ⊆ span{ηi : i∈A} where span{·}
stands for the linear space spanned by a set of vectors. Both variable selection and the linear
factor model (2) can be formulated in this framework. In variable selection ηs are known, i.e.
ηi = ei, where ei is the ith column of Ip; and we want to estimate A. In the case of linear factor
regression, the ith factor is given by Fi =Xηi where ηs are estimated in a separate step, and A
takes the form {1, 2, . . . , r} where r is to be estimated. Because of this connection, we shall refer
to the estimation of ηs as factor estimation and the identification of A as factor selection. In
this paper, we propose a procedure that imposes fewer restrictions than variable selection and
linear factor regression by allowing both ηs and A to be estimated simultaneously.

To develop ideas, we start with factor selection and assume that {η1, . . . , ηp} are known up
to a permutation. With a slight abuse of notation, write F = .F1, . . . , Fp/ where Fi =Xηi; then

Y =FΩ+E, .3/

where Ω is a p×q matrix such that .η1, . . . , ηp/Ω=B. Now factor selection for equation (1) can
be cast as a variable selection problem for equation (3). As pointed out by Turlach et al. (2005),
a family of estimates for this can be obtained by

min[tr{.Y −FΩ/W.Y −FΩ/′}] subject to
p∑

i=1
‖ωi‖α � t, .4/

where W is a weight matrix, ωi is the ith row of Ω, t �0 is a regularization parameter and ‖·‖α

is the lα-norm for some α�1, i.e.

‖ωi‖α = .Ωα
i1 + . . . +Ωα

iq/1=α:
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Common choices of the weight matrix include Σ−1 and I. To fix ideas, in the rest of the paper
we shall assume that W = I.

It is clear that expression (4) reduces to the popular lasso (Tibshirani, 1996) when q = 1.
Similarly to the lasso, if t is appropriately chosen, minimizing expression (4) yields a shrink-
age estimate that is sparse in the sense that some of the ωis will be set to 0. Consequently,
the ith factor will be included in the final estimate if and only if ωi is non-zero. Therefore,
factor selection and coefficient estimation are done simultaneously. Two most obvious choices
for α are α= 2 and α=∞. The former has been studied by Bakin (1999) and Yuan and Lin
(2006) whereas the latter has been discussed in Turlach et al. (2005). In this paper, we shall
choose α=2. The advantage of this choice in the current setting will become clear in our later
discussion. α=2 is appealing also because it allows the estimate from expression (4) to be invari-
ant to any orthogonal transformation of the responses, which can be useful in many practical
situations.

To use expression (4), we need to obtain ηs first. Similarly to variable selection, factor selec-
tion is most powerful if all responses can be predicted by a small subset of common factors.
Ideally, we want {η1, . . . , ηp} to contain a set of basis of B to allow the sparsest representation
of B in the factor space. This is typically not so for the existing linear factor regression methods.
For example, in principal components regression, the factors are chosen to be the principal
components of the predictors, which may not necessarily contain the basis of B. In our method,
we choose ηs to be the eigenvectors of BB′. Clearly this set of basis contains the basis of B.
Interestingly, we can proceed even without actually estimating the factors if this choice is to be
made in conjunction with α=2. To elaborate on this, write U = .η1, . . . , ηp/. The singular value
decomposition of B can be expressed as B =UDV ′ for some q × q orthonormal matrix V and
a p × q matrix D such that Dij = 0 for any i �= j and Dii =σi.B/ where σi.·/ represents the ith
largest singular value of a matrix. Now Ω=DV ′ and ωi =σi.B/Vi where Vi is the ith column of
V , which implies that ‖ωi‖2 =σi.B/. Therefore, expression (4) with α=2 gives

min[tr{.Y −XB/.Y −XB/′}] subject to
min.p,q/∑

i=1
σi.B/� t, .5/

where Σmin.p,q/
i=1 σi.B/ is known as the Ky Fan (p or q) norm of B. Clearly no knowledge of ηs is

required in expression (5) and we shall use the minimizer of expression (5) as our final estimate
of B. In Appendix A, we show that expression (5) is equivalent to a conic program and can be
computed efficiently. The penalty that we employed in expression (5) encourages the sparsity
among the singular values of B and at the same time gives shrinkage estimates for U and V ;
it thus conducts dimension reduction and estimation simultaneously in the multivariate linear
model. Once the estimate of B is available, the basis ηs can be obtained as its left singular vectors
U. Therefore, we can also compute the factors Fi =Xηi, as well as the factor loadings Ω=DV .

