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We propose penalized-likelihoodmethods for parameter estimation of high dimensional t dis-
tribution. First, we show that a general class of commonly used shrinkage covariance matrix
estimators for multivariate normal can be obtained as penalized-likelihood estimator with a
penalty that is proportional to the entropy loss between the estimate and an appropriately
chosen shrinkage target. Motivated by this fact, we then consider applying this penalty tomul-
tivariate t distribution. The penalized estimate can be computed efficiently using EMalgorithm
for given tuning parameters. It can also be viewed as an empirical Bayes estimator. Taking ad-
vantage of its Bayesian interpretation, we propose a variant of the method of moments to
effectively elicit the tuning parameters. Simulations and real data analysis demonstrate the
competitive performance of the new methods.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate t distribution is widely used in practice to model features such as fat tails, and excess kurtosis that are often
observed in real applications such as internet traffic and finance, but cannot be captured by multivariate normal. Although
useful from modeling perspective, the practical use of multivariate t distribution is often limited by the difficulty in parameter
estimation, particularly so for high dimensional data.

Let y= (y(1), . . . , y(p))′ be a p-dimensional random vector following a multivariate t distribution with � degrees of freedom, i.e.,
with density function given by

f (y|�,�) =
�
(

� + p
2

)
|�|−1/2

(��)p/2�(�/2)
[
1 + 1

�
(y − �)′�−1(y − �)

](�+p)/2
, (1)

where the parameters � and � are often referred to as the location vector and scale matrix, respectively. Given a random sample
y1, . . . , yn of y, we wish to estimate � and �. The most commonly used estimator is the maximum-likelihood estimate (MLE),
which can be computed efficiently thanks to the EM algorithm first proposed by Liu and Rubin (1995). The performance of MLE,
however, quickly deteriorates as the dimensionality p increases since the number of unknowns grows quadratically in p. Even
worse, the MLE of � may not be guaranteed to be positive definite for moderate or large p's.

In this paper, we propose a penalized-likelihood estimator for multivariate t distribution. We introduce a novel penalty that
is proportional to the entropy loss between the estimate and an appropriately chosen shrinkage target. In the limiting case of
multivariate normal which corresponds to multivariate t distribution with the degree of freedom approaches infinity, we show

∗ Corresponding author.
E-mail address: myuan@isye.gatech.edu (M. Yuan).

0378-3758/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2008.10.014

http://www.sciencedirect.com/science/journal/jspi
http://www.elsevier.com/locate/jspi
mailto:myuan@isye.gatech.edu


M. Yuan, J.Z. Huang / Journal of Statistical Planning and Inference 139 (2009) 2284 -- 2292 2285

that the proposed estimator has several popular covariance matrix estimators such as those of Haff (1980) and Ledoit and Wolf
(2004) as special cases. Inmore general situationswhen the degree of freedom is finite, we show that similar toMLE, the proposed
estimator can be computed efficiently using an EM algorithm. Furthermore, we demonstrate that the proposed estimate has a
natural Bayesian interpretation. We propose an empirical Bayes strategy that is similar in spirit to the method of moments to
select the tuning parameters. We demonstrate the effectiveness of the new estimator using simulations and real data analysis.

2. Method

2.1. Shrinkage estimator of the multivariate normal covariance matrix

To motivate our approach of regularized parameter estimation for multivariate t distribution, we first consider the limiting
case of multivariate normal which amounts to letting the degree of freedom � go to infinity. Suppose y1, . . . , yn ∼ Np(�,�). The
most popular estimate of the mean and covariance matrix is the MLE � = ȳ and S = (1/n)

∑n
i=1(yi − ȳ)(yi − ȳ)′.

