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Abstract—Inspired by the great success of margin-based classi-
fiers, there is a trend to incorporate the margin concept into hidden
Markov modeling for speech recognition. Several attempts based
on margin maximization were proposed recently. In this paper, a
new discriminative learning framework, called soft margin estima-
tion (SME), is proposed for estimating the parameters of contin-
uous-density hidden Markov models. The proposed method makes
direct use of the successful ideas of soft margin in support vector
machines to improve generalization capability and decision feed-
back learning in minimum classification error training to enhance
model separation in classifier design. SME is illustrated from a per-
spective of statistical learning theory. By including a margin in for-
mulating the SME objective function, SME is capable of directly
minimizing an approximate test risk bound. Frame selection, ut-
terance selection, and discriminative separation are unified into a
single objective function that can be optimized using the general-
ized probabilistic descent algorithm. Tested on the TIDIGITS con-
nected digit recognition task, the proposed SME approach achieves
a string accuracy of 99.43%. On the Sk-word Wall Street Journal
task, SME obtains relative word error rate reductions of about
10% over our best baseline results in different experimental con-
figurations. We believe this is the first attempt to show the effective-
ness of margin-based acoustic modeling for large vocabulary con-
tinuous speech recognition in a hidden Markov model framework.
Further improvements are expected because the approximate test
risk bound minimization principle offers a flexible and rigorous
framework to facilitate incorporation of new margin-based opti-
mization criteria into hidden Markov model training.

Index Terms—Discriminative training (DT), soft margin estima-
tion (SME), statistical learning, test risk.

I. INTRODUCTION

ITH the prevailing usage of hidden Markov models
W(HMMS), rapid progress in automatic speech recogni-
tion (ASR) has been witnessed in the last two decades. Usually,
the HMM parameters are estimated by the traditional max-
imum-likelihood estimation (MLE) method. MLE is known
to be optimal for density estimation, but it often does not lead
to minimum recognition error that is the goal of ASR. As a
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remedy, several discriminative training (DT) methods have been
proposed in recent years to boost the ASR system accuracy.
Typical methods are maximum mutual information estimation
(MMIE) [1]-[3], minimum classification error (MCE) [4]-[6],
and minimum word/phone error (MWE/ MPE) [7]. MMIE
training separates different classes by maximizing approximate
posterior probabilities. On the other hand, MCE directly min-
imizes approximate string errors, while MWE/MPE attempts
to optimize approximate word and phone error rates. If the
acoustic conditions in the testing set match well with those in
the training set, these DT algorithms usually achieve very good
performance when tested. However, such a good match cannot
always be expected for most practical recognition conditions.
To avoid the problem of over-fitting on the training set, regu-
larization is achieved by using “I-smoothing” [7] in MMIE and
MWE/MPE while MCE exploits a smoothing parameter in a
sigmoid function for regularization [8].

According to statistical learning theory [9], a test risk is
bounded by the summation of two terms: an empirical risk (i.e.,
the risk on the training set) and a generalization function. The
power to deal with possible mismatches between the training
and testing conditions can often be measured by the generaliza-
tion function. In particular, large margin learning frameworks,
such as support vector machines (SVMs) [10], have demon-
strated superior generalization abilities over other conventional
classifiers. By securing a margin from the decision boundary to
the nearest training sample, a correct decision can still be made
if the mismatched test sample falls within a tolerance region
around the original training samples defined by the margin.
The idea of SVMs is explored widely in speech research.
Different kinds of kernels are employed in the area of speaker
recognition, such as the work in [11] and [12]. However, this
kind of work cannot be easily incorporated into ASR because
it is hard to combine with HMMs. SVMs were also used in the
framework of landmark-based speech detection [13]; however,
this framework is not widely used because it deviates from
the HMM paradigm. Some technologies (e.g., [14] and [15])
loosely couple SVMs with HMMs by using SVMs instead of
Gaussian mixture models (GMMs) as the state observation
density of HMMs. These frameworks do not take full advantage
of SVMs to get better generalization with a larger margin. A
combination of SVMs and HMMs, called HM-SVMs, was
explored in [16] with discrete distributions, but it is far from
being a solution to the state-of-the-art ASR systems, whose
state distributions are usually continuous densities. Moreover,
like SVMs, HM-SVMs work on the problem of finding the
optimal projection matrix. HM-SVMs differ from SVMs on the
point that the observations of HM-SVMs are sequences instead
of discrete samples. Therefore, HMMs are used to model
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the hidden state of the sequences in HM-SVMs. Obviously,
HM-SVMs are too simple to solve the ASR problem.

Adopting the concept of enhancing margin separation, large-
margin estimation (LME) [17], [18] and its variant, large relative
margin estimation (LRME) [19], of HMMs have been proposed.
In essence, LME and LRME update models only with accurately
classified samples. However, it is well known that misclassi-
fied samples are also critical for classifier learning. Recently,
LRME was modified [20] to consider all of the training sam-
ples, especially to move the most incorrectly classified sample
toward the direction of correct decision. However, this modifi-
cation makes the algorithm vulnerable to outliers, and the idea
of margin is not very meaningful. In [21], a large-margin algo-
rithm for learning GMMs was proposed, but makes some ap-
proximations to use GMMs instead of HMMs. More recently,
the work of [21] was extended to deal with HMMs in [22], by
summing the differences of Mahalanobis distances [23] between
the models in the correct and competing string, and comparing
the result with a Hamming distance. It is not clear whether it is
suitable to directly compare the Hamming distance (the number
of different labels of two strings) with the Mahalanobis distance
difference, which is the distance of two Gaussian models given
an observation.

In this paper, soft margin estimation (SME) is proposed as a
unified DT framework for discriminative separation, frame se-
lection, and utterance selection. Frame/utterance selection is to
select the critical frames/utterances for SME training, instead of
using all the training frames/utterances. Because of the incor-
poration of a soft margin into the optimization objective, SME
achieves a better generalization capability and less recognition
errors over LME and MCE. We illustrate the SME theory and
show that its objective function approximates a bound of the test
risk expressed as a sum of an empirical risk and a function of
Vapnik and Chervonenkis dimension, or VC dimension, com-
monly known in statistical learning theory [9]. SME is in con-
trast to most DT methods that attempt to minimize the empirical
risks with additional strategies for generalization. SME is also
different from LME because LME only maximizes the separa-
tion margin. We show that different choices of separation mea-
sures in loss functions lead to various approximate test risks that
can be formulated as functions of string, word and phone errors,
and their combinations. This makes SME flexible and capable
of incorporating new losses and margin definitions in a theoret-
ically rigorous manner.

Using 12-state digit models, SME achieves a string accu-
racy of 99.43%, the best result ever reported on the TIDIGITS
database [24] using 32-component mixture Gaussian state ob-
servation densities when no further decoding option is used.
Even with 1-mixture SME models, the achieved string accuracy
is better than that obtained with 32-mixture MLE models, al-
though a single Gaussian model cannot characterize the state
distribution well.