The proposed estimate defined as the minimizer of expression (5) is closely connected with
several other popular methods. In particular, expression (5), reduced rank regression and ridge
regression can all be viewed as the minimizer of

tr{.Y −XB/.Y −XB/′} subject to
{∑

i

σα
i .B/

}1=α
� t .6/

with difference choices of α.
Ridge regression defined as the minimizer of

tr{.Y −XB/.Y −XB/′}+λ tr.B′B/
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corresponds to α=2 because tr.B′B/=Σ σ2
i .B/. It is well known that ridge regression provides a

shrinkage estimate that often outperforms least squares. The estimate proposed, corresponding
to α=1, enjoys a similar shrinkage property. To illustrate, consider the special case when there
is only one response. In this case, σ1.B/ = .B′B/1=2, and therefore expression (5) can now be
expressed as

min[tr{.Y −XB/.Y −XB/′}] subject to .B′B/1=2 � t,

which is nothing other than the usual ridge regression.
Reduced rank regression is another special case of expression (6) with α=0+. Both expression

(5) and reduced rank regression set some of the singular values of B to 0 and lead to estimates
with reduced ranks. Compared with reduced rank regression, the new method shrinks the sin-
gular values smoothly and is more stable. Note that the reduced rank regression estimate differs
from the least squares estimate only in its singular values (Reinsel and Velu, 1998). Since the
least squares estimate behaves poorly in overfitted or highly correlated settings, reduced rank
regression may suffer in such situations as well. In contrast, the new method gives a shrinkage
estimate that overcomes this problem.

3. Orthogonal design

To understand further the statistical properties of the method proposed, we consider the special
case of orthogonal design. The following lemma gives an explicit expression for the minimizer
of expression (5) in this situation.

Lemma 1. Let ÛLSD̂LSV̂ LS be the singular value decomposition of the least squares estimate
B̂LS. Then, under the orthogonal design where X′X=nI, the minimizer of expression (5) is

B̂= ÛLSD̂.V̂ LS/′,

where D̂ij = 0 if i �= j, D̂ii = max.D̂
LS
ii −λ, 0/ and λ� 0 is a constant such that Σi D̂ii = min.t,

ΣD̂
LS
ii /.

Proof. Expression (5) can be equivalently written in a Lagrange form:

Qn.B/= 1
2

tr{.Y −XB/.Y −XB/′}+nλ
min.p,q/∑

i=1
σi.B/, .7/

for some λ> 0. Simple algebra yields

tr{.Y −XB/.Y −XB/′}= tr{.Y −XB/′.Y −XB/}
= tr{.Y −XB̂

LS
/′.Y −XB̂

LS
/}+ tr{.B̂

LS −B/′X′X.B̂
LS −B/}

= tr{.Y −XB̂
LS

/′.Y −XB̂
LS

/}+n tr{.B̂
LS −B/′.B̂LS −B/}: .8/

Together with the fact that tr.B′B/=Σi σ2
i .B/, equation (7) equals

1
2

q∑
i=1

σ2
i .B/− tr.B′B̂LS

/+λ
q∑

i=1
σi.B/,

up to constants not depending on B. Now an application of von Neumann’s trace inequality
yields

tr.B′B̂LS
/�
∑

σi.B/D̂
LS
ii
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Therefore,

Qn.B/� 1
2

q∑
i=1

σ2
i .B/−∑σi.B/D̂

LS
ii +λ

q∑
i=1

σi.B/: .9/

Note that σi.B/�0. The right-hand side of inequality (9) is minimized at

σi.B/=max.D̂
LS
ii −λ, 0/, i=1, . . . , q:

The proof is now completed by noting that B̂ achieves the lower bound for Qn. �

This closed form minimizer of expression (5) allows a better understanding of our estimate.
Specifically, the following lemma indicates that we can always find an appropriate tuning param-
eter such that the non-zero singular values of B are consistently estimated and the rest are set
to 0 with probability 1.

Lemma 2. Suppose that max.p, q/ = o.n/. Under the orthogonal design, if λ→ 0 in such a
fashion that max.p, q/=n=o.λ2/, then |σi.B̂/−σi.B/|→p 0 if σi.B/ > 0 and P{σi.B̂/=0}→1
if σi.B/=0.

