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Large Gaussian Covariance Matrix Estimation
With Markov Structures

Xinwei DENG and Ming YUAN

Covariance matrix estimation for a large number of Gaussian random variables is
a challenging yet increasingly common problem. A fact neglected in practice is that
the random variables are frequently observed with certain temporal or spatial struc-
tures. Such a problem arises naturally in many practical situations with time series and
images as the most popular and important examples. Effectively accounting for such
structures not only results in more accurate estimation but also leads to models that are
more interpretable. In this article, we propose shrinkage estimators of the covariance
matrix specifically to address this issue. The proposed methods exploit sparsity in the
inverse covariance matrix in a systematic fashion so that the estimate conforms with
models of Markov structure and is amenable for subsequent stochastic modeling. The
present approach complements the existing work in this direction that deals exclusively
with temporal orders and provides a more general and flexible alternative to explore po-
tential Markov properties. We show that the estimation procedure can be formulated as
a semidefinite program and efficiently computed. We illustrate the merits of these meth-
ods through simulation and the analysis of a real data example. Matlab implementation
of the proposed methods is also available online as supplemental material.

Key Words: Conditional independence; GraphGarrote; Markov property.

1. INTRODUCTION

In the Gaussian covariance matrix estimation problem, one wishes to estimate the co-
variance matrix of a multivariate normal vector X = (X(1), . . . ,X(p))′ given an indepen-
dent and identically distributed sample X1, . . . ,Xn of X. Assuming that X ∼ N (μ,�), μ

is typically estimated by the sample mean X̄ = (X̄(1), . . . , X̄(p))′ where

X̄(i) = 1

n

n∑
j=1

X
(i)
j , (1.1)
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and � by the sample covariance matrix. Increasingly commonly in practice, we need to
estimate the covariance matrix when the dimension p is moderate or large. It is well known
that the sample covariance matrix is not a stable estimate in such cases because of the large
number of unknowns involved. Even worse, when p ≥ n, the sample covariance matrix is
not positive definite and therefore not a legitimate covariance matrix estimator for many
purposes.

In recent years, a number of new methods have been developed to overcome these draw-
backs of the sample covariance matrix. Earlier developments focused on shrinking the
eigenvalues of the sample covariance matrix (Stein 1977; Haff 1980; Dey and Srinivasan
1985; Perron 1992). A similar idea of perturbing the eigenvalues of the sample covariance
matrix also appeared in the approach of Ledoit and Wolf (2003) who considered a linear
combination of the sample covariance matrix and the identity matrix. Bayesian treatment
of covariance matrix estimation can also be found in the works of Smith and Kohn (2002)
and Wong, Carter, and Kohn (2003) and references therein. Covariance matrix estimation
is closely related to the covariance selection problem (Dempster 1972) where the interest is
in constructing a graphical model that can be used to describe the conditional independence
structure among the variables. Yuan and Lin (2007) proposed penalized likelihood methods
to simultaneously address both problems. Denote C = (cij ) = �−1. A zero entry cij = 0
indicates zero partial correlation between the two random variables X(i) and X(j) and
therefore conditional independence given the other variables. The shrinkage estimators of
Yuan and Lin (2007) encourage sparsity in the inverse covariance matrix and thus conduct
estimation and selection at the same time. Such estimator has also been recently studied
by d’Aspremont, Banerjee, and El Ghaoui (2008), Rothman et al. (2008), and Friedman,
Hastie, and Tibshirani (2008). Correspondence with a sparse graphical model makes these
covariance matrix estimators more interpretable.

A fact neglected by these existing methods is that the random variables are often
observed with certain temporal or spatial structures; this arises naturally in the analy-
sis of time series or images. One exception is the approach pioneered by Pourahmadi
(1999, 2000) who considered the case when the variables are temporally ordered. Pourah-
madi suggested to work on a modified Cholesky decomposition of the covariance matrix:
T �T ′ = D where

T =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
φ21 1 0 · · · 0
φ31 φ32 1 · · · 0
· · · · · · · · · · · · · · ·
φp1 φp2 φp3 · · · 1

⎞
⎟⎟⎟⎟⎠

is a lower-triangular matrix with ones on its diagonal and D is a diagonal matrix. It can
be shown that the subdiagonal entries on the ith row of T , (φi1, . . . , φi,i−1), can be inter-
preted as the minus of the coefficients when regressing X(i) over X(1), . . . ,X(i−1). This
provides a natural reparameterization of the covariance matrix when X(i)’s are ordered
temporally, such as in time series. Various shrinkage methods have been proposed within
this framework to encourage sparsity in T (Wu and Pourahmadi 2003; Huang et al. 2006;
Bickel and Levina 2008; Levina, Rothman, and Zhu 2008). In particular, Levina, Rothman,
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Figure 1. Sample images of handwritten digits; each image is of size 16 × 16.

