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Abstract: In this paper, we investigate the identifiability of the additive index

model, also known as projection pursuit regression. Although a flexible regression

tool, additive index models can be hard to interpret in practice due to a lack of

identifiability. As noted by Horowitz (1998), “it is an open question whether there

are identifying restrictions that yield useful forms”, in reference to additive index

models that differ from the known structured nonparametric regression models such

as additive models and single index models. We provide an affirmative answer to

this question: the additive index model is identifiable as long as the projection

indices are linearly independent and there is at most one quadratic ridge function.

Furthermore, we show that when there are multiple quadratic ridge functions, the

identifiability can still be ensured for the non-quadratic ridge functions and their

corresponding projection indices, whereas it is not possible to identify the quadratic

ridge functions. Such an identifiability result enables us to check if a more restrictive

nonparametric model such as the additive model can be adopted as opposed to the

more general additive index model.

Key words and phrases: Additive index model, additive model, identifiability, pro-

jection pursuit regression, single index model.

1. Introduction

In an additive index model, a predictor x ∈ Rp and a response y are related
through E(y|x) = f(x), where

f(x) = µ + h1(α′
1x) + h2(α′

2x) + . . . + hM (α′
Mx) (1.1)

for some M , α1, α2, . . . , αM , and h1, h2, . . . , hM . To remove trivial ambiguity, it
is commonly assumed that (a) hj(0) = 0 for j = 1, . . . ,M ; (b) ‖α‖ = 1; and (c)
the first nonzero entry of αj is positive for any j = 1, . . . ,M . The additive index
model is closely related to the popular projection pursuit regression introduced
by Friedman and Stuetzle (1981). Following their terminology, we refer to α′

js as
projection indices and h′

js as ridge functions. Several structured nonparametric
regression models are special cases of the additive index model through various
restrictions on M , α′s, and h′s. When M = p and the projection indices matrix
A = (α1, α2, . . . , αp) is a permutation matrix, the additive index model becomes
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the additive model (Hastie and Tibshirani (1990)). If M = 1, (1.1) reduces to
the single index model (Duan and Li (1991); Härdle, Hall and Ichimura (1993);
Ichimura (1993)). Horowitz (1998) discusses an extension of the single index
model that is also a special case of the additive index model; the so-called multiple
index model amounts to assuming that the sets Aj = {k : αjk 6= 0}, j = 1, . . . ,M ,
are disjoint.

It is known that the additive index model is much more flexible than these
special cases. In particular, it has been be shown that any square integrable
function can be approximated to arbitrary precision by a function of form (1.1)
(Diaconis and Shahshahani (1984)). The flexibility, unfortunately, comes at the
cost of interpretability since (1.1) is not identifiable if M , α′s, and h′s are left
unrestricted. For example, even if the true regression function follows an additive
model, the estimate obtained from the projection pursuit regression may provide
little evidence to confirm it. It is therefore of great interest to seek a class of func-
tions that retain both the flexibility of the projection pursuit and interpretability
of other common structured nonparametric regression models. However, as noted
by Horowitz (1998, p.14), ‘it is an open question whether there are identifying
restrictions that yield useful forms of (1.1) that are not single-index, multiple-
index or additive models.” This question motivated the study here, and we show
that the additive index model is identifiable under mild conditions.

To avoid ambiguity, it is natural to assume that all projection indices in
(1.1) are distinct and ridge functions are nonzero. We show that the dimen-
sionality of the additive index model, M , as well as all the projection indices
and their corresponding ridge functions are identifiable if the indices are linearly
independent in that the projection indices matrix A is of column full rank, and
no more than one ridge function is a polynomial of order two or less. The iden-
tifiability of the additive index model has been studied earlier by Diaconis and
Shahshahani (1984), Chiou and Müller (2004), and Lin and Kulasekera (2007).
Diaconis and Shahshahani (1984) focus on the case when p = 2 and M is known.
They showed that if a projection index is not identifiable then its correspond-
ing ridge function has to be a polynomial of order 2M − 2 or less. They also
remark on the difficulty of extending such a result to p > 2. The identifiability
conditions provided by Chiou and Müller (2004) are much more restrictive than
ours, they require the ridge functions be monotone. They also assume that the
level set of f , {x : f(x) = c}, contains at least two points x1 and x2 such that
α′

jx1 = α′
jx2 if and only if j 6= j0 for some j0. The latter condition is not intu-

itive and is hard to check. To illustrate the difficulty in identifying the additive
index model, Lin and Kulasekera (2007) consider the special case where all ridge
functions are quadratic and conjectured that it might be necessary to require
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p > (2M − 1)/2 +
√

(2M − 1)2 + 8M2/2 to ensure identifiability. We show that
such conditions cannot be sufficient; no matter how big p is, we cannot identify
an additive index model with two or more quadratic ridge functions.