The effectiveness of SME was also evaluated on the Sk-word
Wall Street Journal (Sk-WSJO0) task [25]. Two separation mea-
sures are proposed to take advantage of competing strings in
lattices obtained from speech recognition. One method is sim-
ilar to current DT algorithms, defining corresponding separation
measures with statistics collected from a lattice using forward
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backward methods. The other method defines separation using
word pairs appearing in a lattice. The performance of the second
method (SME_word) is compared with those of MLE and MCE.
Initial results on the Sk-WSJO task show that SME_word outper-
forms both MLE and MCE, with around 10% relative word error
rate reduction from the MLE baselines. Further performance im-
provements are expected with flexible combinations of loss and
margin function definitions.

II. EMPIRICAL RISK AND TEST RISK BOUND

In this section, we show that there is a gap between empirical
risk and test risk. The theory of statistical learning explains this
gap and gives insight of current state-of-the-art HMM learning
algorithms for designing ASR systems.

A. Empirical Risk

The purpose of classification and recognition is usually to
minimize classification errors on a representative testing set by
constructing a classifier f (modeled by the parameter set A)
based on a set of training samples (z1,91),--.,(ZN,yn) €
X x Y. X is the observation space, Y is the label space, and
N is the number of training samples. However, we do not know
exactly what the property of testing samples is and can only as-
sume that the training and testing samples are independently and
identically distributed from some distribution P(z,y). There-
fore, we want to minimize the expected classification risk

R(A) = /X Uy fa(o APl )

l(x,y, fa(z,y)) is a loss function. There is no explicit knowl-
edge of the underlying distribution P(z,y). It is convenient to
assume that there is a density p(z, y) corresponding to the dis-
tribution P(z,y), and replace [ dP(z,y) with [ p(z,y)dzdy.
Then, p(z,y) can be approximated with the empirical density
as

N
1
pomp(a;? y) = ﬁ z_; (5(1}/ xz)5(y7 yl)
where §(z, ;) is the Kronecker delta function. Finally, the em-
pirical risk is minimized instead of the intractable expected risk

R0 = [
1 *J\T
:NZl(xmyqu(fEuyi))-

i=1

Uz, y, fa(®,Y))Pemp (T, y)dzdy

Most current DT methods focus on how to minimize this
empirical risk. However, as shown above, the empirical risk
approximates the expected risk by replacing the underlying
density with its corresponding empirical density. Simply min-
imizing the empirical risk does not necessarily minimize the
expected test risk.

In the application of speech recognition, most DT methods
directly minimize the risk on the training set, i.e., the empirical
risk, which is defined as

N
1
Remp(A) = 5 > £(05, M)
=1
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TABLE I
DISCRIMINATIVE TRAINING TARGET FUNCTION AND LOSS FUNCTION

Optimization Objective Loss Function /

- |- 1og_Trl0J3P(5)
z S IN
MCE min ii ! !
N & 1+exp(-,(0,,A)+6) 1+exp(~y4,(0,, A) +6)
1 & 2. RO A,.)P(A,.)RawPhoneAcurac S‘l) ZS Py (0,.|3',. )P(S',.)RawPhoneAcurag(S‘i)
MPE max WZ : % - AN
i=1 Zgi PA(Oi|Si)P(Si) Z§i PA(Oi|Si )P(S.)

where £(O;, A) is a loss function for utterance O;, and N is
the total number of training utterances. A = (m,a,b) is a
parameter set denoting the set of initial state probability, state
transition probability, and observation distribution. Table I
lists the optimization objectives and loss functions of MMIE,
MCE, and MPE with S; being the correct transcription and
S; denoting the possible string sequence for utterance O;. In
MMIE and MPE, P,(0;|5;) (or Py(0;]S;)) and P(S;) (or
P(S;)) are acoustic and language model scores, respectively.
RawPhoneAccuracy(S’i) is the phone accuracy of the string
S; comparing with the ground truth S;. In MCE, h; is a mis-
classification measure defined as the difference between a
geometrical average of log likelihoods of competing strings and
log likelihood of the correct string. y and 6 are parameters for a
sigmoid function. With these loss functions, these DT methods
all attempt to minimize some empirical risks.

B. Test Risk Bound

The optimal performance on the training set does not guar-
antee the optimal performance on the testing set. This stems
from the statistical learning theory [9], which states that with
at least a probability of 1 — ¢ (8 is a small positive number) the
risk on the test set (i.e., the test risk) is bounded as follows:

R(A) < Remp(A)

1 2N )
+\/N (VCdim <10g <Vcdim> + 1> — log (Z)) (D

N is the number of training samples. V Cygiy, is the VC dimen-
sion that characterizes the complexity of a classifier function
group (G, and means that at least one set of V Cgiy, (or less)
number of samples can be found such that G shatters them. That
the function group G shatters samples B means if samples B
are divided into two classes, we always have one function from
G, which can correctly classify all the samples into those two
classes. Equation (1) shows that the test risk is bounded by the
summation of two terms. The first is the empirical risk, and the
second is a generalization (regularization) term which is a func-
tion of the VC dimension. Although the risk bound is not strictly
tight [10], it still gives us insight to explain current technologies
in ASR.

* The use of more data: In current large-scale large vocabu-
lary continuous-speech recognition (LVCSR) tasks, thou-
sands of hours of data may be used to get better perfor-
mance. This is a simple but effective method. When the
amount of data is increased, the empirical risk is usually

not changed, but the generalization term decreases as the
result of increasing V.

* The use of more parameters: With more parameters, the
training data will be fit better with reduced empirical risk.
However, the generalization term increases at the same
time as a result of increasing V' Cy;jy,. This is because with
more parameters, the classification function is more com-
plex and has ability to shatter more training points. Hence,
by using more parameters, there is a potential danger of
over-fitting when the empirical error does not drop while
the generalization term keeps increasing.

¢ Most DT methods: DT methods, such as MMIE, MCE,
and MWE/MPE in Table I, focus on reducing the empir-
ical risks and do not consider decreasing the generaliza-
tion term in (1) from the perspective of statistical learning
theory. However, these DT methods have other strategies
to deal with the problem of overtraining. “I-smoothing,”
used in MMIE and MWE/MPE, makes an interpolation be-
tween the objective functions of MLE and the discrimina-
tive methods. The sigmoid function of MCE can be inter-
preted as the integral of a Parzen kernel, helping MCE for
regularization. Parzen estimation has the attractive prop-
erty that it converges when the number of training sample
grows to infinity. In contrast, margin-based methods re-
duce the test risk from the viewpoint of statistical learning
theory with the help of (1).

III. SOFT MARGIN ESTIMATION

In this section, soft margin estimation is proposed as a link
between statistical learning theory and ASR. We provide a theo-
retical perspective about SME, showing that SME directly min-
imizes an approximate test risk bound. The idea behind the
choice of the loss function for SME is then illustrated and the
separation functions are defined. DT algorithms, such as MMIE,
MCE, and MWE/MPE, can also be cast in the rigorous SME
framework by defining corresponding separation functions. Fi-
nally, two solutions to SME are provided and the difference with
other margin-based methods is discussed.