Although successful for lower dimensional problems, the performance of S quickly deteriorates as the dimension increases.
In particular when p�n − 1, S is not positive definite. A number of approaches (Ledoit and Wolf, 2004; Huang et al., 2006; Yuan
and Lin, 2007; Bickel and Levina, 2008) have been introduced in recent years to overcome the difficulties associated with high
dimensions. A general strategy that is proven useful in this setup is through regularization:

(�̂, �̂) = min
�,��0

{
−2
n
log likelihood + � pen(�)

}
, (2)

where � � 0 means that � is positive definite, and the penalty function pen(·) is chosen so that the covariance matrix estimate
is shrunken towards a well-conditioned target. Denote 	 an appropriately chosen shrinking target matrix. We propose the
following penalty function:

pen(�) = ln |�| + trace(�−1	). (3)

Note that this penalty function differs from the entropy loss between � and 	 only by a constant not depending on �. The
penalty has several desirable properties. It is strictly convex over the cone of positive definite matrices, which ensures that the
objective function of (2) has a uniqueminimizer and the optimization is computationally tractable. The penalty itself has a unique
minimizer 	, which induces shrinkage towards the pre-specified target.

Note that

−2
n
log likelihood + �{ln |�| + trace(�−1	)} = ln |�| + 1

n

∑
i=1

(yi − �)′�−1(yi − �) + �{ln |�| + trace(�−1	)}. (4)

The minimizing � is �̂ = ȳ. The penalized-likelihood estimator of � therefore minimizes

ln |�| + trace(�−1S) + �{ln |�| + trace(�−1	)} = −(1 + �) ln |C| + trace{C(S + �	)}, (5)

where C = �−1 is the so-called concentration or precision matrix. Using the fact that � ln |C|/�C = C−1 and � trace(CA)/�C = A for
a comformable matrix A, it is easy to show that the penalized-likelihood estimate (PLE) of � is

�̂ = 1
1 + �

S + �
1 + �

	. (6)

A particularly popular class of shrinkage estimator for the covariancematrix takes the form �̂=aS+bI for some a, b >0where I
is an identity matrix of appropriate dimension (Haff, 1980; Ledoit andWolf, 2004). These estimates can also be cast as penalized-
likelihood estimators within the proposed framework. To elaborate, consider the shrinking target being an appropriately scaled
identity matrix, i.e., 	 = 
I, where 
 >0 is an additional tuning parameter. It is clear that now (6) becomes a linear combination
of S and I:

�̂ = 1
1 + �

S + �

1 + �

I. (7)

Haff (1980) introduced a family of empirical Bayes covariancematrix estimator. Under the assumption that p <n, the estimator
is given by

�̂Haff = pn − 2n − 2
pn2|S|1/p I + n

n + 1
S. (8)

It is not hard to see that our PLE reduces to (8) with � = 1/n and


 = (n + 1)(pn − 2n − 2)
pn2|S|1/p . (9)
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Another special case is the one proposed by Ledoit and Wolf (2004), which is given by

�̂LW = b2n
d2n

mnI + a2n
d2n

S, (10)

where

mn = trace(S)/p, dn = ‖S − mnI‖2F ,

b2n = min

⎛⎝d2n, 1n
n∑

i=1

‖(yi − ȳ)(yi − ȳ)′ − S‖2F

⎞⎠ ,

a2n = d2n − b2n, and ‖ · ‖F stands for the Frobenius norm. This estimator amounts to (6) with � = b2n/a
2
n and 
 = mn.

To fix ideas, in what follows, we shall assume that 	 = 
I. The methodological developments presented, however, can also be
applied to other choices of 	.

2.2. Penalized-likelihood estimation for multivariate t distribution

Since the multivariate normal distribution is the limit of multivariate t distribution as the degree of freedom � → ∞, it is
reasonable to extend the penalized likelihood (2) to the multivariate t distributions. We thus consider the following PLE:

min
�,�

−2
n

n∑
i=1

l(yi;�,�) + � pen(�) subject to � being positive definite, (11)

where l(yi;�,�)= ln f (yi|�,�) is the contribution of yi to the log likelihood and f (yi|�,�) is defined as in (1). Hereafter we write
pen
(·) instead of pen(·) to emphasize its dependence on parameter 
 through the choice of 	 = 
I.