and Zhu (2008) introduced a penalized likelihood estimate that encourages the sparsity of

the inverse covariance matrix by forcing a particular pattern of sparsity on T . Note that

�−1 = T ′D−1T . By requiring φij = 0 if φi,j+1 = 0 and j < i − 1, some entries of the

inverse covariance matrix that are far away from the diagonal can be shrunken to zeros and

therefore the estimate can be interpreted as Markov chains. These approaches, however,

only apply to temporal orders and may not be suitable if the X(i)’s are observed with more

complicated structures such as spatial orders.

To elaborate, consider analyzing handwritten digits based on a training sample of im-

ages (LeCun et al. 1990) as shown in Figure 1. Covariance matrix estimation of the inten-

sity values on the 256 = 16 × 16 pixels plays a critical role in various statistical analyses

such as principal component analysis and linear discriminant analysis. The correlation be-

tween the intensities on two pixels is clearly related to the positions of the pixels. Further-

more, images of this sort can most often be adequately modeled as a Markov random field

of a relatively small order because the intensity values on pixels far away from each other

are generally independent conditional on intensities of the other pixels (Winkler 2006).

A covariance matrix estimate that conforms with such models not only reduces the dimen-

sionality of the estimation problem but also is much more valuable in subsequent stochastic

modeling. Unlike the Markov structure in the temporally ordered cases, the Markov ran-

dom field cannot be inferred from the sparsity pattern of matrix T of the modified Cholesky

decomposition. To illustrate, consider four random variables that are observed from a 2×2

grid as shown below:

X(1) X(2)

X(3) X(4)

http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-000.jpg&w=235&h=187
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A Markov random field of order 1 is equivalent to c41 = c32 = 0, which can only imply
that φ41 = 0 as illustrated by (1.2):

�−1 =

⎛
⎜⎜⎝

1 0.4 0.4 0
0.4 1 0 0.4
0.4 0 1 0.4
0 0.4 0.4 1

⎞
⎟⎟⎠ �⇒ T =

⎛
⎜⎜⎝

1 0 0 0
0.59 1 0 0
0.48 −0.19 1 0

0 0.4 0.4 1

⎞
⎟⎟⎠ . (1.2)

But on the other hand, a Markov random field of order 1 cannot be inferred from φ41 = 0.
A counterexample can be given by simply altering the (3,2) entry of T while keeping the
same D:

�−1 =

⎛
⎜⎜⎝

1 0.55 0.4 0
0.55 1 0.32 0.4
0.4 0.32 1 0.4
0 0.4 0.4 1

⎞
⎟⎟⎠ �⇒ T =

⎛
⎜⎜⎝

1 0 0 0
0.59 1 0 0
0.48 0.19 1 0

0 0.4 0.4 1

⎞
⎟⎟⎠ . (1.3)

This simple example shows that the modified Cholesky decomposition may no longer be
suitable for exploring Markov structures when the variables are observed with structures
more general than temporal orders.

The lack of a method that can handle general Markov structures among the random
variables motivates the present work. In this article, we propose a more direct strategy to
explore conditional independence relationships among variables when they are observed
with temporal and spatial structures. We suggest to exploit sparsity directly on the inverse
covariance matrix. We consider constrained maximum likelihood methods with constraints
that encourage sparsity in a systematic fashion so that estimates that conform with models
of Markov structure are favored. We shall introduce the proposed methods in the next
section, followed by examples in Sections 3 and 4. We conclude with some discussion in
the last section.

2. METHODOLOGY

The log-likelihood for μ and C = �−1 based on a random sample X1, . . . ,Xn of X is

ln |C| − 1

n

n∑
i=1

(Xi − μ)′C(Xi − μ) = ln |C| − trace(CĀ) (2.1)

up to a constant not depending on μ and C, where

Ā = 1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)′ (2.2)

is the maximum likelihood estimate of �. To estimate C, we consider a shrunken version
of C̃ = Ā−1: C = (θij c̃ij ) where θ ′

ij ’s are shrinkage coefficients. Other choices of C̃ are

also possible; we focus on Ā−1 in this article to fix ideas. Given that C̃ is a reasonably good
initial estimate of the inverse covariance matrix, it is appropriate to require that the shrink-
age coefficients be nonnegative, θij ≥ 0. To achieve sparse graph structure and encourage
sparsity in C, one can maximize the log-likelihood subject to the constraint that∑

i �=j

θij ≤ M (2.3)
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for some tuning parameter M ≥ 0. This is the so-called graphGarrote estimator proposed
by Yuan and Lin (2007). Clearly when M = +∞, the constraint becomes inactive and the
resulting estimate reduces to Ā−1 and no shrinkage takes place. On the other hand, when
M = 0, all the off-diagonal entries of the inverse covariance matrix will be shrunken to
zero and the estimate becomes diagonal which implies mutual independence among X(i)’s.
A choice of tuning parameter M between these two extremes will result in covariance
matrix estimates with varying degrees of sparsity. The procedure is similar in spirit to the
nonnegative garrote estimator proposed by Breiman (1995) for linear regression.