Proof. Note that

B̂
LS = .X′X/−1X′Y

=X′.XB+E/=n

=B+X′E=n:

Since X′X = nI and the rows of E are independent observations from N .0, Σ/, each entry of
X′EΣ−1=2=

√
n follows N .0, 1/ and is independent of each other. Applying the result from John-

stone (2001), we have

σ1.X′EΣ−1=2=n/∼ .
√

p+√
q/=

√
n:

Therefore,

σ1

(
X′E

n

)
�σ1

(
X′EΣ−1=2

n

)
σ1.Σ1=2/∼σ

1=2
1 .Σ/

√
p+√

q√
n

:

Now an application of theorem 3.3.16 of Horn and Johnson (1991) yields

|σi.B/−σi.B̂
LS

/|�σ1

(
X′E

n

)

=Op

(√
p+√

q√
n

)
: .10/

Therefore, if λ → 0 at a slower rate than the right-hand side of equation (10), the proposed
estimate can provide consistent estimates of the non-zero singular values of B and at the same
time shrink the rest of the singular values to 0. �

Lemma 1 also indicates that the singular values of the method proposed are shrunk in a
similar fashion to the lasso under orthogonal designs. The lasso has proved highly successful
in various studies, particularly when the predictors are correlated and p is large relatively to
the sample size. In Section 5, we show that the estimate proposed is very successful in similar
situations as well.
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4. Tuning

Like any other regularization method, it is important to be able to choose a good tuning param-
eter t in expression (5). One common method that is used in practice is cross-validation, which
of course can be computationally demanding in large scale problems. In this section, we develop
a GCV (Golub et al., 1979) type of statistic for determining t.

We first characterize the equivalence between expression (5) and its Lagrange form (7), since
it is easier to work with equation (7) in deriving our GCV-type statistic. Denote B̂ the minimizer
of expression (5) and ÛD̂V̂ ′ its singular value decomposition. Note that expression (5) is equiv-
alent to equation (7) and we can always find a λ such that B̂ is also the minimizer of equation
(7). The following lemma explicitly describes the relationship between t and λ.

Lemma 3. Write d̂i = D̂ii for i=1, . . . , min.p, q/. For any t �Σi d̂i, the minimizer of equation
(7) coincides with the minimizer of expression (5), B̂, if

nλ= 1

card.d̂i > 0/

∑
d̂i>0

.X̃′
iỸi − X̃′

iX̃id̂i/ .11/

where card.·/ stands for the cardinality of a set, Ỹi is the ith column of Ỹ =YÛ and X̃i is the ith
column of X̃=XV̂ .

Proof. Note that

min.p,q/∑
i=1

σi.B̂/=
min.p,q/∑

i=1
D̂ii

=
p∑

i=1
σi.B̂KB̂

′
/

= tr.B̂KB̂
′
/,

where

K = ∑
D̂ii>0

1

D̂ii

V̂iV̂
′
i ,

and V̂i is the ith column of V . Therefore, B̂ is also the minimizer of

1
2 tr{.Y −XB/.Y −XB/′}+nλ tr.BKB′/: .12/

From expression (12), d̂ is the minimizer of

1
2

min.p,q/∑
i=1

.Ỹi − X̃idi/
2 +nλ

min.p,q/∑
i=1

di, .13/

subject to the constraint that di � 0. The first-order optimality condition for expression (13)
yields

nλ= X̃′
iỸi − X̃′

iX̃id̂i,

for any d̂i > 0. The proof is now completed by taking an average of the above expression over
all is such that d̂i > 0. �

Since B̂ is the minimizer of expression (12), it can be expressed as

B̂= .X′X+2nλK/−1X′Y:
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Neglecting the fact that W also depends on B̂, we can define the hat matrix for expression (12)
as X.X′X+2nλK/−1X′ and the degrees of freedom as

df.t/=q tr{X.X′X+2nλK/−1X′}:

Now the GCV score is given by

GCV.t/= tr{.Y −XB̂/.Y −XB̂/′}
qp−df.t/

, .14/

and we choose a tuning parameter by minimizing GCV.t/.
Summing up, an implementation of our estimate which chooses the tuning parameter auto-

matically is as follows.