Similar to MLE, the proposed PLE does not have a closed form. To develop a computational algorithm, we take advantage of
the fact that multivariate t distribution belongs to the family of scale mixture of normals. In particular, if y|� ∼ Np(�,�/�) and
� ∼ �2

� /�, then y ∼ tp(�,�, �), i.e., y's density is given by (1). This property suggests that we can augment the data and treat
the problem as a missing data problem, then the EM algorithm (Dempster et al., 1977) can be applied for easy computation
of the estimator. More precisely, for observed data yobs = {y1, . . . , yn}, where yi ∼ tp(�,�, �), independently, we augment yobs
to ycom = {(y1, �1), . . . , (yn, �n)}. If the weights �1, . . . , �n were observable, then the MLE and our PLE could be easily computed.
Since �s' are not observable, we treat them as missing values and apply the EM algorithm to compute estimates of � and �.
The EM algorithm alternates between an expectation (E) step and a maximization (M) step. In computing the MLE, the E step
computes the expected value of the complete-data log likelihood with respect to the conditional distribution of complete-data
given the observed data. The M step maximizes the resulting function. Under mild conditions each iteration of EM decreases the
log likelihood of the observed data. Our adding a regularization penalty to the log likelihood does not change the convergence
property of EM.

Let 
(t) = (�(t),�(t)) be the parameter estimate at the t th iteration of the EM algorithm. Then, at the (t + 1)th iteration:
E step: Assuming 
 = 
(t), compute the expected value of the weights �i given the observed data:

�(t+1)
i = E(�i|
(t), yobs) = � + p

� + d(yi,�(t),�(t))
,

where p is the dimension of yi, � is the degrees of freedom, and d(y,�,�)=(y−�)′�−1(y−�) is theMahalanobis distance between
y and �.

M step: Minimizing the expected penalized negative log likelihood, giving

�(t+1) =
n∑

i=1

�(t+1)
i yi

/ n∑
i=1

�(t+1)
i ,

and

�(t+1) = 1
� + 1

⎧⎨⎩1
n

n∑
i=1

�(t+1)
i (yi − �(t+1))(yi − �(t+1))′ + �
I

⎫⎬⎭ .

2.3. Bayesian interpretation and tuning

The proposed estimator can be naturally interpreted as the maximum posterior estimate with a prior �−1 ∼ W((1/n�)I, p +
1 + n�), i.e.,

p(�−1|�,�) ∝ |�|−n�/2 exp{−n� trace(�−1)/2}, (12)



M. Yuan, J.Z. Huang / Journal of Statistical Planning and Inference 139 (2009) 2284 -- 2292 2287

where � = �
. Therefore, the marginal density of y1, . . . , yn can be written as

p(y1, . . . , yn|�,�,�) =
∫ ⎧⎨⎩

n∏
i=1

f (yi|�,�)

⎫⎬⎭ p(�−1|�,�) d�−1. (13)

Taking the empirical Bayes perspective, � and � can be determined by maximizing the marginal likelihood. However, the lack of
a closed formmarginal density makes the optimization intractable. To overcome this problem, here we introduce a variant of the
method of moments as an alternative to maximizing the marginal likelihood.

Denote

S̃ = 1
n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′, (14)

and let ˜̃S be a n × n matrix whose (j, k) entry is given by

˜̃Sjk = 1
n

n∑
i=1

{(yi − ȳ)(yi − ȳ)′ − S}2jk. (15)

In Appendix A, we derived that

Theorem 1. The marginal expectations of trace(S̃) and trace( ˜̃S) with prior �−1 ∼ W((1/n�)I, p + 1 + n�) are given by

E{trace(S̃)} = �p

� − 2

, (16)

E{trace( ˜̃S)} =
{(

1 − 4
n

+ 5
n2

− 1
n3

− 1
n4

)
3�2

(� − 4)(� − 2)
−
(
1 − 9

n
+ 32

n2
− 24

n3

)
�2

(� − 2)2

}
p
2

1 − 2/n�
. (17)

Using this result, an estimator of (�, 
) can be obtained by matching trace(S̃) and trace( ˜̃S) with their respective expectations.

Note that E{trace( ˜̃S)} involves the fourth moment of a multivariate t random variable and therefore is only valid when � >4.
This is not restrictive in practice though since in most applications, t distribution is used to model excess kurtosis which is only
finite if � >4. Nevertheless, when � = 3 or 4, a combination of moment matching and cross validation (CV) can be employed. Note
that (16) is still valid. Hence we can match trace(S̃) with its expectation to obtain 
̂ = trace(S̃)(� − 2)/p�. Now that (17) no longer
holds, we can choose � using K-fold CV.

