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STRUCTURED VARIABLE SELECTION AND ESTIMATION
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In linear regression problems with related predictors, it is desirable to do
variable selection and estimation by maintaining the hierarchical or structural
relationships among predictors. In this paper we propose non-negative garrote
methods that can naturally incorporate such relationships defined through ef-
fect heredity principles or marginality principles. We show that the methods
are very easy to compute and enjoy nice theoretical properties. We also show
that the methods can be easily extended to deal with more general regression
problems such as generalized linear models. Simulations and real examples
are used to illustrate the merits of the proposed methods.

1. Introduction. When considering regression with a large number of pre-
dictors, variable selection becomes important. Numerous methods have been pro-
posed in the literature for the purpose of variable selection, ranging from the clas-
sical information criteria such as AIC and BIC to regularization based modern
techniques such as the nonnegative garrote [Breiman (1995)], the Lasso [Tibshi-
rani (1996)] and the SCAD [Fan and Li (2001)], among many others. Although
these methods enjoy excellent performance in many applications, they do not take
the hierarchical or structural relationship among predictors into account and there-
fore can lead to models that are hard to interpret.

Consider, for example, multiple linear regression with both main effects and
two-way interactions where a dependent variable Y and q explanatory variables
X1,X2, . . . ,Xq are related through

Y = β1X1 + · · · + βqXq + β11X
2
1 + β12X1X2 + · · · + βqqX2

q + ε,(1.1)

where ε ∼ N (0, σ 2). Commonly used general purpose variable selection tech-
niques, including those mentioned above, do not distinguish interactions XiXj

from main effects Xi and can select a model with an interaction but neither of
its main effects, that is, βij �= 0 and βi = βj = 0. It is therefore useful to invoke
the so-called effect heredity principle [Hamada and Wu (1992)] in this situation.
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There are two popular versions of the heredity principle [Chipman (1996)]. Under
strong heredity, for a two-factor interaction effect XiXj to be active both its par-
ent effects, Xi and Xj , should be active; whereas under weak heredity only one
of its parent effects needs to be active. Likewise, one may also require that X2

i

can be active only if Xi is also active. The strong heredity principle is closely re-
lated to the notion of marginality [Nelder (1977), McCullagh and Nelder (1989),
Nelder (1994)] which ensures that the response surface is invariant under scaling
and translation of the explanatory variables in the model. Interested readers are
also referred to McCullagh (2002) for a rigorous discussion about what criteria a
sensible statistical model should obey. Li, Sudarsanam and Frey (2006) recently
conducted a meta-analysis of 113 data sets from published factorial experiments
and concluded that an overwhelming majority of these real studies conform with
the heredity principles. This clearly shows the importance of using these principles
in practice.

These two heredity concepts can be extended to describe more general hierar-
chical structure among predictors. With slight abuse of notation, write a general
multiple linear regression as

Y = Xβ + ε,(1.2)

where X = (X1,X2, . . . ,Xp) and β = (β1, . . . , βp)′. Throughout this paper, we
center each variable so that the observed mean is zero and, therefore, the regres-
sion equation has no intercept. In its most general form, the hierarchical relation-
ship among predictors can be represented by sets {Di : i = 1, . . . , p}, where Di

contains the parent effects of the ith predictor. For example, the dependence set
of XiXj is {Xi,Xj } in the quadratic model (1.1). In order that the ith variable
can be considered for inclusion, all elements of Di must be included under the
strong heredity principle, and at least one element of Di should be included under
the weak heredity principle. Other types of heredity principles, such as the partial
heredity principle [Nelder (1998)], can also be incorporated in this framework. The
readers are referred to Yuan, Joseph and Lin (2007) for further details. As pointed
out by Turlach (2004), it could be very challenging to conform with the hierarchi-
cal structure in the popular variable selection methods. In this paper we specifically
address this issue and consider how to effectively impose such hierarchical struc-
tures among the predictors in variable selection and coefficient estimation, which
we refer to as structured variable selection and estimation.