A. Approximate Test Risk Bound Minimization

If the right-hand side of inequality (1) can be directly min-
imized, it is possible to minimize the test risk. However, as
a monotonic increasing function of V Cy;y,, the generalization
term cannot be directly minimized because of the difficulty to
compute V Cyipy. It can be shown that V Cy;y, is bounded by a
decreasing function of the margin [9] (in this paper, margin is
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Fig. 1. Soft margin estimation ¢; is the loss of sample.

used to stand for the width of margin). Hence, V Cygjy, can be re-
duced by increasing the margin. Now, there are two targets for
optimization: one is to minimize the empirical risk, and the other
is to maximize the margin. Because the test risk bound of (1) is
not tight, it is not necessary to strictly follow Vapnik’s theorem.
Instead, the test risk bound can be approximated by combining
two optimization targets into a single SME objective function

A
LME(A) = = 4 Renp(A) =

D>

1 N
+ ;aom). )

p is the soft margin, and X is a coefficient to balance the soft
margin maximization and the empirical risk minimization. A
smaller A corresponds to a higher penalty for the empirical risk.
The soft margin usage originates from the soft margin SVMs,
which deal with nonseparable classification problems. For sepa-
rable cases, margin is defined as the minimum distance between
the decision boundary and the samples nearest to it. As shown
in Fig. 1, the soft margin for nonseparable case can be consid-
ered as the distance between the decision boundary (solid line)
and the class boundary (dotted line). The class boundary is the
same definition as for the separable case after removing the to-
kens near the decision boundary, and treating these tokens dif-
ferently using slack variable ¢; in Fig. 1. The approximate test
risk is minimized by minimizing (2). Again, this approximate
test risk is very rough but helpful for classifier design, according
to the analysis in Section II-B.

This view distinguishes SME from both ordinary DT methods
and LME. Ordinary DT methods only minimize the empirical
risk Remp(A) with additional generalization tactics. LME only
reduces the generalization term by minimizing \/p in (2), and
its margin p is defined on correctly classified samples.

B. Loss Function Definition

The next issue is to define the loss function £(O;, A) for (2).
As shown in Fig. 1, the essence of a margin-based method is to
use a margin to secure some generalization in classifier learning.
If the mismatch between the training and testing causes a shift
less than this margin, a correct decision can still be made. So,
a loss happens only when d(O;, A) (the separation between the
correct and competing string; it will be defined in Section III-C)
is less than the value of the soft margin. It should be emphasized
that the loss here is not the recognition error. A recognition error
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happens when d(O;, A) is less than 0. Therefore, the loss func-
tion can be defined as

U0, A) =(p—d(0i, A))+

_ {g-— d(O;, A),

ifp—d(O;,A) >0
otherwise

with the SME objective function re-written as

sp, g AL LS~
L (p,A)—p-l-N (p—d(0i, A))+
=1
A1
:;-f-NZ(p_d(Oi»A))I(OiEU) 3

1=1

where [ is an indicator function, and U is the set of utterances
that have the separation measures less than the soft margin.

C. Separation Measure Definition

The third step is to define a separation (misclassification)
measure d(O;, A) which is a distance between the correct and
competing hypotheses. A common choice is to use log likeli-
hood ratio (LLR), as in MCE [4] and LME [17]

Pr(04]S;)
P (04]5;)

d""R(0;,A) = log

If d; is greater than 0, the classification is correct, otherwise
a wrong decision is obtained. Py (0;|S;) and PA(Oi|.§'i) are the
likelihood scores for the target and the most competitive string.

In the following, a more precise model separation measure
is defined. For every utterance, we select the frames that have
different HMM model labels in the target and competitor string.
These frames can provide discriminative information. The
model separation measure for a given utterance is defined as the
average of those frame LLRs. We use n; to denote this number
of different frames for utterance O;. Then, a separation of the
models is defined as

Pr(0]5:)

1
dSl\/IE_utter(Oi7A) — IOg _
2 Pr(03]5:)

n;

I(OL] € FL)

“

where Fj is the frame set in which the frames have different
labels in the competing strings. O;; is the jth frame for utterance
O;. Only the most competitive string is used in the definition of
4).

Our separation measure definition is different from LME or
MCE, in which the utterance LLR is used. For the usage in SME,
the normalized LLR may be more discriminative, because the
utterance length and the number of different models in the com-
peting strings affect the overall utterance LLR value. For ex-
ample, it may not be appropriate that an utterance consisting
of five different units in the target and competitive string has
greater separation for models inside it than another utterance
with only one different unit because the former has a larger LLR
value.

J
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TABLE II
SEPARATION MEASURES FOR SME

1
dSW:_umer (Q,A) n—iglo{

JSME_MMIE (OnA)
1
"= (0, ) T+ ep(4,(0,, A) +6)
Zs,. P, (ol_lS’i JP(S‘, )RawPhoneAcurac 3‘,)
e S

By plugging the quantity in (4) into (3), the optimization func-
tion of SME becomes

L3Py, A) =

Py (0;18:)
Px(0319:)

As shown in (5), frame selection (by I(O;; € F})), utterance
selection (by I(O; € U)), and discriminative separation are uni-
fied in a single objective function. This quantity provides a flex-
ible framework for future studies. For example, for frame selec-
tion, F; can be defined as a subset with frames more critical for
discriminating HMM models, instead of equally choosing dis-
tinct frames in current study.

We can also define separations corresponding to MMIE,
MCE, and MPE as shown in Table II. These separations will be
studied in future. All these measures can be put back into (3)
for HMM parameter estimation.

D. Solutions to SME

In this section, two solutions to SME are proposed. One so-
lution is to optimize the soft margin and the HMM parameters
jointly. The other is to set the soft margin in advance and then
find the optimal HMM parameters. We will show in theory there
is little difference between these two methods. And the experi-
mental results in Section V-A will also demonstrate it.

1) Jointly Optimize the Soft Margin and the HMM Parame-
ters: In this solution, the indicator function I(O; € U) in (3) is
approximated with a sigmoid function. Then, (3) becomes

LSME(p

7

b|>f

1 N
NZ p— dSl\/{E O A))

1

Y — B0, Ay ©

X
1+exp(—

where 7 is a smoothing parameter for the sigmoid function.
Equation (6) is a smoothing function of the soft margin p and
the HMM parameters A. Therefore, these parameters can be op-
timized by iteratively using the generalized probabilistic descent

2397

(GPD) algorithm on the training set as in [26], with 7, and k, as
step sizes

{ App1 = Ay — ﬂtVLSME(P; A)|A:At )
Pt+1 = Pt — IitVLSME(P-,A)|p=m

Similar to the solution to soft margin SVMs [10], we need to
preset the coefficient A, which balances the soft margin maxi-
mization and the empirical risk minimization.

2) Presetting the Soft Margin and Optimize the HMM Param-
eters: Let (p, A) be the solution to SME with d; = d(O;, A).
Here, d(O;, fX) can be any separation measure defined in
Table II. Then, p minimizes the following quantity:

S

Equivalently, / is a solution to the following:

b|>f

min — + — u;
e
subjectto u; >0, wu; > p— Ji.