Step 1: for each candidate t-value

(a) compute the minimizer of expression (5) (denote the solution B̂.t//,
(b) evaluate λ by using equation (11) and
(c) compute the GCV score (14).

Step 2: denote tÅ the minimizer of the GCV score that is obtained in step 1. Return B̂.tÅ/ as
the estimate of B.

5. Simulation

In this section, we compare the finite sample performance of the proposed estimate with several
other popular approaches for multivariate linear regression. The methods that we compared
include the following:

(a) FES, the method proposed for factor estimation and selection with the tuning parameter
selected by GCV;

(b) OLS, the ordinary least square estimate .X′X/−1X′Y ;
(c) CW, the curd and whey with GCV procedure that was developed by Breiman and Fried-

man (1997);
(d) RRR, reduced rank regression with the rank selected by tenfold cross-validation;
(e) PLS, two-block partial least squares (Wold, 1975) with the number of components selected

by tenfold cross-validation;
(f) PCR, principal components regression (Massy, 1965) with the number of components

selected by tenfold cross-validation;
(g) RR, ridge regression with the tuning parameter selected by tenfold cross-validation;
(h) CAIC, forward selection using the corrected Akaike information criterion that was pro-

posed by Bedrick and Tsai (1994). The corrected Akaike information criterion for a
specific submodel of model (1) is defined as

n ln |Σ̂|+ n.n+k/q

n−k −q−1
+nq ln.2π/,

where k is the number of predictors included in the submodel and Σ̂ is the maximum
likelihood estimate of Σ under the submodel.

We compare these methods in terms of the model error. The model error of an estimate B̂ is
given by

ME.B̂/= .B̂−B/′V.B̂−B/,

where V =E.X′X/ is the population covariance matrix of X.
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Table 1. Comparisons on the simulated data sets

Model Results for the following methods:

FES OLS CW RRR PLS PCR RR CAIC

I 3.02 6.31 4.47 6.14 4.72 5.46 3.72 11.6
(0.06) (0.15) (0.12) (0.16) (0.10) (0.12) (0.07) (0.20)

II 2.97 6.31 5.20 6.97 3.95 3.70 2.46 5.40
(0.04) (0.15) (0.11) (0.15) (0.06) (0.05) (0.04) (0.03)

III 2.20 6.31 3.49 2.42 4.15 6.01 4.36 15.6
(0.06) (0.15) (0.11) (0.13) (0.14) (0.18) (0.10) (0.51)

IV 4.95 14.23 8.91 12.45 6.45 6.57 4.47 9.65
(0.03) (0.13) (0.08) (0.08) (0.04) (0.04) (0.02) (0.04)

We consider the following four models.

(a) For model I we consider an example with p=q=8. A random 8×8 matrix with singular
values .3, 2, 1:5, 0, 0, 0, 0, 0/ was first generated as the true coefficient matrix. This is done
as follows. We first simulated an 8×8 random matrix whose elements are independently
sampled from N .0, 1/, and then replace its singular values with .3, 2, 1:5, 0, 0, 0, 0, 0/. Pre-
dictor x is generated from a multivariate normal distribution with correlation between
xi and xj being 0:5|i−j|. Finally, y is generated from N .xB, I/. The sample size for this
example is n=20.

(b) Model II is the same as model I except that the singular values are σ1 = . . . = σ8 =
0:85.

(c) Model III is the same set-up as before, but with singular values .5, 0, 0, 0, 0, 0, 0, 0/.
(d) Model IV is a larger problem with p = 20 predictors and q = 20 responses. A random-

coefficient matrix is generated in the same fashion as before with the first 10 singular
values being 1 and last 10 singular values being 0. x and y are generated as in the previous
examples. The sample size is set to be n=50.

For each of these models, 200 data sets were simulated. Table 1 gives the means and standard
errors (in parentheses) over the 200 simulated data sets. To gain further insight into the com-
parison, we also provide a pairwise prediction accuracy comparison between method FES and
the other methods for models I–IV (except for method CAIC) in Fig. 1.