Despite its great practical importance, structured variable selection and estima-
tion has received only scant attention in the literature. Earlier interests in struc-
tured variable selection come from the analysis of designed experiments where
heredity principles have proven to be powerful tools in resolving complex aliasing
patterns. Hamada and Wu (1992) introduced a modified stepwise variable selec-
tion procedure that can enforce effect heredity principles. Later, Chipman (1996)
and Chipman, Hamada and Wu (1997) discussed how the effect heredity can be
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accommodated in the stochastic search variable selection method developed by
George and McCulloch (1993). See also Joseph and Delaney (2007) for another
Bayesian approach. Despite its elegance, the Bayesian approach can be compu-
tationally demanding for large scale problems. Recently, Yuan, Joseph and Lin
(2007) proposed generalized LARS algorithms [Osborne, Presnell and Turlach
(2000), Efron et al. (2004)] to incorporate heredity principles into model selection.
Efron et al. (2004) and Turlach (2004) also considered alternative strategies to en-
force the strong heredity principle in the LARS algorithm. Compared with earlier
proposals, the generalized LARS procedures enjoy tremendous computational ad-
vantages, which make them particularly suitable for problems of moderate or large
dimensions. However, Yuan and Lin (2007) recently showed that LARS may not
be consistent in variable selection. Moreover, the generalized LARS approach is
not flexible enough to incorporate many of the hierarchical structures among pre-
dictors. More recently, Zhao, Rocha and Yu (2009) and Choi, Li and Zhu (2006)
proposed penalization methods to enforce the strong heredity principle in fitting a
linear regression model. However, it is not clear how to generalize them to handle
more general heredity structures and their theoretical properties remain unknown.

In this paper we propose a new framework for structured variable selection and
estimation that complements and improves over the existing approaches. We intro-
duce a family of shrinkage estimator that is similar in spirit to the nonnegative gar-
rote, which Yuan and Lin (2007) recently showed to enjoy great computational ad-
vantages, nice asymptotic properties and excellent finite sample performance. We
propose to incorporate structural relationships among predictors as linear inequal-
ity constraints on the corresponding shrinkage factors. The resulting estimates can
be obtained as the solution of a quadratic program and very efficiently solved using
the standard quadratic programming techniques. We show that, unlike LARS, it is
consistent in both variable selection and estimation provided that the true model
has such structures. Moreover, the linear inequality constraints can be easily mod-
ified to adapt to any situation arising in practical problems and therefore is much
more flexible than the existing approaches. We also extend the original nonneg-
ative garrote as well as the proposed structured variable selection and estimation
methods to deal with the generalized linear models.

The proposed approach is much more flexible than the generalized LARS ap-
proach in Yuan, Joseph and Lin (2007). For example, suppose a group of variables
is expected to follow strong heredity and another group weak heredity, then in the
proposed approach we only need to use the corresponding constraints for strong
and weak heredity in solving the quadratic program, whereas the approach of Yuan,
Joseph and Lin (2007) is algorithmic and therefore requires a considerable amount
of expertise with the generalized LARS code to implement these special needs.
However, there is a price to be paid for this added flexibility: it is not as fast as the
generalized LARS.

The rest of the paper is organized as follows. We introduce the methodology
and study its asymptotic properties in the next section. In Section 3 we extend the
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methodology to generalized linear models. Section 4 discusses the computational
issues involved in the estimation. Simulations and real data examples are presented
in Sections 5 and 6 to illustrate the proposed methods. We conclude with some
discussions in Section 7.

2. Structured variable selection and estimation. The original nonnega-
tive garrote estimator introduced by Breiman (1995) is a scaled version of the
least square estimate. Given n independent copies (x1, y1), . . . , (xn, yn) of (X,Y )

where X is a p-dimensional covariate and Y is a response variable, the shrinkage
factor θ(M) = (θ1(M), . . . , θp(M))′ is given as the minimizer to

1

2
‖Y − Zθ‖2, subject to

p∑
j=1

θj ≤ M and θj ≥ 0 ∀j,(2.1)

where, with slight abuse of notation, Y = (y1, . . . , yn)
′, Z = (z1, . . . , zn)

′, and zi

is a p dimensional vector whose j th element is xij β̂
LS
j and β̂LS is the least

square estimate based on (1.2). Here M ≥ 0 is a tuning parameter. The non-
negative garrote estimate of the regression coefficient is subsequently defined as
β̂NG

j (M) = θj (M)β̂LS
j , j = 1, . . . , p. With an appropriately chosen tuning parame-

ter M , some of the scaling factors could be estimated by exact zero and, therefore,
the corresponding predictors are eliminated from the selected model.