We now consider the situation when the random variables are observed in a space with a
certain distance measure defined. Assume that X(i) is observed at location ti . For example,
ti is a point in a two-dimensional lattice in the case of images. Most often dependence
between two variables dwindles as the distance between them increases. To incorporate
this prior information into the estimation of the covariance matrix, we impose the following
constraints on the shrinkage coefficients:

θij ≤ θik if dij ≥ dik, (2.4)

where dij = dist(ti , tj ) is the pairwise distance. Because the entries of C̃ are generally
nonzero, constraint (2.4) implies that cij = 0 if cik = 0. It is worth pointing out that this
constraint only encourages more shrinkage toward zero for entries that are farther away
from the diagonal to reflect our preference toward Markov models; it does not force cij ≤
cik . In summary, we propose to estimate C by Ĉ = (θ̂ij c̃ij ) where �̂ = (θ̂ij ) is the solution
to

min−[ln |C| − trace(CĀ)]
subject to C is positive definite,

cij = θij c̃ij ,

θij ≥ 0,∑
i �=j

θij ≤ M,

θij ≤ θik if dij ≥ dik and j, k �= i. (2.5)

The problem is a semidefinite program and can be easily solved using standard software
packages such as SDPT3 (Tütüncü, Toh, and Todd 2003).

Thus far we have assumed that the tuning parameter M is fixed. In practice, it also
needs to be estimated. A commonly used approach is the multifold cross-validation which
can be computationally demanding. A much more efficient alternative is the BIC criterion
introduced by Yuan and Lin (2007):

BIC(M) = − ln |Ĉ(M)| + trace(Ĉ(M)Ā) + ln(n)

n

∑
i≤j

êij (M), (2.6)

where êij = 0 if ĉij = 0, and êij = 1 otherwise. We shall adopt this criterion in our imple-
mentation; it works very well in practice according to our experience.
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Note that without the last constraint in (2.5), our estimate becomes the graphGarrote
of Yuan and Lin (2007). The last constraint takes the temporal or spatial structure of the
observations into consideration. Consider, for example, the case where the observations are
temporally ordered:

�� � � �

X(1) X(2) X(3) X(4)

t1 t2 t3 t4
t

. . . . . .

Because dij is a monotone increasing transformation of |i − j |, the last constraint can be
simplified to

θi,j+1 ≤ θij if j > i, and θi,j+1 ≥ θij if j < i − 1. (2.7)

This encourages more shrinkage to the partial correlation between X(i) and X(j) if the two
observations are farther away from each other. Together with the constraint on the sum of
the shrinkage coefficients, it induces a sparse estimate of the inverse covariance matrix that
follows a nonstationary Markov chain in that there exist h1, h2, . . . , hp > 0 such that

X(i) ⊥ {
X(j) :dij > hi

}∣∣{X(j) : 0 < dij ≤ hi

}
.

To demonstrate its effect, we apply both graphGarrote and the proposed estimate, which
hereafter we refer to as the structured graphGarrote, to datasets that are simulated from a
AR(2) model with cij = 1 if i = j , 0.5 if |i − j | = 1, 0.25 if |i − j | = 2, and 0 otherwise.
We consider sample size n = 100 and dimension p = 10. For both estimates, the tuning
parameter M is chosen by the BIC criterion defined by (2.6). Panel (a) of Figure 2 shows
the nonzero pattern of the true inverse covariance matrix. A black block indicates that the
coefficient is not zero and a white block corresponds to a zero entry. Panels (b) and (c)
give the heatmap representing the frequency that each entry of the inverse covariance is
estimated as nonzero over 100 simulations. A darker block indicates higher frequency. It
is evident that by taking advantage of the temporal order, the proposed method is more
suitable to exploit the Markov structure of the true data-generating mechanism. Another
interesting observation from this experiment is that BIC tends to select similar values of
tuning parameter M for graphGarrote and structured graphGarrote. With the structural

(a) (b) (c)

Figure 2. Effect of the structure constraint. Panel (a) represents the true nonzero pattern of the inverse covariance
matrix with a block at the ith row and j th column indicating cij �= 0. Panels (b) and (c) give the frequency that
each entry of the inverse covariance matrix is estimated by a nonzero value. A darker block indicates higher
frequency. Panel (b) corresponds to graphGarrote and (c) corresponds to the structured graphGarrote.

http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-001.png&w=110&h=88
http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-002.jpg&w=110&h=88
http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-003.jpg&w=111&h=88
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constraints, the structured graphGarrote generally delivers less shrinkage (therefore larger
θ value) to entries that are more likely to be nonzero under Markov structure.