The main results of the paper are presented in the next section. The proof
of the main theorem is relegated to Section 4. Section 3 presents an application
of the identifiability result in checking additivity of the regression function.

2. Identifiability

Assume that there exist two sets of projection indices and ridge functions
such that

µ+h1(α′
1x)+h2(α′

2x)+. . .+hq(α′
qx) = ν+g1(β′

1x)+g2(β′
2x)+. . .+gl(β′

lx), (2.1)

for all x in an open set of Rp. Without loss of generality, assume that the set
contains the origin. The additive index model is identifiable if (2.1) implies that

(a) the intercepts agree, µ = ν;

(b) the dimensionality agrees, q = l;

(c) there exists a permutation π(1), π(2), . . . , π(q) of 1, . . . , q such that

αj = βπ(j), gj = hπ(j), (2.2)

for j = 1, . . . , q.

Our main result shows that the identifiability can be ensured under mild
conditions.

Theorem 1. Assume that

(I) there is at most one linear ridge function; if hj is linear, then α′
jαk = 0 for

all k 6= j;

(II) there is at most one quadratic ridge function;

(III) the projection indices matrix A is of column full rank.

Then the additive index model is identifiable.

The proof of Theorem 1 is relegated to Section 4. We now examine the
implications and necessity of the assumptions.

Assumption (I) is in place to deal with linear ridge functions. It is clear that
the additive index model is unidentifiable when there is more than one linear
ridge function, because

α′
1x + α′

2x = β′
1x + β′

2x (2.3)
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as long as there exists a 2× 2 invertible matrix T such that (α1, α2) = (β1, β2)T .
Furthermore, even when there is only one linear ridge function, its projection
index still cannot be identified without further restrictions because

h1(α′
1x) + bα′

2x =
{
h1(α′

1x) − aα′
1x

}
+ ‖aα1 + bα2‖ ·

(
aα1 + bα2

‖aα1 + bα2‖

)′
x (2.4)

for any scalars a and b 6= 0. Note that the aforementioned argument only suggests
that the identifiability of linear ridge functions is lost. Generally the nonlinear
ridge functions may still be identifiable. To this end, we assume that α′

jαk = 0
for all k 6= j.

Now consider Assumption (II). Its necessity is justified by the following
proposition:

Proposition 1. If there are two quadratic ridge functions, then their correspond-
ing projection indices are not identifiable.

Proof. Without loss of generality, assume that h1(u) = au2 and h2(u) = bu2

for some constant a, b 6= 0. Let U = aα1α
′
1 + bα2α

′
2. It follows that h1(α′

1x) +
h2(α′

2x) = x′Ux. It is not hard to check that for any 0 < c < 1, g1(β′
1x) +

g2(β′
2x) = x′Ux where

β1 =

(
c
√

aα1 +
√

1 − c2
√

bα2

)
‖c
√

aα1 +
√

1 − c2
√

bα2‖
;

β2 =

(√
1 − c2

√
aα1 − c

√
bα2

)
‖
√

1 − c2
√

aα1 − c
√

bα2‖
;

g1(u) = ‖c
√

aα1 +
√

1 − c2
√

bα2‖2u2;

g2(u) = ‖
√

1 − c2
√

aα1 − c
√

bα2‖2u2.

Therefore, α1 and α2 are not identifiable.

To illustrate the necessity of the requirement that the projection indices are
linearly independent, consider h1(x1) + h2(x2) + (x1 + x2)2. Because

h1(x1)+h2(x2)+(x1+x2)2 =
{
h1(x1) + 2x2

1

}
+

{
h2(x2) + 2x2

2

}
−(x1−x2)2, (2.5)

for any functions h1, h2, one cannot determine whether the last projection di-
rection is (x1 + x2)/

√
2 or (x1 − x2)/

√
2. More generally, if h3(u) = u2 and

α3 = (α1 + cα2)/‖α1 + cα2‖, then we cannot identify the additive index model.
A direct consequence of this condition is M ≤ p. However, we do not require
orthogonality among the projection indices.
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The additive index model is closely related to a model that is often used for
the purpose of sufficient dimension reduction (Li (2000); Hristache et al. (2001);
Cook (2007)):

f(x) = h(α′
1x, . . . , α′

Mx), (2.6)

where α1, . . . , αM form an orthonormal basis. The projection indices of this
model are generally unidentifiable and the main focus is to reveal the linear
space spanned by α1, . . . , αM , which is known to be possible under the so-called
linearity condition (Li (2000)). Assuming an additive structure in terms of the
factors allow us to identify the projection indices as well as the ridge functions
in the additive index model.