2.1. Strong heredity principles. Following Yuan, Joseph and Lin (2007),
let Di contain the parent effects of the ith predictor. Under the strong heredity
principle, we need to impose the constraint that β̂j �= 0 for any j ∈ Di if β̂i �= 0.
A naive approach to incorporating effect heredity is therefore to minimize (2.1)
under this additional constraint. However, in doing so, we lose the convexity of the
optimization problem and generally will end up with problems such as multiple
local optima and potentially NP hardness. Recall that the nonnegative garrote esti-
mate of βi is β̂LS

i θi(M). Since β̂LS
i �= 0 with probability one, Xi will be selected if

and only if scaling factor θi > 0, in which case θi behaves more or less like an in-
dicator of the inclusion of Xi in the selected model. Therefore, the strong heredity
principles can be enforced by requiring

θi ≤ θj ∀j ∈ Di .(2.2)

Note that if θi > 0, (2.2) will force the scaling factor for all its parents to be pos-
itive and consequently active. Since these constraints are linear in terms of the
scaling factor, minimizing (2.1) under (2.2) remains a quadratic program. Figure 1
illustrates the feasible region of the nonnegative garrote with such constraints in
contrast with the original nonnegative garrote where no heredity rules are enforced.
We consider two effects and their interaction with the corresponding shrinking fac-
tors denoted by θ1, θ2 and θ12, respectively. In both situations the feasible region
is a convex polyhedron in the three dimensional space.
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FIG. 1. Feasible region of the nonnegative garrote with (right) and without (left) strong heredity
constraints.

2.2. Weak heredity principles. Similarly, when considering weak heredity
principles, we can require that

θi ≤ max
j∈Di

θj .(2.3)

However, the feasible region under such constraints is no longer convex as demon-
strated in the left panel of Figure 2. Subsequently, minimizing (2.1) subject to (2.3)
is not feasible. To overcome this problem, we suggest using the convex envelop of
these constraints for the weak heredity principles:

θi ≤ ∑
j∈Di

θj .(2.4)

FIG. 2. Feasible region of the nonnegative garrote with constraint θ12 ≤ max(θ1, θ2) (left) and the
relaxed constraint θ12 ≤ θ1 + θ2 (right).
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Again, these constraints are linear in terms of the scaling factor and minimiz-
ing (2.1) under (2.4) remains a quadratic program. Note that θi > 0 implies that∑

j∈Di
θj > 0 and, therefore, (2.4) will require at least one of its parents to be

included in the model. In other words, constraint (2.4) can be employed in place
of (2.3) to enforce the weak heredity principle. The small difference between the
feasible regions of (2.3) and (2.4) also suggests that the selected model may only
differ slightly between the two constraints. We opt for (2.4) because of the great
computational advantage it brings about.

2.3. Asymptotic properties. To gain further insight to the proposed structured
variable selection and estimation methods, we study their asymptotic properties.
We show here that the proposed methods estimate the zero coefficients by zero with
probability tending to one, and at the same time give root-n consistent estimate to
the nonzero coefficients provided that the true data generating mechanism satisfies
such heredity principles. Denote by A the indices of the predictors in the true
model, that is, A = {j :βj �= 0}. Write β̂SVS as the estimate obtained from the
proposed structured variable selection procedure.

Under strong heredity, the shrinkage factors θ̂SVS(M) can be equivalently writ-
ten in the Lagrange form [Boyd and Vandenberghe (2004)]

arg min
θ

(
‖Y − Zθ‖2 + λn

p∑
j=1

θj

)
,

subject to θj ≥ 0, θj ≤ mink∈Dj
θk for some Lagrange parameter λn ≥ 0. For the

weak heredity principle, we replace the constraints θj ≤ mink∈Dj
θk with θj ≤∑

k∈Dj
θk .

THEOREM 1. Assume that X′X/n → � and � is positive definite. If the true
model satisfies the strong/weak heredity principles, and λn → ∞ in a fashion
such that λn = o(

√
n) as n goes to +∞, then the structured estimate with the

corresponding heredity principle satisfies P(β̂SVS
j = 0) → 1 for any j /∈ A, and

β̂SVS
j − βj = Op(n−1/2) if j ∈ A.