Next, we show that there is a correspondence between A and
P

There exist nonnegative constants, «; and [3;, such that p also
minimizes

wi — p+d;). (7)

1 N N N
ED ST S S

Equation (7) is the Lagrange form [27] for SME, and is known
to be equivalent to the original optimization problem. The first-
order condition implies that

arr 1
Bui_ﬁ_ai_ﬂi_o (8)
dLP R

— =_-2= ;= 0.

3 f+;ﬂ ©)

_Incorporating the derivatives in (8) and (9) into (7), we have
(B, p) as the solution to

i=1

1
bject t 0<p8 < —,
subject to <[ Sy

Now, let B be the solution to

subjectto 0 < f; < —.

=
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TABLE 1II
COMPARISON OF MARGIN-BASED METHODS
LME LM-GMM [21] | SME

LM-HMM [22]
Training correctly classified | all samples all samples
Samples samples
Separation utterance LLR Mabhalanobis LLR with frame
Measure distance selection
Segmental HMM frame averaged | HMM
Modeling GMM [21]

HMM [22]
Target margin penalized trace | penalized
Function maximization minimization margin

maximization

Convex No [17], [18] Yes No
Problem Yes [28]

Then, the solution to the original problem is

. - A
=0, p=,——- (10)
"V

On the other hand, A minimizes
N

LA =" (p—d(0;, M)y (1
i=1

From (10), we see a direct mapping relationship between A
and p. For a fixed A, there is one corresponding p. Instead of
choosing a fixed A and trying to get the solution of (p, A) as in
the first solution, we can directly choose a p in advance and get
A by minimizing (11) because of the mapping relationship be-
tween A\ and p. There is no explicit knowledge what A should
be, so it is not necessary to start from A and get the exact corre-
sponding solution of /. In contrast, we will show in the section
of experiments that it is easy to draw some knowledge of the
range of p. Setting p in advance is a simple way to solve the
SME problem.

Because of a fixed p, only the samples with separation smaller
than the margin need to be considered. Assuming that there are
a total of N¢ utterances satisfying this condition, we can mini-
mize the following with the constraint d(O;, A) < p:

N.
L (A) =Y (p— d(0;, A)). (12)
i=1
Now, this problem can be solved by the GPD algorithm by
iteratively working on the training set, with 7; as a step size:
At+1 = A - mVLS“b(A)L\:At.

E. Margin-Based Methods Comparison

In this section, SME is compared with two margin-based
method groups. One group is LME [17], [18], [28], and the
other is large margin GMM (LM-GMM) [21] and large margin
HMM (LM-HMM) [22]. LM-HMM and LM-GMM are very
similar, except that LM-HMM measures model distance in a
whole utterance while LM-GMM measures in a segment. The
difference of these margin-based methods is listed in Table III
and is discussed in the following.

¢ Training sample usage: Both LM-GMM/LM-SVM and

SME use all the training samples, while LME only uses
correctly classified samples. The misclassified samples are

important for classifier learning because they carry the in-
formation to discriminate models. Except for LME, DT
methods usually use all the training samples (e.g., [1]-[7]).
Separation measure: It is crucial to define a good separa-
tion measure because it directly relates to margin. LME uses
utterance-based LLR as a measure; while in SME it is care-
fully represented by a normalized LLR measure over only
the set of different frames. With such normalization, the ut-
terance separation values canbe more closely compared with
a fixed margin than an unnormalized LLR without being af-
fected by different numbers of distinct units and length of
the utterances. LM-GMM and LM-HMM use Mahalanobis
distance [23], which makes it hard to be directly used in the
context of mixture models. In [21] and [22], approximation
to the mixture component with the highest posterior proba-
bility under GMM is applied.

Segmental training: Speech is segment based. Both SME
and LME use HMMs, while LM-GMM uses frame aver-
aged GMM to approximate segmental training. As an im-
provement, LM-HMM directly works on the whole utter-
ance. It sums the difference of the Mahalanobis distances
between the models in the correct and competing string,
and compares with a Hamming distance. That Hamming
distance is the number of mismatched labels of recognized
string. Although similar distance (raw phone accuracy) has
been used in MPE [7] for weighting the contribution dif-
ferent recognized strings, it is not clear whether Hamming
distance is suitable to be directly used to compare with the
Mahalanobis distance because these two distances are very
different types of measures (one is for string labels and the
other is for Gaussian models).

Target function: SME maximizes the soft margin penal-
ized with the empirical risk as in (2). This objective directly
relates to the test risk bound shown in (1). LME only max-
imizes its margin, assuming the empirical risk is 0. The
idea of LME is to define the minimum positive separa-
tion distance as a margin and then maximize it. Because of
this, the technology dealing with misclassified samples by
making usage of a soft margin or slack variable cannot be
easily incorporated in LME. LM-GMM/LM-HMM mini-
mizes the summation of all the traces of Gaussian models,
penalized with a Mahalanobis distance-based misclassifi-
cation measure.

Convex problem: LME has several different solutions.
In [17], [18], the target function is nonconvex. By using
a series of transformations and constraints [28], LME
can have a convex target function. Also, LM-GMM and
LM-HMM formularize their target function as a convex
one. The convex function has the nice property that its
local minimum is global minimum. This will make the
parameter optimization much easier. To get a convex
target function, it needs to approximate the GMM with a
single mixture component of the GMM. In contrast, the
target function of SME is not convex. Therefore, SME is
subject to local minima like most other DT methods. In
the future, we will investigate whether SME can also get a
convex target function with the cost of approximation and
some transformations.
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wonderful

sil the wonderful sil

Fig. 2. Lattice example: the top lattice is obtained in decoding, and the
bottom is the corresponding utterance transcription. “sil” stands for silence.

IV. SME For LVCSR

The key issue for using SME in LVCSR is to define appropriate
model separation measures. One method is to directly use
dSME-utter(; A) in Table II, and solve for HMM parameters
by minimizing the quantity in (3). However, most successful
DT methods on LVCSR use lattices to get a rich set of
competing candidate information. The advantage can also be
explained by the test risk bound in (1) since lattices provide
more confusion patterns (i.e., more data). As discussed in
Section II-B, this will result in a reduced generalization term,
which makes the test risk bound tighter. In the following, two
solutions are provided for lattice-based separation measure
definition for LVCSR.

A. Utterance-Level Separation Measure

The first solution is similar to lattice-based MMIE
[3], [29], MCE [30], and MPE [7]. We then define
distances, dSME-MMIE((, A)  gSME-MCE((), A} and
dSME-MPE((). "A), as shown in Table II. We can now take
advantage of optimization algorithms adopted in lattice-based
DT methods to obtain statistics at the utterance level and then
use extended Baum—Welch algorithms to optimize parameters.
However, due to its focus on utterance level competition, it is
possible to lose the advantage of the frame-level discrimination
power in the SME separation measures as discussed in the
previous section.