In CV, the full data setD is randomly split into K subsets of about the same size, denoted byD(1), . . . ,D(K). For each k=1, . . . ,K,
we use the data inD−D(k) to estimate the model parameters and the data inD(k) to validate. The log likelihood could be used as
the performance measure in our case. For each candidate value of �, the K-fold cross-validated log likelihood criterion is defined
as

CV(�, 
̂) = −2
K∑

k=1

∑
i∈Ik

l(yi,�(−k),�−k),

where Ik is the index set of the data in D(k), and �̂−k and �̂−k are the estimated � and � using the training data set D − D(k).

Typically, K is set to be 5 or 10 and CV(�, 
̂) is minimized over a grid of values of �. Let �̂ be the minimizer of CV(�, 
̂). Our final
estimate of � is based on �̂, 
̂ and the full data set.

3. Numerical example

To illustrate the merits of the proposed penalized-likelihood estimator, we consider here a financial application. Covariance
matrix estimation is of great importance in portfolio construction. We compare the proposed estimator with several commonly
used alternative covariance matrix estimators using a real data set. We consider four estimates: the sample covariance matrix
(Sample), the covariance matrix estimator of Ledoit and Wolfe (2004; LWE), the MLE, and the PLE. For the latter two estimators,
we estimate the covariance matrix by �̂ = �/(� − 2)�̂. Clearly there are many other alternative covariance matrix estimators. We
choose the sample covariance matrix for its simplicity and popularity, and LWE because it has been demonstrated to enjoy good
performance when compared with other popular alternatives (Ledoit and Wolf, 2004).

We consider an analysis of the joint distribution of Fama and French's (1993) 25 asset returns in the past 10 years from
January 1997 to December 2006. The multivariate normal assumption is rejected by Anscombe–Glynn (1983) test of kurtosis
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Table 1
Estimated mean and standard deviation for each of the 25 asset returns from Fama and French (1993).

Asset t8 PLE Sample t8 MLE LWE

Mean Std Mean Std Mean Std Std

S1B1 0.59 11.18 0.61 10.17 0.60 8.97 10.00
S1B2 1.37 8.84 1.46 8.27 1.38 7.09 8.15
S1B3 1.54 6.81 1.60 5.98 1.55 5.49 5.95
S1B4 1.74 6.47 1.80 5.45 1.75 5.24 5.44
S1B5 1.99 6.98 1.79 5.56 2.04 5.69 5.55
S2B1 0.68 9.96 0.65 8.47 0.70 8.06 8.35
S2B2 1.09 7.46 1.06 6.06 1.10 6.07 6.03
S2B3 1.46 6.45 1.36 5.05 1.49 5.26 5.07
S2B4 1.49 6.64 1.33 5.17 1.52 5.43 5.18
S2B5 1.53 7.12 1.37 5.61 1.57 5.81 5.60
S3B1 0.69 9.04 0.61 7.76 0.71 7.29 7.66
S3B2 1.14 6.83 1.06 5.42 1.15 5.55 5.41
S3B3 1.22 6.01 1.09 4.73 1.24 4.90 4.77
S3B4 1.29 6.16 1.09 4.79 1.32 5.03 4.82
S3B5 1.68 6.55 1.52 5.17 1.72 5.35 5.18
S4B1 0.86 8.06 0.95 7.02 0.85 6.47 6.95
S4B2 1.23 6.15 1.13 4.88 1.26 5.00 4.90
S4B3 1.42 5.87 1.25 4.77 1.44 4.77 4.80
S4B4 1.45 5.96 1.32 4.72 1.47 4.83 4.75
S4B5 1.40 6.00 1.21 4.94 1.43 4.85 4.96
S5B1 0.84 6.15 0.70 4.94 0.84 4.95 4.96
S5B2 1.19 5.53 0.96 4.51 1.20 4.47 4.55
S5B3 1.21 5.53 0.97 4.52 1.23 4.48 4.56
S5B4 1.20 5.13 0.92 4.34 1.23 4.13 4.40
S5B5 1.29 6.36 0.82 5.13 1.33 5.13 5.14

The sample mean is also used for calculating the LWE covariance matrix.