All the proofs can be accessed as the supplement materials. Note that when
λn = 0, there is no penalty and the proposed estimates reduce to the least squares
estimate which is consistent in estimation. The theorems suggest that if instead
the tuning parameter λn escapes to infinity at a rate slower than

√
n, the resulting

estimates not only achieve root-n consistency in terms of estimation but also are
consistent in variable selection, whereas the ordinary least squares estimator does
not possess such model selection ability.
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3. Generalized regression. The nonnegative garrote was originally intro-
duced for variable selection in multiple linear regression. But the idea can be
extended to more general regression settings where Y depends on X through a
scalar parameter η(X) = β0 + Xβ, where (β0, β

′)′ is a (p + 1)-dimensional un-
known coefficient vector. It is worth pointing out that such extensions have not
been proposed in literature so far.

A common approach to estimating η is by means of the maximum likelihood.
Let 	(Y, η(X)) be a negative log conditional likelihood function of Y |X. The max-
imum likelihood estimate is given as the minimizer of

L(Y,η(X)) =
n∑

i=1

	(yi, η(xi)).

For example, in logistic regression,

	(yi, η(xi)) = yiη(xi) − log
(
1 + eη(xi )

)
.

More generally, 	 can be replaced with any loss functions such that its expectation
E(	(Y,η(X))) with respect to the joint distribution of (X,Y ) is minimized at η(·).

To perform variable selection, we propose the following extension of the orig-
inal nonnegative garrote. We use the maximum likelihood estimate β̂MLE as a
preliminary estimate of β . Similar to the original nonnegative garrote, define
Zj = Xj β̂

MLE
j . Next we estimate the shrinkage factors by

(θ̂0, θ̂
SVS)′ = arg min

θ0,θ
L(Y,Zθ + θ0),(3.1)

subject to
∑

θj ≤ M and θj ≥ 0 for any j = 1, . . . , p. In the case of normal linear
regression, L becomes the least squares and it is not hard to see that the solu-
tion of (3.1) always satisfies θ̂0 = 0 because all variables are centered. Therefore,
without loss of generality, we could assume that there is no intercept in the normal
linear regression. The same, however, is not true for more general L and, therefore,
θ0 is included in (3.1). Our final estimate of βj is then given as β̂MLE

j θ̂SVS
j (M) for

j = 1, . . . , p. To impose the strong or weak heredity principle, we add additional
constraints θj ≤ mink∈Dj

θk or θj ≤ ∑
k∈Dj

θk , respectively.
Theorem 1 can also be extended to more general regression settings. Similar to

before, under strong heredity,

θ̂SVS(M) = arg min
θ0,θ

(
L(Y,Zθ + θ0) + λn

p∑
j=1

θj

)
,

subject to θj ≥ 0, θj ≤ mink∈Dj
θk for some λn ≥ 0. Under weak heredity princi-

ples, we use the constraints θj ≤ ∑
k∈Dj

θk instead of θj ≤ mink∈Dj
θk .

We shall assume that the following regularity conditions hold:

(A.1) 	(·, ·) is a strictly convex function of the second argument;
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(A.2) the maximum likelihood estimate β̂MLE is root-n consistent;
(A.3) the observed information matrix converges to a positive definite matrix,

that is,

1

n

n∑
i=1

xix′
i	

′′(yi,xi β̂
MLE + β̂MLE

0 ) →p �,(3.2)

where � is a positive definite matrix.

THEOREM 2. Under regularity conditions (A.1)–(A.3), if λn → ∞ in a fash-
ion such that λn = o(

√
n) as n goes to +∞, then P(β̂SVS

j = 0) → 1 for any j /∈ A,

and β̂SVS
j − βj = Op(n−1/2) if j ∈ A provided that the true model satisfies the

same heredity principles.

4. Computation. Similar to the original nonnegative garrote, the proposed
structured variable selection and estimation procedure proceeds in two steps. First
the solution path indexed by the tuning parameter M is constructed. The second
step, oftentimes referred to as tuning, selects the final estimate on the solution path.

4.1. Linear regression. We begin with linear regression. For both types of
heredity principles, the shrinkage factors for a given M can be obtained from solv-
ing a quadratic program of the following form:

min
θ

(
1

2
‖Y − Zθ‖2

)
subject to

p∑
j=1

θj ≤ M and Hθ 
 0,(4.1)

where H is a m × p matrix determined by the type of heredity principles, 0 is a
vector of zeros, and 
 means “greater than or equal to” in an element-wise manner.
Equation (4.1) can be solved efficiently using standard quadratic programming
techniques, and the solution path of the proposed structured variable selection and
estimation procedure can be approximated by solving (4.1) for a fine grid of M’s.