B. Word-Level Separation Measure

SME separations can also be defined at the word segment
level. The first step is to align the utterance with the correct
transcription and get the timing information for every word. The
second step is to find competing words for every word in the
lattice. This is done by examining the lattice to get words falling
into the time segment of current correctly transcribed words. A
frame overlapping threshold is set not to consider words with too
few overlapping frames as competing words. For example, for
the lattice in Fig. 2, the competing words are listed in Table I'V.
For the pth overlapping word pair, we denote the number of
overlapped frames as 7y, the jth overlapping frame as O,;,
set of overlapping frames as F,,, and the target and competing
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TABLE IV
CORRECT AND COMPETING WORDS FOR LATTICE EXAMPLE
Correct Word Competing Words
the that
world wood, it, dig
is it, dig, did, wonderful
wonderful want, full, foul, order, dig, did, wander, for

words as Wiarger and Weomp. A word-level separation can be
defined as

oj |Wtargot)
(O0j[Weomp)
XI(Ooj € Fop)

dSME _word (O A

oy Sl Ex
(13)

where Pa (Ooj|Wiarget) and Pa(Ooj;|Weomp) are the likelihood
scores for Wiarger and Weomp.

For any word pair Wiarget and Weomyp, we compute (13), and
plug all of them into the following formula:

A
LBy, A) =
p

npi

NZZ

where np; denotes the number of overlapping word pairs in ut-
terance O;.

It should be noted that the indicator functions for frame selec-
tion in (4) and (13) are discontinuous. Therefore, it is possible
that a change in A to improve separation may lead to a different
model label sequence for the strings, which may in fact lead to
a worsening of separation. In (6), the indicator function for ut-
terance selection is approximated by a sigmoid function. This
may be applied for the indicator function of frame selection in
future study to ensure continuousness.

We found the word-level separation ((dSME-word(Q; A)
with word pairs in lattices) to be better than the utterance level
measure (dSME-utter(0; A) with only the correct and most
competitive strings), because it uses more confusion patterns.
For usage in SME, d>ME-vord (O, A) may also have an advan-
tage over other separation measures defined above, which have
only one value for each utterance. This is because in SME we
will plug this separation value into (3), and the utterances with
values greater than the value of the margin will not contribute
to parameter optimization. However, in some cases, there may
be some word pairs in lattices that still have distances less than
the value of the margin. The word-level separation measure
dSME-word (), “A) makes use of those word pairs to get more
confusion patterns.

_ di]l)\’IE_word(Oi7 A))+ (14)

npi

V. SPEECH RECOGNITION EXPERIMENTS

The proposed SME framework was evaluated on two dif-
ferent tasks: the TIDIGITS connected digit and S5k-WSJO
LVCSR tasks. Using 12-state digit models, SME achieves
a string accuracy of 99.43% on the TIDIGITS database. In
5k-WSJO LVCSR task, SME gets around 10% relative word
error rate reductions from the MLE baselines.
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TABLE V
MARGIN VALUE ASSIGNMENT
1-mix 2-mix 4-mix 8-mix 16-mix 32-mix
5 6 7.5 8.5 9 11
A. TIDIGITS

For the TIDIGITS database, the same experimental configu-
ration was used as that in [18]. There are 8623 digit strings in
the training set and 8700 digit strings for testing. The hidden
Markov model toolkit (HTK) [31] was first used to build the
baseline MLE HMMs. There were 11 whole-digit HMMs: one
for each of the ten English digits, plus the word “oh.” Each
HMM has 12 states, and each state observation density is char-
acterized by a mixture Gaussian density. GMM models with
1, 2, 4, 8, 16, and 32 mixture components were trained. The
input features were 12MFCCs 4 energy and their first- and
second-order time derivatives. MCE models were also trained
for comparison. NV-best incorrect strings were used for training.
The performance of this choice was better than the implemen-
tation with the top incorrect string. Different smoothing param-
eters were tried, and the results were with the best one. SME
models were initiated with the MLE models. This is in clear con-
trast with the LME models [17], [18], [28], which are typically
built upon the well-performed MCE models. Digit decoding was
based on unknown length without imposing any language model
or insertion penalty.

dSME-utter(. - A) was used as the separation measure, which
means that only the most competitive string was used in SME
training. Various soft margin values were set corresponding
to different model complexities as shown in Table V. These
soft margin values were empirically chosen as the mode of all
the separation distances obtained from the MLE model. For
example, in Fig. 4, the mode of the separation distance of the
1-mixture MLE model is about 5. Therefore, the soft margin
value for the 1-mixture SME model was set as 5. Slightly
changing values in Table V only made very little difference on
final results. While this setting produced satisfactory results, we
believe it is too heuristic and suboptimal, and will investigate in
future work whether there is any plausible theory underlies it.

Fig. 3 shows string accuracy improvement of SME in the
training set for different SME models after 200 iterations. Al-
though the initial string accuracies (got from MLE models) were
very different, all SME models ended up with nearly the same
accuracies of 99.99%. As discussed in Section II, the test risk is
bounded by the summation of the empirical risk and the gener-
alization term, which is related with margin. The training errors
are nearly the same for all of these different mixture models,
and the margin plays significant role in the test risk bound, re-
sulting in different test risks that are listed in Table VI, and to
be discussed later.

Figs. 4 and 5 compare histograms of the measure defined in
(4) with the normalized LLR for the case of 1-mixture GMM
before and after SME. Usually, the larger the separation value,
the better the models are. We observe in Fig. 5 a very sharp
edge around a value of 5, which is the soft margin value for
the 1-mixture model update shown in the leftmost column of
Table V. It is clear that when SME finishes parameter update,
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Fig. 3. String accuracy of SME for different models in TIDIGITS training.

TABLE VI
TESTING SET STRING ACCURACY COMPARISON WITH DIFFERENT METHODS.
ACCURACIES MARKED WITH AN ASTERISK ARE SIGNIFICANTLY DIFFERENT
FROM THE ACCURACY OF THE SME MODEL (p < 0.025, PAIRED Z-TEST,
8700 DEGREES OF FREEDOM [32])

MLE MCE LME [18] | SME SME_joint
1-mix 95.20%* | 96.94%* 96.23%* 98.76% | 98.74%
2-mix 96.90%* | 97.40%* 98.30%* 98.95% | 98.92%
4-mix 97.80%* | 98.24%* 98.76%* 99.20% | 99.11%
8-mix 98.03%* | 98.66%* 99.13% 99.29% | 99.26%
16-mix | 98.36%* | 98.87%* 99.18% 99.30% | 99.32%
32-mix | 98.51%* | 98.98%* 99.34% 99.43% | 99.40%
Separation Histogram for 1-mix Model (MLE)
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5
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Fig. 4. Histogram of separation distance of 1-mixture MLE model in the
TIDIGITS training set.

most samples which have separation values less than the spec-
ified margin move to the right side of histogram, resulting in
separation values greater than the margin value. This demon-
strates the effectiveness of the SME algorithms. We can also
see the effect in Fig. 6, the histogram separation for the 32-mix-
ture case after SME update. The sharp edge now is around 11,
the margin shown in the rightmost column in Table V. With a
greater margin, the 32-mixture model can attain a string accu-
racy of 99.43% in the testting set while the 1-mixture model can
only get 98.76%, although both models have nearly the same
string accuracy in the training set. This observation is greatly in
consistent with the test risk bound inequality of (1).
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Separation Histogram for 1-mix Model (SME)
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Fig. 5. Histogram of separation distance of 1-mixture SME model in the
TIDIGITS training set.
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Fig. 6. Histogram of separation distance of 32-mixture SME model in the
TIDIGITS training set.