When f represents a log-density function of a p-dimensional random vector x,
the additive index model leads to the so-called independent component analysis
(Hyvärinen, Karhunen and Oja (2001); ICA, for short) that has recently gained
considerable popularity in such fields as signal processing and image analysis. In
this case, our result implies that ICA is identifiable as long as there is at most one
Gaussian component. This result has been obtained earlier by Comon (1994).
Our result, however, is more general in several crucial aspects. First, we do not
require that exp(f) be a density function. The condition is not as vacuous as it
appears to be. For example, according to Marcinkiewicz’s Theorem, whenever a
probability distribution has only a finite number of non-vanishing cumulants, it
must be Gaussian, and that every cumulant of order greater than two vanishes.
In other words, if exp(f) is a density function whose corresponding characteristic
function can be written as exp(P (·)) for some polynomial P , then both f and P

are necessarily quadratic. This property of density functions plays a critical role
in proving the identifiability of ICA (Comon (1994)). Second, in ICA the number
of components, M , always equals p and needs not to be identified. In contrast,
in regression allowing M to be smaller than p is not only possible but of great
importance from a modeling perspective because of its potential in dimension
reduction.

A careful examination of the proof of Theorem 1 reveals that when Assump-
tion (I) is violated, all nonlinear ridge functions and their projection indices can
still be identified. Similarly if there are multiple quadratic ridge functions, all
non-quadratic ridge functions and their corresponding projection indices remain
identifiable. Furthermore, the sum of the quadratic components is also uniquely
determined. The only loss of identifiability is in the individual quadratic compo-
nents. Taking this into account, we can re-write (1.1) as

f(x) = β0 + β′x + x′Ax +
M∑

j=1

hj(α′
jx) (2.7)
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and impose side condition

hj(0) = h′
j(0) = h′′

j (0) = 0, j = 1, . . . ,M. (2.8)

Following the proof of Theorem 1, we have

Theorem 2. Under Assumptions (I)−(III), the alternative formulation of the
additive index model (2.7) is identifiable under condition (2.8) in that, if

β0 + β′x + x′Ax +
M∑

j=1

hj(α′
jx) = β̃0 + β̃′x + x′Ãx +

M̃∑
j=1

h̃j(α̃′
jx), (2.9)

then β0 = β̃0, β = β̃, A = Ã, M = M̃ , and there exists a permutation
(π(1), . . . , π(M)) of {1, . . . ,M} such that hj = h̃π(j) and αj = α̃π(j).

3. Application

The identifiability of the additive index model has important practical im-
plications. One is in checking if a more restrictive model could be adopted. As
discussed before, various nonparametric regression models such as the additive
model are special cases of the additive index model. Without identifiability, mak-
ing such a decision can be difficult. In the light of our results, this becomes much
more feasible. One can fit a additive index model and then simply check whether
or not the projection indices are the columns of an identity matrix. To illustrate
such a strategy, we consider the analysis of two real world data examples.

Consider a data set taken from the 1994 Canadian Survey of Labor and
Income Dynamics, for the province of Ontario. The question of interest concerns
the relationship between wages and a person’s age and educational background.
We consider only the English-speaking males, which includes a total of 1,608
subjects. The additive model has

wage = h1(age) + h2(education) + ε, (3.1)

which is a special case of the additive index model when the projection indices
form a permutation matrix. Although a powerful modeling tool in many appli-
cations, the additive model sometimes can be too restrictive. For comparison,
we also fit the additive index model.

We use an estimation procedure similar to that of Chen (1991). Instead of
modeling the ridge functions by regression splines as in Chen (1991), we consider
the smoothing spline type estimate:

f̂ = arg min
f

1
n

[yi − f(xi)]
2 +

M∑
j=1

λj

∫
(h′′

j )
2. (3.2)
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The estimate f̂ can be computed in an iterative fashion. When the projection
indices are known, this becomes the usual smoothing spline estimate for additive
models and can be solved as in the standard additive models (Hastie and Tibshi-
rani (1990)); once the ridge functions hjs are updated, evaluating the projection
indices becomes a nonlinear optimization problem that can be solved using the
Newton-Ralphson algorithm. The tuning parameters are chosen using five-fold
cross validation. Using this approach, we estimate the two projection indices to
be α1 = (0.9202, 0.3914)′ and α2 = (0.6274,−0.7787)′. To assess the significance
of the departure from an additive model, one hundred bootstrap samples were
simulated from the additive model fit. Specifically, for each sample, we replaced
the response yi with f̂(xi)+ εi where f̂ is the additive fit, xi is the predictors for
the ith observation, and εi was simulated from the empirical residual distribution.
We ran the additive index model for each simulated data set and recorded the
distance between the estimated projection direction A = (α1, α2) and an identity
matrix I measured by the so-called Amari metric (Hyvärinen, Karhunen and Oja
(2001))

d(I,A) =
1
4

(
min{|α11|, |α12|}
max{|α11|, |α12|}

+
min{|α21|, |α22|}
max{|α21|, |α22|}

+
min{|α11|, |α21|}
max{|α11|, |α21|}

+
min{|α12|, |α22|}
max{|α12|, |α22|}

)
.

This metric is invariant to the permutation of the columns of A and change of
signs of the columns. Here the Amari metric of the projection indices matrix
estimated from the full data is 7.05, which is larger than the distances obtained
from any of the 100 simulated data sets. This suggests that the additive model
may not be an appropriate choice for the data set.

We now look at a second example where the additive model may be more
appropriate. The diabetes data set of Hastie and Tibshirani (1990) comes from
a study aimed at describing the relationship between the concentration of C-
peptide and two predictor variables, Age and Base.Deficit, a measure of acidity
for n = 43 insulin-dependent diabetes mellitus children (Sockett et al. (1987)).
Hastie and Tibshirani (1990) consider the following additive model:

log(C − peptide) = h1(Age) + h2(Base.Deficit) + ε. (3.3)

More generally, we fit the additive index model. Using the estimating pro-
cedure described above, we estimate the two projection directions as α1 =
(0.0170,−0.9999) and α2 = (0.9730,−0.2308), respectively. The corresponding
Amari metric is 0.126. To gain further insight, we again conducted boostrap to
evaluate the significance of the difference between the two models. Among 100
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simulated data sets from the additive model fit, 81 yielded larger Amari met-
rics. This suggests that the additive model may be an appropriate choice for the
diabetes data.

4. Proof

4.1. Auxiliary lemmas

Our proof relies on the two auxiliary lemmas. The first is a result from
Khatri and Rao (1968).

Lemma 1 (Khatri and Rao (1968)). Consider the functional equation

φ1(α′
1t) + . . . + φr(α′

rt) = ξ1(t1) + . . . + ξp(tp) (4.1)

defined for |ti| ≤ R, i = 1, . . . , p, where t = (t1, . . . , tp)′ and α1, . . . , αr are the
column vectors of a p × r matrix A. Let A be of column full rank such that each
column has at least two non-zero entries. Then φ1, . . . , φr and ξ1, . . . , ξp are all
quadratic functions.

The second lemma concerns a characterization of linear functions that goes
back to Cauchy.

Lemma 2. If
g(x) + g(y) = g(x + y) (4.2)

holds for x, y, x + y ∈ O where O is an open set containing the origin, then g is
linear.

4.2. Proof of Theorem 1

We are now in position to prove Theorem 1. Setting x = 0, we obtain µ = ν

from (2.1) which can now be rewritten as

h1(α′
1x) + h2(α′

2x) + . . . + hq(α′
qx) = g1(β′

1x) + g2(β′
2x) + . . . + gl(β′

lx). (4.3)

Without loss of generality, assume that q ≤ l. Because β1, β2, . . . , βl are
linearly independent, there exists a p×p full rank matrix B whose first l columns
are β1, β2, . . . , βl. Write z = B′x and Γ = B−1A where A = (α1, α2, . . . , αq).
Then (4.3) becomes

h1(γ′
1z) + h2(γ′

2z) + . . . + hq(γ′
qz) = g1(z1) + g2(z2) + . . . + gl(zl), (4.4)

where γj is the jth column of Γ. It is clear that Γ is of column full rank because
B is of full rank and A is of column full rank. The rest of the proof proceeds by
induction. First consider the case with q = 1. Then

h1(γ′
1z) = g1(z1) + . . . + gl(zl). (4.5)
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For any j = 1, 2, . . . , p, setting zk = 0 for all k 6= j yields

h1(γ1jzj) = gj(zj) j ≤ l; (4.6)

h1(γ1jzj) = 0 j > l, (4.7)