In the case of images, the random variables are observed on a two-dimensional lattice.
Let X(i) be observed at the pixel located on the ri th row and ci th column. A natural dis-
tance defined on a two-dimensional lattice is the so-called city block distance or Manhattan
distance:

dist(i, j) = |ri − rj | + |ci − cj |. (2.8)

It is noteworthy that the pairwise distances between observations on a regular lattice take
only a relatively few distinct values. It is natural to expect that similar degrees of shrinkage
are needed for entries of the inverse covariance matrix that correspond to similar pairwise
distances. In other words, it is reasonable to have θij = θi′j ′ if dij = di′j ′ . For convenience,
we shall refer to this modification as the homogeneous structured graphGarrote estimate. It
is worth pointing out that the homogeneous estimate does not impose stationarity by forc-
ing cij = ci′j ′ . It, however, greatly reduces the dimensionality of the optimization problem
(2.5), which brings about great computational efficiency. More specifically, the nonhomo-
geneous version involves p(p−1)/2 shrinkage parameters and generally linear constraints
of the order O(p2), whereas the homogeneous version uses only p − 1 shrinkage parame-
ters and has O(p) linear constraints. The difference in estimation accuracy between the
structured graphGarrote and its homogeneous version is generally marginal. To illustrate
this, consider p = 4 × 4 random variables that are observed on a two-dimensional lattice.
We generate n = 100 observations from a multivariate normal distribution with the inverse
covariance matrix generated in the following fashion. First we generate cij ∼ U(0,1) if
dij = 1, and set cij = 1 if dij = 0 and 0 if dij > 1. Here dij represents the city block dis-
tance between i and j , and U(0,1) denotes the uniform distribution from 0 to 1. Next for
all i, we normalize cij so that

∑
i �=j cij = 0.9 to ensure positive definiteness. We apply

both the structured graphGarrote and its homogeneous version to the simulated data. We
also include the sample covariance matrix in the comparison to serve as the baseline. Fig-
ure 3 shows the boxplot of the estimation accuracy measured by both the Kullback–Leiber
loss and the matrix �1 loss for the three methods, summarized over 100 simulated datasets.
Both criteria will be defined in the next section. We observe from Figure 3 that even if the
true data-generating mechanism is nonstationary as in this example, the structured graph-
Garrote and its homogeneous version behave very similarly. Because of the similarity in
estimation accuracy and the great computational advantage of the homogeneous version,
we shall use it throughout the article unless otherwise indicated.

3. SIMULATIONS

To illustrate the merits of the proposed methods, we conducted several sets of simulation
studies.

3.1 TEMPORAL STRUCTURES

We first compare through simulations the proposed method with several popular alter-
native shrinkage estimators of the covariance matrix when the variables are temporally
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(a)

(b)

Figure 3. Comparison of estimation accuracy between the structured graphGarrote and its homogeneous ver-
sions. Panels (a) and (b) correspond to loss functions given by (3.1) and (3.4), respectively.

ordered. We include the estimators of Huang et al. (2006), Bickel and Levina (2008), and
Levina, Rothman, and Zhu (2008), as well as the sample covariance matrix for comparison.
We compare these methods on the basis of the number of false positives (FP; incorrectly
identified nonzero entries of �−1), the number of false negatives (FN; incorrectly missed
nonzero entries), and the Kullback–Leibler loss defined as

KL = − log |Ĉ| + tr(Ĉ�) − (− log |�−1| + p). (3.1)

In the approach of Bickel and Levina (2008), the Cholesky factor T is banded to esti-
mate the inverse covariance matrix, that is,

φij = 0 ∀|i − j | > h

for some h > 0. The banding parameter h is chosen by cross-validation using the matrix
�1 loss. Huang et al. (2006) suggested adding �1 or �2 penalty