Table VI compares different training methods with var-
ious numbers of mixture components. Only string accuracies
are listed in Table VI. At this high level of performance in
TIDIGITS, the string accuracy is a strong indicator of model
effectiveness. For the task of string recognition, the interest
is usually in whether the whole string is correct. Therefore,
string accuracy is more meaningful than the word accuracy in
TIDIGITS. Two different solutions of SME are compared in
Table VI. The column labeled SME presets the soft margin
with values defined in Table V. The column labeled SME_joint
solves SME by optimizing the soft margin and HMM parame-
ters jointly. For the purposed of comparison, the final margin
values got by SME_joint are listed in Table VII. These values
are similar to those margin values preset in Table V. There
are only very small differences between the performance of
SME and SME_joint in Table VI. This again demonstrates our
opinion in Section III-D that the two proposed solutions are
nearly equivalent because of the mapping relationship between
A and p. Because there is some knowledge about the range of
p as in Fig. 4 but no explicit knowledge of A, we prefer setting
p in advance as a simple way to solve SME. In the following
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TABLE VII
MARGIN VALUES OBTAINED BY JOINT OPTIMIZATION
1-mix 2-mix 4-mix 8-mix 16-mix 32-mix
5.2 5.9 7.1 7.4 9.6 10.6

sections, unless stated, SME uses the solution that presets the
soft margin value.

In [4], MCE reduced string error rate from 1.4% (MLE)
to 0.95%, using a ten-state 64-mixture whole word models.
The MCE performance of our 12-state 32-mixture whole word
models is similar to the results in [4], reducing string error rate
from 1.49% (MLE) to 1.02%. Clearly, SME outperforms MLE
and MCE significantly, and is consistently better than LME.
For 1-mixture SME models, the string accuracy is 98.76%,
which is better than that of the 32-mixture MLE models. The
goal of our design is to separate the models as far as possible,
instead of modeling the observation distributions. With SME,
even l-mixture models can achieve satisfactory model separa-
tion. The excellent SME performance is attributed to the well
defined model separation measure and good objective function
for generalization.

We believe the string accuracy of 99.43% listed in the bottom
row of Table VI represents the best result ever reported on the
TIDIGITS task with similar configuration. In [33], 99.45%
string accuracy was reported with 32-mixture models by using
a grammar and word insertion penalty. In [28], 99.47% string
accuracy was obtained with the constraint that the maximum
string length is 7 [34]. These decoding constraints typically
improve string accuracies. However, they were not used in our
experiments.

To compare the generalization capability of SME with MLE
and MCE, we plot the histograms of the separation measure for
the testing utterances in Fig. 7 for the 32-mixture MLE, MCE,
and SME models. As indicated in the rightmost curve, SME
achieves a significantly better separation than both MLE and
MCE in the testing set, due to direct model separation maxi-
mization and better generalization.

B. 5k-WSJO

The 5k-WSJO task was used to evaluate the effectiveness of
SME on LVCSR. The training material is the SI-84 set, with
7077 utterances from 84 speakers. Testing is performed on the
Nov92 evaluation set, with 330 utterances from eight speakers.
Baseline HMMs were within-word triphone models trained with
MLE using HTK. There were a total of 2329 shared states ob-
tained with a decision tree, and each state observation density
was modeled by an 8-mixture GMM. The input features were 12
MEFCCs + energy, and their first- and second-order time deriva-
tives. The bigram and trigram language models (LMs) within
the 5k-WSJO vocabulary were used for decoding. The base-
line WERs were 8.41% with bigram LM and 6.13% with tri-
gram LM, respectively. Both the bigram and the trigram LMs
were provided by the original WSJO corpus. We note that other
studies have reported better results than our baseline systems
by using different configurations (ex. in [30]). In this paper,
we do not have access to those baseline configurations, so we
only attempt to improve over our best available setups. Our
HTK-trained baselines are comparable with the HTK-trained
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Separation Histogram Comparison for 32-mix Model (MLE, MCE, and SME)
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Fig. 7. Histogram of separation distance of 32-mix model of MLE, MCE, and
SME in the TIDIGITS testing set. The short dashed curve, line curve, and dot
curve correspond to MLE, MCE, and SME models, respectively.

TABLE VIII
PERFORMANCE COMPARISON ON THE 5K-WSJ0 TASK

WER Bigram Trigram
MLE 8.41% 6.13%
MCE 7.85% 5.83%
SME_word 7.38% 5.60%

within-word triphone results reported in [35] and recent results
in [36]. In [37], the WER of 7.87% was reported with cross-
word triphone models. Our baseline is also comparable with this
result, considering the different within-word and cross-word set-
tings. The proposed SME algorithm is expected to improve over
better baseline systems as well.

The bigram LM was used to obtain seed lattices for all of
the training utterances. These lattices were generated only once.
At each iteration, the recently updated HMMs were incorpo-
rated to generate new lattices by using seed lattices as decoding
word graphs. Following this, SME was used to update HMM
parameters. The method, denoted by SME_word, is based on
the word-level separation measure d>E-"°rd(0; A) defined in
(11). The soft margin value was set to 5.

MCE model was trained with the similar implementation as
[30]. The bigram LM was used to generate lattices and unigram
was used to rescore them. The correct path was removed from
the decoded word graph, and the smoothing constant was set to
0.04 as in [30]. However, since the relative WER rate of this
MCE realization is worse than that reported in [30], there may
be some implementation issues we need to investigate.

In Table VIII, the WERSs obtained with MLE, MCE and the
SME method are compared. The SME method achieved lower
WERSs than those obtained with the MLE and MCE models.
SME_word decreased WERs significantly from MLE, with rel-
ative WER reductions of 12% for bigram LM and 9% for trigram
LM, respectively. These relative WER rates are comparable to
that reported in [30]. Therefore, we believe SME can also work
on LVCSR as well as other DT methods.
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It should be noted that the current implementations of MCE
and SME are different. Therefore, there is no safe conclusion
whether the formalization of SME is really better than MCE.
For the purposed of fair comparison, it is desirable to share most
implementations for MCE and SME, differing only with their
distinguished algorithm parts. In [38], we formalized SME in
string level and shared the most realizations with MCE, and the
difference was only on margin-based utterance and frame selec-
tion for SME. The results clearly showed SME outperformed
MCE with the help of margin. That work is out of the scope of
the current paper, please refer [38] for detail.