PLEMLE

2

4

6

8

10

12

LWE Sample

Fig. 1. Comparisons of four methods on simulated data sets. The boxplots of the losses from 100 simulation runs.

with p-value smaller than 0.01%. The averaged kurtosis of the 25 asset returns is 4.53 which indicates amultivariate t distribution
with 8 degrees of freedom might be a more reasonable alternative. We estimate the location vector and scale matrix using the
proposed method. The estimated mean and standard deviation of each asset are reported in Table 1.

To further evaluate the accuracy of the proposed method, we simulated data with the same characteristics as the observed
asset returns. We generate n=120 observations from a p=25 dimensional multivariate t distribution with 8 degrees of freedom,
and the location vector and scale matrix being those estimated from the above real data using PLE. Then we apply each of the
four estimators to the simulated data. To evaluate the performance of the estimates, we use the following loss function for a
covariance matrix estimate �̂:

L(�̂) = ln |�̂| + trace(��̂
−1

) − ln |�| − p. (18)

The experiment was repeated 100 times. The boxplot of the losses for each of the method is given in Fig. 1, from which we can
see that the PLE performs favorably over the other methods.
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4. Discussions

In this paper,we proposed a novel regularization technique for parameter estimation inmultivariate t and normal distribution.
The estimator can be computed efficiently using an EM algorithm and the tuning parameters can be set using a variant of the
method of moments or CV.

The proposed methods can be easily extended in several directions. First, in many applications, it might be desirable to shrink
the scale matrix estimate towards a target other than 
I. For example, Ledoit and Wolf (2003) demonstrated that assuming
normality, in estimating the covariance matrix of stock returns, it is natural to consider shrinking the covariance matrix towards
a factor model where the covariance matrix can be expressed as a linear combination of a diagonal matrix and a matrix with
small ranks. The entropy type penalty (3) can be easily adopted for such purpose by setting 	 as a covariance matrix estimate
obtained from the factor model.

Moreover, the proposed method can be modified to handle unknown degrees of freedom. If � is unknown, we need to add
to the M step an updating formula of � by maximizing the actual observed data log likelihood over � given (�,�) = (�(t),�(t)).
Maximizing the actual log likelihood is preferred to maximizing the expected log likelihood (Liu and Rubin, 1995). The log
likelihood, ignoring irrelevant constants, is

{
ln
(
�
(

� + p
2

))
− ln

(
�
( �
2

))
+ �

2
ln �

}
− � + p

2

n∑
i=1

ln{� + (yi − �)′�−1(yi − �)},

which can be maximized using a one-dimensional search such as Newton's method.
The proposed technique can also be generalized to a rich family of distributions that can be expressed as the scale mixture of

multivariate normal distribution (Andrews and Mallows, 1974), i.e.,

y|� ∼ MVN(�,�/�),
� ∼ �(�).

Multivariate t is a special case of scale mixture of multivariate normal with � being set as �2
� /�. Other popular examples include

finite mixture of normals with shared covariance matrix where � is a discrete distribution; multivariate exponential power
distribution (Haro-Lopez and Smith, 1999)where � is a positiveweighted stable distribution; andmultivariate stable distribution
(Buckle, 1995) where � takes a nonstandard form. It is clear that the methodology developed in Section 2 can be modified to
estimate parameters � and � in these models as well.
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Appendix A. Derivation of marginal moments

Simple algebraic manipulations yield

trace(S̃) = 1
n − 1

n∑
i=1

‖yi − ȳ‖2 = 1
n − 1

⎛⎝ n∑
i=1

‖yi − �‖2 − n‖ȳ − �‖2
⎞⎠ . (A.1)

Therefore,

E{trace(S̃)} = 1
n − 1

⎡⎣ n∑
i=1

E{‖yi − �‖2} − nE{‖ȳ − �‖2}
⎤⎦

= E(‖y1 − �‖2)
= E{E(‖y1 − �‖2|�)}

= E
{

�
� − 2

trace(�)
}

= �p

� − 2

,

where the last equation holds because E(�) = (n�/n�)I = 
I.
The derivation of (17) is somewhat tedious and we decompose it into several lemmas.
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Lemma 1.