where γ1 = (γ11, γ12, . . . , γ1p)′. If γ1j 6= 0 for any j > l, then (4.7) implies that
h1 = 0 which is impossible. Hence, there is at least one j ≤ l such that γ1j 6= 0.
Without loss of generality, assume that γ11 6= 0. Next we argue that γ1j = 0 for
any 1 < j ≤ l. Otherwise, assume that γ12 is also nonzero. From (4.5) and (4.6),
we have

h1(γ11z1 + γ12z2) = g1(z1) + g2(z2) = h1(γ11z1) + h1(γ12z2) (4.8)

which, by Lemma 2, implies that h1 is linear. Consequently g1 and g2 are also lin-
ear, which contradicts Assumption (I). Now that γ1 = (1, 0, . . . , 0)′, (4.5) implies
that

h1(z1) = g1(z1) + . . . + gl(zl). (4.9)

Therefore, l = 1(= q) and g1 = h1.
Now assume that (4.4) implies that q = l and αj = βj , hj = gj for all

j = 1, . . . , q. Consider the functional equation

h1(γ′
1z) + h2(γ′

2z) + . . . + hq(γ′
qz) + hq+1(γ′

q+1z) = g1(z1) + g2(z2) + . . . + gl(zl),
(4.10)

where l ≥ q + 1. Recall that γ1, . . . , γq+1 are linearly independent. From Lemma
1, if in addition each γj has at least two nonzero entries, then all h′

js and g′js
have to be quadratic functions. By Assumption (II), this is not possible. Whence
there exists at least one γj that has only one nonzero component. Without loss
of generality, assume that γq+1 has only one nonzero component; it has to be a
column vector of an identity matrix I. With a permutation of coordinates, we
can further take γq+1 as the lth column of an identity matrix.

To invoke induction, let

ηj = γj − γjl · γq+1, j = 1, . . . , q (4.11)

and γjl be the lth entry of γj . Such a transformation essentially reduces the role
of zl. Because γ1, . . . , γq+1 are linearly independent, so are η1, . . . , ηq. Setting
zl = 0 in (4.10), we have

h1(η′1z) + . . . + hq(η′qz) = g1(z1) + . . . + gl−1(zl−1) (4.12)

which, by induction, implies that q = l − 1 and there exists a permutation
π(1), . . . , π(l − 1) such that ηπ(j)/ηπ(j),j is the jth column of an identity matrix
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and hπ(j)(ηπ(j),j ·) = gj(·) for j = 1, . . . , l − 1. Without loss of generality, assume
that π(j) = j. Then (4.10) can be written as

h1(γ11z1 + γ1lzl) + h2(γ22z2 + γ2lzl) + . . . + hq(γqqzq + γqlzl) + hl(zl)

= h1(γ11z1) + h2(γ22z2) + . . . + hq(γqqzq) + gl(zl).

Recall that q +1 = l and γjj = ηjj for j = 1, . . . , q. Setting zj = 0 for all j 6= 1, l,
yields

h1(γ11z1 + γ1lzl) = h1(γ11z1) + g∗l (zl), (4.13)

where
g∗l (zl) = gl(zl) − h2(γ2lzl) − . . . − hq(γqlzl) − hl(zl). (4.14)

If γ1l 6= 0, this implies that both h1 and g∗l are linear which violates Assumption
(I) that γ′

1γl = γ1l = 0. Therefore γ1 = (1, 0, . . . , 0)′ and h1 = g1. Similarly, γj

is the jth column of an identity matrix and hj = gj for j = 2, . . . , q. Finally,
hl = gl by setting zj = 0 for all i 6= l. The proof is now completed by induction.

Acknowledgement

This research was supported in part by NSF grants DMS-MPSA-0624841
and DMS-0846234 and a grant from Georgia Cancer Coalition.

References

Chen, H. (1991). Estimation of a projection-pursuit type regression model. Ann. Statist. 19,

142-157.

Chiou, J. and Müller, H. (2004). Quasi-likelihood regression with multiple indices and smooth

link and variance functions. Scand. J. Statist. 31, 367-386.

Comon, P. (1994). Independent component analysis, a new concept?. Signal Processing 36,

287-314.

Cook, D. (2007). Fisher lecture: dimension reduction in regression. Statist. Sci. 22, 1-26.

Diaconis, P. and Shahshahani, M. (1984). On nonlinear functions of linear combinations. SIAM

J. Schientific Computing 5, 175-191.

Duan, N. and Li, K. (1991). Slicing regression: a link-free regression method. Ann. Statist. 19,

505-530.

Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc.

76, 817-823.
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