VI. CONCLUSION AND DISCUSSION

We have proposed a novel discriminative training method,
called SME, to achieve both high accuracy and good model gen-
eralization. This proposed method utilizes the successful ideas
of soft margin in SVMs to improve generalization capability. It
directly maximizes the separation of competing models to en-
hance the testing samples to approach a correct decision if the
deviation from training models is within a safe margin. Frame
and utterance selections are integrated into a unified framework
to select the training utterances and frames critical for discrim-
inating competing models. From the view of statistical learning
theory, we show that SME can minimize the approximate risk
bound on the test set. The choice of various loss functions is il-
lustrated and different kinds of separation measures are defined
under a unified SME framework.

Tested on the TIDIGITS database, even 1-mixture SME
models can better separate different words and produce better
string accuracy than 32-mixture MLE models. The performance
of SME is consistently better than that of LME, and signif-
icantly better than those of MLE and MCE. The experiment
coincides with the inequality of the test risk bound, showing
that even though all the models have the same training errors,
the test string accuracies differ because of different margin
values associated with various models. SME was also applied
to LVCSR by defining separation measures at the word levels.
Tested on the 5k-WSJO task, SME achieves about 10% relative
WER reductions over our best MLE baselines.

This paper represents an initial study; we are now working
on a number of related research issues to further complete the
theory of SME. The first is to expand the framework of SME.
Different options can be integrated into current framework.
For example, the current frame selection procedure gives equal
weight to all the different frames in the correct and competing
strings. Some frames in an utterance may be more critical to
measure the separation of models. A strategy to select these
critical frames will be investigated. More elaborate definitions
of margin functions will also be explored to tightly couple them
with the definition of the empirical risks.

The second research item is to design a better solution to (3).
Two solutions to SME are proposed in this study. One solution
is to obtain HMM parameters by presetting the soft margin, and
the other is to optimize the soft margin and HMMs together. Be-
cause there is a correspondence between the soft margin and the
balance coefficient )\, these two solutions are nearly equivalent.
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The solution of jointly optimizing soft margin and HMM pa-
rameters needs to work under a fixed A. How to select a satisfac-
tory A is still an open problem in machine leaning. Determining
how to obtain the soft margin value in advance for the preset-
ting margin solution is another important problem, although the
histogram such as in Fig. 4 gives good indication. We will ex-
plore what the true margin should be and its relationship with
the HMM parameters. We will also investigate the theory for
better selection of A. Better performance is expected with more
precise selection of the margin value or the balance coefficient
A

The third item is to implement a better optimization method.
As discussed in Section III-E, with some approximation, LME
and LM-GMM/LM-HMM convert the original problem into a
convex optimization problem. The sacrifice of precision gives a
nice convex target function. We will explore this tradeoff, and
see whether SME can also be cast into a convex problem.

Finally, we will continue to work on LVCSR. We believe the
current WSJO performance is far from optimal. We will study
the usage of LM in SME training. Currently, LM is only used
to generate lattices for utterances and is not used for SME pa-
rameter update. The relationship between SME and LM will be
evaluated in future studies. Another research direction is to take
advantage of the other successful DT algorithms by using their
corresponding separation measures defined in Table II.

ACKNOWLEDGMENT

The authors would like to thank Dr. H. Jiang of York Uni-
versity for valuable discussions on LME. They are also grateful
to Dr. S. M. Siniscalchi for the lattice phone alignment tool.
They would also like to thank Z. Yan for helping to run MCE
experiments on the WSJO task. They appreciate J. Reed and B.
Matthews for improving the English presentation of this paper.
They also would like to thank the anonymous reviewers for their
valuable suggestions.

REFERENCES

[1] L.R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “Maximum
mutual information estimation of hidden Markov model parameters for
speech recognition,” in Proc. ICASSP, 1986, vol. 1, pp. 49-52.

[2] Y. Normandin, “Maximum mutual information estimation of hidden
Markov models,” in Automatic Speech and Speaker Recognition, C.-H.
Lee, F. K. Soong, and K. K. Paliwal, Eds. Norwell, MA: Kluwer,
1996.

[3] V. Valtchev, J. Odell, P. C. Woodland, and S. Young, “MMIE training
of large vocabulary recognition systems,” Speech Commun., vol. 22,
no. 4, pp. 303-314, 1997.

[4] B. -H. Juang, W. Chou, and C. -H. Lee, “Minimum classification
error rate methods for speech recognition,” IEEE Trans. Speech Audio
Process., vol. 5, no. 3, pp. 257-265, May 1997.

[5] R. Schlueter, W. Macherey, B. Muller, and H. Ney, “Comparison of
discriminative training criteria and optimization methods for speech
recognition,” Speech Commun., vol. 34, no. 3, pp. 287-310, 2001.

[6] E. McDermott, T. J. Hazen, J. L. Roux, A. Nakamura, and S. Katagiri,
“Discriminative training for large vocabulary speech,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 1, pp. 203-223, Jan. 2007.

[7] D.Povey and P. C. Woodland, “Minimum phone error and i-smoothing
for improved discriminative training,” in Proc. ICASSP, 2002, pp.
1105-1108.

[8] E. McDermott and S. Katagiri, “A derivation of Minimum Classifica-
tion Error from the theoretical classification risk using Parzen estima-
tion,” Comput. Speech Lang., vol. 18, pp. 107-122, 2004.

[9] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[10] C. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data Mining Knowl. Dis., vol. 2, no. 2, pp. 121-167, 1998.

[11] W. Campbell, “Generalized linear discriminant sequence kernels for
speaker recognition,” in Proc. ICASSP, 2002, pp. 161-164.

[12] J. Louradour, K. Daoudi, and F. Bach, “SVM speaker verification
using an incomplete cholesky decomposition sequence kernel,” in
Proc. IEEE Odyssey, 2006.

[13] M. H. Johnson, J. Baker, S. Borys, K. Chen, E. Coogan, S. Green-
berg, A. Juneja, K. Kirchhoff, K. Livescu, S. Mohan, J. Muller, K.
Sonmez, and T. Wang, “Landmark-based speech recognition: Report
of the 2004 Johns Hopkins summer workshop,” in Proc. ICASSP, 2005,
pp. 213-216.

[14] A. Ganapathisraju, J. Hamaker, and J. Picone, “Hybrid SVM/HMM
architecture for speech recognition,” in Proc. Interspeech, 2000, pp.
504-507.

[15] J. Stadermann and G. Rigoll, “A hybrid SVM/HMM acoustic modeling
approach to automatic speech recognition,” in Proc. Interspeech, 2004,
pp. 661-664.

[16] Y. Altun, I. Tsochantaridis, and T. Hofmann, “Hidden Markov support
vector machines,” in Proc. ICML, 2005, 2003, pp. 3-10.

[17] X.Li, H. Jiang, and C. Liu, “Large margin HMM:s for speech recogni-
tion,” in Proc. ICASSP, 2005, pp. V-513-V-516.

[18] H. Jiang, X. Li, and C. Liu, “Large margin hidden Markov models for
speech recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol.
14, no. 5, pp. 1584-1595, Sep. 2006.

[19] C. Liu, H. Jiang, and X. Li, “Discriminative training of CDHMMS
for maximum relative separation margin,” in Proc. ICASSP, 2005, pp.
I-101-1-104.