E

⎡⎢⎣
⎧⎨⎩

n∑
i=1

(yij − �j)
2

⎫⎬⎭
2
∣∣∣∣∣∣∣�
⎤⎥⎦= nE{(y1j − �j)

4|�} + n(n − 1)E{(y1j − �j)
2(y2j − �j)

2|�}.

Lemma 2.

E

⎡⎣(ȳ·j − �j)
2

n∑
i=1

(yij − �j)
2|�

⎤⎦= 1
n
E{(y1j − �j)

4|�} + n − 1
n

E{(y1j − �j)
2(y2j − �j)

2|�}.

Proof.

E

⎡⎣(ȳ·j − �j)
2

n∑
i=1

(yij − �j)
2|�

⎤⎦= E

⎡⎢⎣
⎧⎨⎩1
n

n∑
k=1

(ykj − �j)

⎫⎬⎭
2

n∑
i=1

(yij − �j)
2|�

⎤⎥⎦
= 1

n2
E

⎡⎣ n∑
k=1

(ykj − �j)
2

n∑
i=1

(yij − �j)
2|�

⎤⎦
= 1

n
E{(y1j − �j)

4|�} + n − 1
n

E{(y1j − �j)
2(y2j − �j)

2|�},
where the last equality holds because of Lemma 1. �

Lemma 3.

E[(ȳ·j − �j)
4|�] = 1

n3
E{(y1j − �j)

4|�} + 6(n − 1)
n3

E{(y1j − �j)
2(y2j − �j)

2|�}.

Proof.

E[(ȳ·j − �j)
4|�] = E

⎡⎢⎣
⎧⎨⎩1
n

n∑
i=1

(yij − �j)

⎫⎬⎭
4
∣∣∣∣∣∣∣�
⎤⎥⎦

= 1
n4

E

⎡⎣ n∑
i=1

(yij − �j)
4|�

⎤⎦+ 6
n4

E

⎡⎣∑
i� k

(yij − �j)
2(ykj − �j)

2|�
⎤⎦

= 1
n3

E{(y1j − �j)
4|�} + 6(n − 1)

n3
E{(y1j − �j)

2(y2j − �j)
2|�}. �

Lemma 4.

E

⎧⎨⎩
n∑

i=1

(yij − ȳ·j)
4|�

⎫⎬⎭=
(
n − 4 + 6

n
− 3

n2

)
E{(y1j − �j)

4|�} +
(
6 − 24

n
+ 18

n2

)
E{(y1j − �j)

2(y2j − �j)
2|�}.

Proof.

E

⎧⎨⎩
n∑

i=1

(yij − ȳ·j)
4|�

⎫⎬⎭= E

⎡⎣ n∑
i=1

{(yij − �j) + (�j − ȳ·j)}4|�
⎤⎦

= E

⎧⎨⎩
n∑

i=1

(yij − �j)
4|�

⎫⎬⎭+ nE{(y·j − �j)
4|�} − 4E

⎧⎨⎩
n∑

i=1

(yij − �j)
3(y·j − �j)|�

⎫⎬⎭
− 4E

⎧⎨⎩
n∑

i=1

(yij − �j)(y·j − �j)
3|�

⎫⎬⎭+ 6E

⎧⎨⎩
n∑

i=1

(yij − �j)
2(y·j − �j)

2|�
⎫⎬⎭

= E

⎧⎨⎩
n∑

i=1

(yij − �j)
4|�

⎫⎬⎭+ nE{(y·j − �j)
4|�} − 4

n
E

⎧⎨⎩
n∑

i=1

(yij − �j)
4|�

⎫⎬⎭− 4nE{(y·j − �j)
4|�}

+ 6
n
E{(y1j − �j)

4|�} + 6(n − 1)
n

E{(y1j − �j)
2(y2j − �j)

2|�}

=
(
n − 4 + 6

n
− 3

n2

)
E{(y1j − �j)

4|�} +
(
6 − 24

n
+ 18

n2

)
E{(y1j − �j)

2(y2j − �j)
2|�}. �



M. Yuan, J.Z. Huang / Journal of Statistical Planning and Inference 139 (2009) 2284 -- 2292 2291

Lemma 5.