λ

p∑
i=1

i−1∑
j=1

|φij |γ , γ = 1 or 2

http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-004.jpg&w=175&h=137
http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-005.jpg&w=172&h=136
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on the elements of T to the normal likelihood (2.1), which leads to Lasso or ridge type
shrinkage of the φij ’s. The authors also suggested to choose the tuning parameter λ > 0 by
cross-validation. The �2 penalty (γ = 2) was used in our simulation study. Instead of the �1

penalty in the article by Huang et al. (2006), Levina, Rothman, and Zhu (2008) introduced
a nested Lasso penalty on φij ’s. The so-called J2 nested Lasso penalty is given by

∑
j J2j ,

where

J2j = λ1

j−1∑
k=1

|φjk| + λ2

j−2∑
k=1

|φjk|
|φj,k+1| , (3.2)

and λ1, λ2 > 0 are tuning parameters. The nested Lasso penalty forces a random variable
to be conditionally dependent only on its nearest neighbors. Differently from banding, the
number of nearest neighbors selected with the nested Lasso penalty is allowed to vary
across variables. As suggested by the authors, the tuning parameters are selected with a
validation set which is set aside from the original training dataset.

The following three models were considered:

Model 1: � = Ip .

Model 2 [AR(1) model]: cij = 1 if i = j , 0.45 if |i − j | = 1, and 0 otherwise.

Model 3 [(AR(2) model)]: cij = 1 if i = j , 0.5 if |i − j | = 1, 0.25 if |i − j | = 2, and
0 otherwise.

For each model, we simulated datasets with sample size n = 100 and dimension p = 10,
n = 100 and p = 30, or n = 400 and p = 100. Table 1 documents the means and standard
errors (in parentheses), summarized from 100 runs for each combination.

As shown in Table 1, all shrinkage methods improve upon the sample covariance ma-
trix. The improvement is particularly significant for high-dimensional problems. Among
the shrinkage methods, the structured graphGarrote enjoys the best performance overall in
terms of estimation accuracy. It also dominates the other methods overwhelmingly in re-
covering the nonzero patterns of the inverse covariance matrix or equivalently the Markov
structure among the variables. We have also compared the methods using several other
commonly used estimation accuracy measures, namely the quadratic loss

QL = tr(�−1�̂ − I )2, (3.3)

where �̂ = Ĉ−1, and the matrix �1 loss

L1 = ‖� − �̂‖�1, (3.4)

where ‖M‖�1 = sup{‖Mx‖�1 :‖x‖�1 = 1} and ‖x‖�1 is �1 norm of vector x. The results are
similar to those of the Kullback–Leibler loss and therefore omitted here for brevity.

We have also conducted simulations on a couple of other models considered by Huang
et al. (2006) and Bickel and Levina (2008), respectively, which are

Model 4: Covariance matrix such that σij = ρ|i−j |,1 ≤ i, j ≤ p with ρ = 0.5.
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Table 1. Simulation results for the three models with temporal orders. Averages and standard errors are calculated from 100 runs.

Structured graphGarrote Bickel and Levina Levina et al. Huang et al. Sample
p Model KL FP FN KL FP FN KL FP FN KL KL

10 1 0.10 0.00 0.00 0.11 0.18 0.00 0.11 1.84 0 0.12 0.69
(0.05) (0.00) (0.00) (0.05) (1.79) (0.00) (0.05) (5.39) (0.00) (0.06) (0.17)

2 0.26 0.16 0.00 0.63 64.98 0.00 0.26 0.72 0 0.60 0.68
(0.10) (1.59) (0.00) (0.17) (8.28) (0.00) (0.10) (7.16) (0.00) (0.13) (0.14)

3 0.36 2.76 0.00 0.71 6.90 7.04 0.66 53.76 0.64 0.62 0.70
(0.11) (6.06) (0.00) (0.38) (7.95) (7.94) (0.21) (10.97) (3.13) (0.16) (0.18)

30 1 0.31 0.00 0.00 0.32 0.58 0.00 0.32 45.52 0.00 0.34 8.37
(0.09) (0.00) (0.00) (0.11) (5.77) (0.00) (0.08) (57.72) (0.00) (0.10) (0.90)

2 1.03 0.06 0.00 7.26 734.60 0.00 0.88 125.76 0.00 5.46 8.58
(0.23) (0.60) (0.00) (1.44) (83.69) (0.00) (0.17) (75.16) (0.00) (0.63) (0.94)

3 1.43 0.54 0.00 2.05 29.54 15.68 4.59 168.1 40.86 4.92 8.76
(0.29) (5.37) (0.00) (1.28) (31.48) (25.14) (0.26) (82.18) (6.71) (0.36) (0.92)