[20] C. Liu, H. Jiang, and L. Rigazio, “Recent improvement on maximum
relative margin estimation of HMMs for speech recognition,” in Proc.
ICASSP, 2006, pp. 1-269-1-272.

[21] F. Sha and L. K. Saul, “Large margin Gaussian mixture modeling for
phonetic classification and recognition,” in Proc. ICASSP, 2006, pp.
1-265-1-268.

[22] F. Sha and L. K. Saul, “Large margin hidden Markov models for au-
tomatic speech recognition,” in Advances in Neural Information Pro-
cessing Systems 19, B. Scﬁolkopf, J. Platt, and T. Hofmann, Eds.
Cambridge, MA: MIT Press, 2007.

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
ed. New York: Wiley, 2001.

[24] R.G. Leonard, “A database for speaker-independent digit recognition,”
in Proc. ICASSP, 1984, pp. 328-331.

[25] D. B. Paul and J. M. Baker, “The design for the wall street journal-
based csr corpus,” in Proc. Workshop Speech Natural Lang., 1992, pp.
357-362.

[26] S. Katagiri, B. -H. Juang, and C.-H. Lee, “Pattern recognition using a
family of design algorithms based upon the generalized probabilistic
descent method,” in Proc. IEEE, Nov. 1998, vol. 86, no. 11, pp.
2345-2373.

[27] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 2000.

[28] X. Li and H. Jiang, “Solving large margin estimation of HMMs
via semidefinite programming,” in Proc. Interspeech, 2006, pp.
2414-2417.

[29] P. C. Woodland and D. Povey, “Large scale discriminative training of
hidden Markov models for speech recognition,” Comput. Speech Lang.,
vol. 16, no. 1, pp. 25-47, 2002.

[30] W. Macherey, L. Haferkamp, R. Schliiter, and H. Ney, “Investigations
on error minimizing training criteria for discriminative training in auto-
matic speech recognition,” in Proc. Interspeech, 2005, pp. 2133-2136.

[31] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. C. Woodland, The HTK Book (for HTK
Version 3.2). Cambridge, U.K.: Cambridge Univ. Press, 2002.

[32] E. L. Lehmann, Testing Statistical Hypothesis, 2nd ed. New York:
Wiley, 1986.

[33] D. Yu, L. Deng, X. He, and A. Acero, “Use of incrementally regu-
lated discriminative margins in MCE training for speech recognition,”
in Proc. Interspeech, 20006, pp. 2418-2421.

[34] H. Jiang, private communication. York Univ., Toronto, ON, Canada,
2006.

[35] P.C. Woodland, J. Odell, V. Valtchev, and S. Young, “Large vocabulary
continuous speech recognition using HTK,” in Proc. ICASSP, 1994, pp.
I-1125-1-1128.

[36] Q. Fu, A. M. Daniel, B. -H. Juang, J. L. Zhou, and F. K. Soong, “Gen-
eralization of the minimum classification error (MCE) training based
on maximizing generalized posterior probability (GPP),” in Proc. In-
terspeech, 2006, pp. 681-684.



2404

[37] B. Mak, T. -H. Lai, and R. Hsiao, “Improving reference speaker
weighting adaptation by the use of maximum-likelihood reference
speakers,” in Proc. ICASSP, 2006, pp. 1-222-1-232.

[38] J. Li, Z. Yan, C. -H. Lee, and R. -H. Wang, “A study on soft margin
estimation for LVCSR,” in Proc. IEEE Automatic Speech Recognition
and Understanding Workshop, 2007, submitted for publication.

Jinyu Li received the B.Eng. and M.Eng. degrees
in electrical engineering and information systems
from the University of Science and Technology of
China, Hefei, in 1997 and 2000, respectively. He is
currently pursuing the Ph.D. degree at the School
of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta.

From 2000 and 2003, he worked as a Researcher
with the Intel China Research Center and iFlytek
speech. His major research interests cover several
topics in speech recognition, including discrimina-
tive training, noise robustness, feature extraction, and attribute detector design.
In addition, he also works on machine learning and language recognition.

Ming Yuan received the B.S. degree in electrical en-
gineering and information science from the Univer-
sity of Science and Technology of China, Hefei, the
M.S. degree in computer science and the Ph.D. de-
gree in statistics from the University of Wisconsin,
Madison.

He is an Assistant Professor in the H. Milton
School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta. His current
research interests include statistical learning and
its applications in biology, medicine, finance, and

engineering.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 8, NOVEMBER 2007

Chin-Hui Lee (S’78-M’82-SM’91-F’97) received
the B.S. degree in electrical engineering from Na-
tional Taiwan University, Taipei, Taiwan, R.O.C., in
1973, the M.S. degree in engineering and applied sci-
ence from Yale University, New Haven, CT, in 1977,
and the Ph.D. degree in electrical engineering with
a minor in statistics from University of Washington,
Seattle, in 1981.

He is a Professor at the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, Atlanta. He started his professional
career at Verbex Corporation, Bedford, MA, and was involved in research on
connected word recognition. In 1984, he became affiliated with Digital Sound
Corporation, Santa Barbara, CA, where he engaged in research and product
development in speech coding, speech synthesis, speech recognition, and signal
processing for the development of the DSC-2000 Voice Server. From 1986
to 2001, he was with Bell Laboratories, Murray Hill, NJ, where he became
a Distinguished Member of Technical Staff and Director of the Dialogue
Systems Research Department. His research interests include multimedia com-
munication, multimedia signal and information processing, speech and speaker
recognition, speech and language modeling, spoken dialogue processing,
adaptive and discriminative learning, biometric authentication, and information
retrieval. From August 2001 to August 2002, he was a Visiting Professor at
the School of Computing, The National University of Singapore. In September
2002, he joined the faculty at the Georgia Institute of Technology. He has
published more than 250 papers and 25 patents on the subject of automatic
speech and speaker recognition.

Prof. Lee has participated actively in professional societies. He is a member of
the IEEE Signal Processing Society (SPS), Communication Society, and the In-
ternational Speech Communication Association (ISCA). From 1991 to 1995, he
was an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING
and TRANSACTIONS ON SPEECH AND AUDIO PROCESSING. During the same pe-
riod, he served as a member of the ARPA Spoken Language Coordination Com-
mittee. From 1995 to 1998, he was a member of the Speech Processing Tech-
nical Committee and later became the Chairman from 1997 to 1998. In 1996,
he helped promote the SPS Multimedia Signal Processing Technical Committee
in which he is a founding member. He received the SPS Senior Award in 1994
and the SPS Best Paper Award in 1997 and 1999, respectively. In 1997, he was
awarded the prestigious Bell Labs President’s Gold Award for his contributions
to the Lucent Speech Processing Solutions product. He often gives seminal lec-
tures to a wide international audience. In 2000, he was named one of the six Dis-
tinguished Lecturers by the IEEE Signal Processing Society. He was also named
one of the two ISCA inaugural Distinguished Lecturers in 2007 and 2008. Re-
cently, he won the SPS’s 2006 Technical Achievement Award for “Exceptional
Contributions to the Field of Automatic Speech Recognition.”