We use these examples to examine the relative merits of the methods in various scenarios.
Model I has a moderate number of moderate-size singular values; the first two rows of Table 1
and Fig. 1(a) indicate that method FES enjoys the best prediction accuracy followed by ridge
regression and the curd and whey method. Model II represents a different scenario with a full
rank coefficient matrix. Table 1 indicates that ridge regression performs the best, with method
FES being the only other method to improve on ordinary least squares by more than 50%.
Model III has a small number of large singular values. In this case, method FES does the best.
Also as expected, reduced rank regression performs relatively well but with considerably more
variation. The last example is a bigger model with higher dimension. Ridge regression performs
the best, with method FES being a close second. Note that method CAIC performs poorly for
all four models because there are no redundant variables in general. In all the examples, method
FES demonstrates competitive performance when compared with the other six methods. Ridge
regression does a little better than the proposed method for models II and IV, but worse for the
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Fig. 1. Pairwise model error comparison between model FES and the other methods

other two models. It is worth pointing out that, when compared with ridge regression, method
FES also has the further advantage of producing interpretable models.

6. Application

To demonstrate the utility of the method proposed, we now consider a real example in finan-
cial econometrics. The multivariate linear model has a wide range of applications in finance,
because portfolios, one of the main objects in financial studies, are typically generated from
vector-valued processes. A particularly important task in financial econometrics is to predict
the future returns of assets on the basis of their historical performance. Vector autoregressive
models are often used for this (Reinsel, 1997). Let yt be the vector of returns at time t. The vector
autoregressive model with order 1 is given by

yt =yt−1B+E: .15/

Clearly model (15) is a special case of the multivariate linear model. Accurate estimation of B

in model (15) leads to good forecasts which, in turn, can serve as instruments for efficient port-
folio allocation and revealing opportunities for arbitrage. Also important is the identification
of the factors in model (15), which can to help construct bench-mark portfolios or to diversify
investments.

To illustrate our method, we applied model (15) to the stock prices in 2004 of the 10 lar-
gest American companies ranked by Fortune magazine on the basis of their 2003 revenue. We
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Fig. 2. Solution paths for the stocks example

excluded Chevron in the analysis because its stock price dropped nearly a half in the 38th week
of the year, which indicates the non-stationarity of its return process. We fit model (15) to the
weekly log-returns of the stocks for the first half of the year and use the data from the second
half of the year to evaluate the predictive performance.

We first apply the proposed factor estimation and selection method on the training data.
Fig. 2(a) gives the trajectory of the singular values of our proposed method as the Ky Fan norm
of B increases and Fig. 2(b) depicts the GCV curve. The vertical line in Fig. 2(a) corresponds
to the Ky Fan norm that was selected by GCV.

In this example, GCV retains four non-zero singular values for B. Recall that the factors are
estimated by the left singular vectors of the regression coefficient matrix estimate. The corres-
ponding loadings of the four selected factors are given in Table 2.

It is of great interest to understand the meaning of these four factors. From expression (15), the
factors summarize the asset return history in predicting the future returns. Classical investment
theory indicates that the market index is a good summary of the asset prices and should lie in
the factor space. To approximate the market index, we picked the Standard and Poors index
S&P500 and the Nasdaq Stock Market index NASDAQ. To check whether their returns approx-
imately fall into the factor space that is estimated from the stock data, we constructed their
linear projections in the estimated four-dimensional factor space. The log-returns of S&P500
and NASDAQ in the year of 2004 together with their approximations are given in Fig. 3. Both
approximations track the actual log-return processes fairly well. This exercise confirms that the
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Table 2. Factor loadings for the stocks example

Company Loadings for the following factors:

1 2 3 4

Walmart −0.47 −0.42 −0.30 0.19
Exxon 0.20 −0.68 0.07 −0.40
GM 0.05 0.19 −0.61 −0.31
Ford 0.18 0.22 −0.42 −0.13
GE −0.35 0.13 −0.03 −0.44
ConocoPhillips 0.42 0.04 0.05 −0.52
Citigroup −0.45 0.13 −0.26 −0.17
IBM −0.24 0.43 0.49 −0.21
AIG −0.38 −0.22 0.22 −0.39
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Fig. 3. (a) S&P500 and (b) NASDAQ indices ( ) together with their approximations in the factor space
(. . . . . . .)

factors that are revealed by our method are indeed meaningful and should provide insight into
further studies of the dynamics of the financial market.