100 1 0.26 0.00 0.00 0.26 5.94 0.00 0.25 147.48 0.00 0.35 20.14
(0.04) (0.00) (0.00) (0.06) (33.78) (0.00) (0.04) (103.8) (0) (0.05) (0.74)

2 0.81 0.00 0.00 18.38 9227.58 0.00 1.13 6930.58 0.00 13.27 20.11
(0.10) (0.00) (0.00) (1.37) (393.22) (0.00) (0.16) (731.462) (0) (0.35) (0.65)

3 1.26 0.00 0.00 1.31 400.20 0.00 8.08 7501.46 16.8 12.81 20.17
(0.14) (0.00) (0.00) (0.13) (73.76) (0.00) (0.51) (511.37) (7.90) (0.31) (0.67)
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Model 5: C = T ′D−1T , where D = 0.01×I , and T = −(φij ), with φii = 1, φi+1,i =
0.8, and φij = 0 otherwise.

Both are AR(1) and the results are very similar to those of Model 1 and therefore omitted
here.

When the observations follow Markov chains of varying lengths from variable to vari-
able, the number of nonzero elements differs among the rows of the Cholesky factor ma-
trix T , that is,

φij = 0 if and only if i − j > hi

for different bandwidth hi ’s. The banding method of Bickel and Levina (2008) may no
longer be appropriate because it assumes that h1 = · · · = hp . Levina, Rothman, and Zhu
(2008) addressed this by allowing different bandwidths for different rows of T . The nonho-
mogeneous structured graphGarrote can also overcome this problem. To illustrate, consider
a model similar to that of Levina, Rothman, and Zhu (2008).

Model 6: C = (I −�)′D−1(I −�), with D = 0.01×I and � = (φi,j ) where ∀j ≥ 2,
kj ∼ U(j/2�, j − 1); φj,j ′ = 0.5, kj ≤ j ′ ≤ j − 1; φi,j = 0, j ′ < kj .

Here U(k1, k2) denotes an integer selected randomly from integer k1 to k2. In this sim-
ulation we take p = 30 as an example. To avoid a poorly conditioned covariance ma-
trix, we divided the 30 variables into two independent blocks with 15 variables each, and
generated a random structure from Model 6 for each block, that is, (X(1), . . . ,X(15)) and
(X(16), . . . ,X(30)) each follow Model 6 but are mutually independent. We simulated sam-
ples with size n = 100 and compared the structured graphGarrote, the method used by
Levina, Rothman, and Zhu (2008), and the sample covariance matrix. Figure 4 reports the
boxplot for the Kullback–Leibler loss (KL) and the number of false positives of the inverse
covariance matrix (FP) from 100 runs.

From Figure 4, we observe that the performance of our proposed method is very similar
to that of Levina, Rothman, and Zhu (2008). By capturing the structure of the true model,
the structured graphGarrote committed relatively fewer false positives. We note that the
optimization problem involved in the approach of Levina, Rothman, and Zhu (2008) is
not convex. An iterative procedure was developed by Levina, Rothman, and Zhu (2008) to
tackle the computational challenge. Although efficient, it can still be sensitive to the choice
of tuning parameters and initial values. In contrast, the proposed method is strictly convex
and more stable in computation.

3.2 SPATIAL STRUCTURES

Next, we consider the situation when the random variables are observed on a two-
dimensional lattice. Three different models were used in our simulation.

Model 7: � = Ip .

Model 8 (Markov random field of order 1): ci,j = 1 if dij = 0, 0.25 if dij = 1, and 0
otherwise.
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(a)

(b)

Figure 4. Estimation comparison for Model 6.

Model 9 (Markov random field of order 2): ci,j = 1 if dij = 0, 0.4 if dij = 1, 0.15 if
dij = 2, and 0 otherwise.

For each model, we simulated samples of size n = 100 and dimension p = 4 × 4, n =
200 and p = 8 × 8, or n = 600 and p = 16 × 16. Although in principle all the methods
described previously can be applied in these settings, none of them except for the structured
graphGarrote is devised to take advantage of the spatial structure explicitly. In particular,
the methods of Huang et al. (2006), Bickel and Levina (2008), and Levina, Rothman, and
Zhu (2008) are all very sensitive to the ordering of the variables. To demonstrate the merits
of the structured graphGarrote, we compare it with the graphLasso and graphGarrote from
the article by Yuan and Lin (2007) which do not rely on the particular ordering among
variables. In particular, the graphLasso estimate is given as

ĈgraphLasso = arg min

[
− ln |C| + trace(CĀ) + λ

∑
i �=j

|cij |
]
,

where the minimization is taken over all symmetric and positive definite matrices C, and
λ > 0 is a tuning parameter. It is also worth pointing out that unlike the structured graph-

http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-006.jpg&w=175&h=138
http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-007.jpg&w=174&h=137
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Table 2. Simulation results with spatial structure. Averages and standard errors are calculated from 100 runs.
The proposed method is compared with graphGarrote and graphLasso.