E(S̃2jj|�) = 1
n
E{(y1j − �j)

4|�} + n2 − 2n + 6
n(n − 1)

E{(y1j − �j)
2(y2j − �j)

2|�}.

Proof. Note that

S̃2jj =
⎧⎨⎩ 1
n − 1

n∑
i=1

(yij − ȳ·j)
2

⎫⎬⎭
2

= 1

(n − 1)2

⎧⎨⎩
n∑

i=1

(yij − �j)
2 − n(ȳ·j − �j)

2

⎫⎬⎭
2

= 1

(n − 1)2

⎡⎢⎣
⎧⎨⎩

n∑
i=1

(yij − �j)
2

⎫⎬⎭
2

+ n2(ȳ·j − �j)
4 − 2n(ȳ·j − �j)

2
n∑

i=1

(yij − �j)
2

⎤⎥⎦ .

Now from Lemma 1,

E

⎡⎢⎣
⎧⎨⎩

n∑
i=1

(yij − �j)
2

⎫⎬⎭
2
∣∣∣∣∣∣∣�
⎤⎥⎦= nE(y1j − �j)

4 + n(n − 1)E(y1j − �j)
2(y2j − �j)

2, (A.2)

from Lemma 3,

E{n2(ȳ·j − �j)
4|�} = 1

n
E{(y1j − �j)

4|�} + 6(n − 1)
n

E{(y1j − �j)
2(y2j − �j)

2|�}, (A.3)

and from Lemma 2,

E

⎧⎨⎩2n(ȳ·j − �j)
2

n∑
i=1

(yij − �j)
2|�

⎫⎬⎭= 2E{(y1j − �j)
4|�} + 2(n − 1)E{(y1j − �j)

2(y2j − �j)
2|�}. (A.4)

To sum up, we have

E(S̃2jj|�) = 1
n
E{(y1j − �j)

4|�} + n2 − 2n + 6
n(n − 1)

E{(y1j − �j)
2(y2j − �j)

2|�}. �

Lemma 6.

E( ˜̃Sjj|�) =
(
1 − 4

n
+ 5

n2
− 1

n3
− 1

n4

) 3�2�2
jj

(� − 4)(� − 2)
−
(
1 − 9

n
+ 32

n2
− 24

n3

) �2�2
jj

(� − 2)2
.

Proof.

˜̃Sjj =
1
n

n∑
i=1

{(yij − ȳ·j)
2 − Sjj}2

= 1
n

⎧⎨⎩
n∑

i=1

(yij − ȳ·j)
4 + nS2jj − 2Sjj

n∑
i=1

(yij − ȳ·j)
2

⎫⎬⎭
= 1

n

n∑
i=1

(yij − ȳ·j)
4 − S2jj.

Recall that S = (n − 1)S̃/n. Lemma 5 implies that

E(S2jj|�) = (n − 1)2

n3
E{(y1j − �j)

4|�} + n3 − 3n2 + 8n − 6
n3

E{(y1j − �j)
2(y2j − �j)

2|�}.

Together with Lemma 4,

E( ˜̃Sjj|�) =
(
1 − 5

n
+ 8

n2
− 4

n3

)
E{(y1j − �j)

4|�} −
(
1 − 9

n
+ 32

n2
− 24

n3

)
E{(y1j − �j)

2(y2j − �j)
2|�}.
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The proof is now completed by the fact that

E{(y1j − �j)
4|�} = 3�2�2

jj

(� − 4)(� − 2)
, (A.5)

E{(y1j − �j)
2(y2j − �j)

2|�} = �2�2
jj

(� − 2)2
. � (A.6)

Now (17) can be obtained because E(�2
jj) = 
2/(1 − 2/n�) (Siskind, 1972).
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