To compare further the method proposed with the other methods from the last section, we
compare their prediction errors on the data from the second half of the year. For each individual
stock, we reported the averaged predictive squared error of the forecast. We also reported the
prediction error averaged over all nine stocks. The prediction performances are summarized in
Table 3. The method proposed clearly provides better prediction than the other methods in this
example.
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Table 3. Out-of-sample mean-squared error

Company Mean-squared errors (× 0.001) for the following methods:

FES OLS CW RRR PLS PCR RR CAIC

Walmart 0.40 0.98 0.69 0.50 0.44 0.44 0.43 0.42
Exxon 0.29 0.39 0.37 0.32 0.33 0.32 0.32 0.30
GM 0.62 1.68 1.29 1.53 0.68 0.69 0.62 0.67
Ford 0.69 2.15 1.31 2.22 0.65 0.77 0.68 0.74
GE 0.41 0.58 0.45 0.49 0.44 0.45 0.42 0.44
ConocoPhillips 0.79 0.98 1.63 0.79 0.83 0.79 0.79 0.79
Citigroup 0.59 0.65 0.63 0.66 0.60 0.65 0.58 0.61
IBM 0.51 0.62 0.58 0.54 0.62 0.49 0.49 0.48
AIG 1.74 1.93 1.86 1.86 1.81 1.92 1.81 1.80
Average 0.67 1.11 0.98 0.99 0.71 0.72 0.68 0.70

7. Non-parametric factor model

The method proposed can also be extended to vector non-parametric regression models where
the jth response is related to predictor x through the regression equation

yj =gj.x/+ ej, j =1, . . . , q, .16/

where the gjs are unknown smooth functions to be estimated. We begin with the case when the
predictor is univariate. A non-parametric extension of the linear factor model is to assume that
gj can be expressed as a linear combination of a small number of non-parametric factors fk,
k =1, . . . , r:

gj.x/=ω1j f1.x/+ω2j f2.x/+ . . . +ωrj fr.x/,

where Ω= .ωkj/r×q is unknown. To estimate the gjs, we model the non-parametric factors by
using regression splines:

fk.x/=β1kx+ . . . +βskxs +
M∑

m=1
βm+s, k.x−κm/s

+, k =1, . . . , r, .17/

where s � 1 is an integer, .u/s+ = us I.u � 0/ and κ1 < . . . < κM are fixed knots. Write z =
.x, . . . , xs, .x−κ1/s+ , . . . , .x−κM/s+/, A= .βik/.M+s/×r and B=AΩ. Then equation (16) can be
rewritten as

y = zB+ e,

which is in the form of the multivariate linear regression (1). In traditional regression spline
approaches, the choice of the knots κ1, . . . , κM is crucial since too many knots result in overfit-
ting whereas too few knots may not be able to capture the non-linear structure. Sophisticated
knot selection procedures are often employed to ensure good performance of the regression
spline estimate. A method that often enjoys better performance and is simpler to implement is
the so-called penalized regression spline method (Eilers and Marx, 1996; Ruppert and Carroll,
1997) where a large number of knots are included and overfitting is avoided through shrink-
age. Adopting this idea, an estimate of the non-parametric factor model can be defined as the
solution of
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min
B

[tr{.Y −ZB/.Y −ZB/′}] subject to
r∑

k=1

(
M+s∑
i=1

β2
ik

)1=2

� t, .18/

where Y = .y1, . . . , yn/′ and Z = .z1, . . . , zn/′. For identifiability, we further assume that A′A=
ΩΩ′ = Ir. Then expression (18) is equivalent to

min
B

[tr{.Y −ZB/.Y −ZB/′}] subject to
∑
i

σi.B/� t, .19/

which is of the same form as expression (5) and can also be solved by using the algorithm that
is provided in Appendix A.

In most practical situations, the predictors are multivariate. To alleviate the ‘curse of dimen-
sionality’, additive models (Hastie and Tibshirani, 1990) are commonly used where multivariate
functions gj are written as

gj.x/=gj1.x1/+ . . . +gjp.xp/, j =1, . . . , q: .20/

Here gj1, . . ., gjp are univariate functions. Consider a non-parametric factor model for each
component on the right-hand side of equation (20):

gji.xi/=ω
.i/
1j fi1.xi/+ω

.i/
2j fi2.xi/+ . . . +ω

.i/
rij

firi .xi/, .21/

where

fik.xi/=β
.i/
1k xi + . . . +β

.i/
sk xs

i +
M∑

m=1
β

.i/
m+s,k.xi −κ.i/

m /s
+, k =1, . . . , ri:

Denote zi = .xi, . . . , xs
i , .xi − κ

.i/
1 /s+, . . . , .xi − κ

.i/
M /s+/, Ai = .β

.i/
jk /.M+s/×r, Ωi = .ω

.i/
jk / and Bi =

AiΩi. Then a non-parametric factor model for multivariate predictors can be given as

y = z1B1 + . . . + zpBp + e:

Similarly to expression (19), we define our estimate of the Bis as the solution of

min
B1,:::,Bp

[tr{.Y −ZB/.Y −ZB/′}] subject to
∑
j

σj.Bi/� ti, j = i, . . . , p, .22/

where Z= .Z1, . . . , Zp/ and B= .B′
1, . . . , B′

p/′. Using the algorithm that is presented in Appendix
A, expression (22) can be solved in an iterative fashion.

Step 1: initialize Bi =0, i=1, . . . , p.
Step 2: for i=1, . . . , p,

(a) compute YÅ =Y −Z1B1 − . . . −Zi−1Bi−1 −Zi+1Bi+1 − . . . −ZpBp and
(b) update Bi by minimizing tr{.YÅ −ZiBi/.Y

Å −ZiBi/
′} subject to Σj σj.Bi/� ti.

Step 3: repeat step 2 until B does not change.

To illustrate, we reanalyse the biochemical data from Smith et al. (1962). The data con-
tain chemical measurements on several characteristics of 33 individual samples of men’s urine
specimens. There are five response variables: pigment creatinine, concentrations of phosphate,
phosphorus, creatinine and choline. The goal of the analysis is to relate these responses to three
predictors: the weight of the subject, volume and specific gravity. Reinsel and Velu (1998) pos-
tulated a multivariate linear model to analyse the data. A non-parametric extension such as
equation (21) could be more powerful if non-linear effects of the predictors are suspected. For
this, we model the effect of each of the predictors by equation (17) with s = 2 and M = 5. The
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Fig. 4. Fitted components for the biochemistry data

knots are chosen to be equally spaced quantiles of the corresponding covariate. A practical issue
in using this method is the choice of tuning parameters t1, . . . , tp. We adopted a strategy that
is commonly used in smoothing spline models when there are multiple tuning parameters: ti is
tuned at step 2(b) in each iteration by using the GCV criterion that was developed before. Fig. 4
shows the estimated effect of each predictor on each response. Clear departure from a linear
assumption can be observed.

8. Discussion

In this paper, we introduced a general formulation for dimension reduction and coefficient esti-
mation in the multivariate linear model. On the basis of this formulation, we proposed a new
method for shrinkage and dimension reduction. The method has connection with many existing
methods but has been demonstrated to enjoy considerably better performance. We also extended
the method to a non-parametric model for predicting multiple responses. The implementation
of our method takes advantage of recent advances in convex optimization.

Linear factor regression reduces the dimensionality of the estimating problem and often
leads to models with enhanced interpretability. However, it can be unstable because of the dis-
crete nature of selecting the number of factors. Also, the factors are often constructed in an
ad hoc fashion and may not allow sufficient dimension reduction. In contrast, ridge regression
often enjoys superior prediction accuracy because it leads to a shrinkage estimate, but it does
not provide easily interpretable models. Our method combines and retains the advantages of
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both approaches. Formulated as a penalized least squares estimate, the method proposed gives a
shrinkage estimate with reduced ranks. We demonstrated by numerical examples that the method
proposed enjoys competitive performance when compared with other popular methods.

The penalty that we employed is the coefficient matrix’s Ky Fan norm, which shares some
similar characteristics with the absolute value constraints that are used by the lasso in the spe-
cial case of orthogonal designs as illustrated in Section 3. Such similarity and the encouraging
results that were reported here suggest that this penalty may prove useful in other statistical
problems where a matrix of high dimension is to be estimated.

Acknowledgement

Yuan’s research was supported in part by National Science Foundation grant DMS-0624841.

Appendix A: Algorithm for solving expression (5)

To solve expression (5), we take advantage of the recent advance in convex optimization. We show that
expression (5) is equivalent to a second-order cone program and can be solved by using standard solvers
such as SDPT3 (Tütüncü et al., 2003).