Structured graphGarrote GraphGarrote GraphLasso

p Model KL FP FN KL FP FN KL FP FN

16 7 0.17 0.00 0.00 0.19 0.94 0.00 0.17 0.02 0.00
(0.06) (0.00) (0.00) (0.07) (2.44) (0.00) (0.06) (0.20) (0.00)

8 0.55 0.02 0.00 0.93 19.24 5.96 0.97 38.00 3.18
(0.14) (0.20) (0.00) (0.21) (7.63) (3.92) (0.33) (14.11) (4.29)

9 0.96 1.90 0.02 1.31 20.50 38.08 1.58 44.86 44.00
(0.23) (10.80) (0.30) (0.20) (8.99) (9.24) (0.37) (16.07) (11.21)

64 7 0.34 0.00 0.00 0.33 0.26 0.00 0.33 0.00 0.00
(0.06) (0.00) (0.00) (0.06) (1.01) (0.00) (0.06) (0.00) (0.00)

8 1.76 0.08 0.00 2.45 173.97 6.56 4.43 231.93 3.50
(0.24) (0.80) (0.00) (0.45) (51.77) (4.36) (0.35) (25.93) (2.37)

9 4.37 0.00 0.12 6.48 204.44 190.56 9.00 519.30 246.20
(0.53) (0.00) (0.47) (0.36) (23.94) (15.96) (1.61) (155.88) (25.49)

256 7 0.64 0.00 0.00 0.43 0.22 0.00 0.43 0.00 0.00
(0.06) (0.00) (0.00) (0.03) (1.30) (0.00) (0.04) (0.00) (0.00)

8 3.14 0.00 0.00 4.68 132.87 0.50 13.30 1497.28 0.26
(0.18) (0.00) (0.00) (0.22) (20.27) (0.87) (0.31) (65.15) (0.79)

9 11.34 0.10 0.12 31.04 3.50 69.60 20.70 1583.97 8.90
(0.75) (0.99) (0.47) (1.13) (2.88) (10.48) (4.03) (1127.71) (4.46)

Garrote, neither graphLasso nor graphGarrote utilizes the information of the spatial struc-
ture. Table 2 shows that by being able to account for the spatial structures, the structured
graphGarrote enjoys considerably improved performance over the other methods.

3.3 WHEN p > n

The proposed estimates of the inverse covariance matrix are a shrunken version of Ā−1.
As we pointed out earlier, other initial estimates of � can also be employed. For example,
we can consider the MLE of C with cij = 0 for dij > H and a prespecified bandwidth H

that is large but much smaller than p. This is particularly appealing when p ≥ n and the
inverse of Ā does not exist. To illustrate, we reexamine Models 7, 8, and 9, but with the
following combinations of sample size and dimensionality: (n,p) = (10,4 × 4), (n,p) =
(50,8×8), and (n,p) = (200,16×16). We used MLE with H = 3 as the initial estimator;
the performance of the structured graphGarrote is summarized in Table 3. Compared with
graphGarrote and graphLasso, the structured graphGarrote enjoys superior performance.

It is worth pointing out that the success of this strategy hinges on the assumption that
the true covariance structure follows a Markov model of order less than H . To this end, it
is beneficial to take a relatively large H . It is also worth noting that one need not seek an
optimal choice of H , which can be quite challenging (see, e.g., Bickel and Levina 2008),
because it is only used to construct the initial estimate. The final estimate can be much
more sparse. Alternative choices of the initial estimate of C also include the inverse of
a linear combination of Ā and the identity matrix. The performance of these choices is,
however, generally unclear.
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Table 3. Simulation results with spatial structure in the case of p > n. Averages and standard errors are calcu-
lated from 100 runs. The proposed method is compared with graphGarrote and graphLasso.

Structured graphGarrote GraphGarrote GraphLasso

p Model KL FP FN KL FP FN KL FP FN

16 7 3.43 0.00 0.00 5.20 6.80 0.00 3.24 2.42 0.00
(1.87) (0.00) (0.00) (3.42) (5.82) (0.00) (2.60) (11.12) (0.00)

8 5.75 7.32 0.06 14.58 16.40 39.72 9.50 25.26 38.94
(2.10) (20.88) (0.34) (12.02) (17.41) (8.91) (6.55) (39.83) (12.99)

9 6.84 0.00 57.90 17.87 6.94 95.58 15.54 27.04 84.53
(2.37) (0.00) (24.10) (17.14) (7.24) (20.71) (10.96) (32.33) (34.16)

64 7 1.46 0.00 0.00 1.53 2.02 0.00 1.44 0.12 0.00
(0.30) (0.00) (0.00) (0.31) (4.89) (0.00) (0.28) (0.84) (0.00)

8 8.24 0.00 0.06 13.35 48.22 126.32 13.79 150.00 96.58
(1.01) (0.00) (0.34) (0.68) (12.56) (5.29) (2.91) (79.72) (35.71)

9 11.94 0.00 19.88 17.57 36.32 425.16 25.48 5.24 598.30
(1.21) (0.00) (84.46) (0.72) (8.18) (6.22) (0.85) (16.95) (29.39)

256 7 1.32 0.00 0.00 1.34 0.36 0.00 1.30 0.06 0.00
(0.14) (0.00) (0.00) (0.14) (1.42) (0.00) (0.12) (0.34) (0.00)

8 25.78 0.00 0.00 49.73 97.18 480.36 44.33 1015.73 134.06
(0.82) (0.00) (0.00) (0.27) (18.18) (0.82) (1.85) (101.21) (13.81)

9 29.82 0.00 0.06 62.11 0.00 1828.04 55.81 792.20 201.94
(0.38) (0.00) (0.34) (0.26) (0.00) (0.28) (2.24) (98.49) (14.61)

4. HANDWRITTEN DIGIT DATA

To further illustrate the merits of the proposed method, we apply the proposed structured
covariance matrix estimation to a real data example. The handwritten digit data (LeCun et
al. 1990) come from automatic reading of handwritten zip codes appearing on envelopes
by the United States Postal Service. Each handwritten digit is converted into a 16 by 16
grayscale image after some processing. The intensity values lie in the range from −1 to 1.
Images as such can often be modeled as a Markov random field of a relatively small order.
The proposed methods exploit the sparsity in the inverse covariance matrix so that the
estimate conforms with models of such Markov structure.

A common goal of analyzing the handwritten digits is to distinguish images representing
different digits. To this end, we consider applying linear discriminant analysis (LDA) with
covariance matrix estimated using the proposed method as well as the sample covariance
matrix to the data. The main purpose of this exercise is to demonstrate how the structured
graphGarrote can lead to improved classification performance of LDA. For illustrative pur-
pose, we focus on digits 6 and 9 which include a total of 1308 images in the dataset. Six
hundred images were randomly selected as the training set, and the rest were used as the
test set. We repeated the experiment 100 times. The boxplot of the testing error is given in
Figure 5. It shows that the covariance matrix estimated from the proposed method indeed
leads to lower misclassification error.

To gain further insights, we also examine, for a given pixel, how often its partial cor-
relation with other pixels is estimated by a nonzero value. The (i, j) panel of Figure 6
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Figure 5. The boxplot of misclassification error on the test set for 100 replications.

Figure 6. Heatmap plots of percentage of the nonzeros at each location in the estimated inverse covariance
matrix from handwritten digit data. Black represents 100%, white 0%.

http://pubs.amstat.org/action/showImage?doi=10.1198/jcgs.2009.07170&iName=master.img-008.jpg&w=352&h=264
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Figure 7. Some of the heatmap plots of percentage of the nonzeros at each location in the estimated inverse
covariance matrix from handwritten digit data. Black represents 100%, white 0%.

corresponds to the partial correlation between the intensity at the (i, j)th pixel and other
pixels. A darker cell indicates higher frequency. A few pixels around the four corners are
removed from our analysis because their intensity values remain constant in the dataset.
A more detailed look at several selected pixels is given in Figure 7. From Figures 6 and 7,
we observe that the handwritten digit images may be modeled by a Markov random field
of order 4 or 5.

5. DISCUSSION

In this article, we have developed methods for estimating a high-dimensional Gaussian
covariance matrix when the random variables are observed with temporal or spatial struc-
tures. By directly exploiting sparsity of the inverse covariance matrix, the estimate obeys
certain Markov models. The proposed method can be formulated as a semidefinite program
and efficiently computed using standard software.

Although we focused on the temporal and spatial structures, the method can be easily
extended to more complicated situations such as spatial–temporal structures. More gener-
ally, our method can be applied in situations where a similarity/dissimilarity measure of
the domain from which the variables are observed is available.
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SUPPLEMENTAL MATERIALS

Matlab archive for covariance matrix estimation with Markov structures: The ar-
chive contains Matlab code implementing the proposed methods. (Deng-Yuan-matlab-
archive.zip, zip archive)
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