Let us first introduce some notation. Denote by Lm the m-dimensional second-order cone:

Lm ={x = .x1, . . . , xm/∈Rm : x1 �√
.x2

2 + . . . +x2
m/}:

Write Rm
+ = {x = .x1, . . . , xm/′ : xi � 0, i = 1, . . . , m} and X � 0 to indicate that the symmetric matrix X is

positive semidefinite. Also for an n×n symmetric matrix X, define the vectorization operator svec as

svec.X/= .X11, X21
√

2, X22, . . . , Xn1
√

2, . . . , Xn,n−1
√

2, Xnn/′:

SDPT3 can solve problems of the form

min
Xs

j ,xq
i ,xl

{
ns∑

j=1
tr.Cs

jX
s
j/+

nq∑
i=1

.cq
i /′xq

i + .cl/′xl

}

such that

ns∑
j=1

.As
j/

′svec.Xs
j/+

nq∑
i=1

.A
q
i /

′xq
i + .Al/′xl =b, Xs

j �0 ∀j, xq
i ∈Lqi ∀i, xl ∈Rnl+ , .23/

where Cs
j is a symmetric matrix of the same dimension as Xs

j , cq
i is a qi-dimensional vector, cl is an

nl-dimensional vector and the dimensions of matrices A and vector b are clear from the context.
Next we show that expression (5) can be equivalently written in the form of problem (23). Similarly to

equation (8), the objective function of expression (5) can be rewritten as

tr{.B− B̂
LS

/′X′X.B− B̂
LS

/}= tr.C′C/

up to a constant free of B where C =Λ1=2Q.B − B̂
LS

/ and Q′ΛQ is the eigenvalue decomposition of X′X.
By the definition of the second-order cone, expression (5) can be equivalently written as

min
M,C,B

.M/

such that

.M, C11, . . . , C1q, C21, . . . , Cpq/
′ ∈Lpq+1,

q∑
i=1

σi.B/� t, C =Λ1=2Q.B− B̂
LS

/:

Using the Schur complement lemma (Ben-Tal and Nemirovski, 2001), the constraintΣ σi.B/=Σ σi.QB/� t
is equivalent to
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min.p,q/∑
i=1

μi.A/� t

where μi.A/ is the ith eigenvalue of A and

A=
( 0 .QB/′

.QB/ 0

)
:

Together with formula (4.2.2) of Ben-Tal and Nemirovski (2001), page 147, this constraint is also equivalent
to

qs+ tr.Z/� t,

Z −
(

0 .Λ−1=2C +QB̂
LS

/′

.Λ−1=2C +QB̂
LS

/ 0

)
+ sI �0,

Z �0:

Now, expression (5) is equivalent to

min
M,C,s,Z1,Z2

.M/

subject to

q.s1 − s2/+ tr.Z1/+ s3 = t,

Z2 −Z1 +
( 0 .Λ−1=2C/′

.Λ−1=2C/ 0

)
− .s1 − s2/I =

(
0 −.QB̂

LS
/′

−.QB̂
LS

/ 0

)
,

Z1, Z2 �0,

.M, C11, . . . , C1q, C21, . . . , Cpq/
′ ∈Lpq+1,

s ∈R3
+,

which is readily computable by using SDPT3.
When W �= I, the objective function becomes

tr{.Y −XB/W.Y −XB/′}:

A slight modification needs to be made to the above derivation. In this case, the objective function can be
rewritten as

tr{.B− B̂
LS

/′X′X.B− B̂
LS

/W}
up to a constant that is free of B. Let PΔP ′ be the eigenvalue decomposition of W and define

C =Λ1=2Q.B− B̂
LS

/PΔ1=2:

Similar arguments lead to the following equivalent conic program:

min
M,C,s,Z1,Z2

.M/

subject to

q.s1 − s2/+ tr.Z1/+ s3 = t,

Z2 −Z1 +
( 0 .Λ−1=2CΔ−1=2/′

.Λ−1=2CΔ−1=2/ 0

)
− .s1 − s2/I =

(
0 −.QB̂

LS
P/′

−.QB̂
LS

P/ 0

)
,

Z1, Z2 �0,

.M, C11, . . . , C1q, C21, . . . , Cpq/
′ ∈Lpq+1,

s ∈R3
+:
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