Recently, Yuan and Lin (2006, 2007) showed that the solution path of the orig-
inal nonnegative garrote is piecewise linear, and used this to construct an efficient
algorithm for building its whole solution path. The original nonnegative garrote
corresponds to the situation where the matrix H of (4.1) is a p × p identity ma-
trix. Similar results can be expected for more general scenarios including the pro-
posed procedures, but the algorithm will become considerably more complicated
and running quadratic programming for a grid of tuning parameter tends to be a
computationally more efficient alternative.

Write B̂LS = diag(β̂LS
1 , . . . , β̂LS

p ). The objective function of (4.1) can be ex-
pressed as

1
2‖Y − Zθ‖2 = 1

2(Y ′Y − 2θ ′B̂X′Y + θ ′B̂X′XB̂θ).
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Because Y ′Y does not depend on θ ′s, (4.1) is equivalent to

min
θ

(
−θ ′B̂X′Y + 1

2
θ ′B̂X′XB̂θ

)
(4.2)

subject to
p∑

j=1

θj ≤ M and Hθ 
 0,

which depends on the sample size n only through X′Y and the Gram matrix X′X.
Both quantities are already computed in evaluating the least squares. Therefore,
when compared with the ordinary least squares estimator, the additional computa-
tional cost of the proposed estimating procedures is free of sample size n.

Once the solution path is constructed, our final estimate is chosen on the
solution path according to certain criterion. Such criterion often reflects the pre-
diction accuracy, which depends on the unknown parameters and needs to be es-
timated. A commonly used criterion is the multifold cross validation (CV). Mul-
tifold CV can be used to estimate the prediction error of an estimator. The data
L = {(yi,xi) : i = 1, . . . , n} are first equally split into V subsets L1, . . . , LV . Us-
ing the proposed method, and data L(v) = L − Lv , construct estimate β̂(v)(M).
The CV estimate of the prediction error is

P̂E(β̂(M)) = ∑
v

∑
(yi ,xi )∈Lv

(
yi − xi β̂

(v)(M)
)2

.

We select the tuning parameter M by minimizing P̂E(β̂(M)). It is often suggested
to use V = 10 in practice [Breiman (1995)].

It is not hard to see that P̂E(β̂(v)(M)) estimates

P̂E(β̂(M)) = nσ 2 + n
(
β − β̂(M)

)′
E(X′X)

(
β − β̂(M)

)
.

Since the first term is the inherent prediction error due to the noise, one often
measures the goodness of an estimator using only the second term, referred to as
the model error:

ME(β̂(M)) = (
β − β̂(M)

)′
E(X′X)

(
β − β̂(M)

)
.(4.3)

Clearly, we can estimate the model error as P̂E(β̂(M))/n − σ̂ 2, where σ̂ 2 is the
noise variance estimate obtained from the ordinary least squares estimate using all
predictors.

4.2. Generalized regression. Similarly for more general regression settings,
we solve

min
θ0,θ

L(Y,Zθ + θ0) subject to
p∑

j=1

θj ≤ M and Hθ 
 0(4.4)

for some matrix H . This can be done in an iterative fashion provided that the
loss function L is strictly convex in its second argument. At each iteration, de-
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note (θ
[0]
0 , θ [0]) the estimate from the previous iteration. We now approximate the

objective function using a quadratic function around (θ
[0]
0 , θ [0]) and update the

estimate by minimizing
n∑

i=1

(
	′(yi, ziθ

[0] + θ
[0]
0

)[
zi

(
θ − θ [0]) + (

θ0 − θ
[0]
0

)]
+ 1

2
	′′(yi, ziθ

[0] + θ
[0]
0

)[
zi

(
θ − θ [0]) + (

θ0 − θ
[0]
0

)]2
)
,

subject to
∑

θj ≤ M and Hθ 
 0, where the derivatives are taken with respect to
the second argument of 	. Now it becomes a quadratic program. We repeat this
until a certain convergence criterion is met.

In choosing the optimal tuning parameter M for general regression, we again
use the multifold cross-validation. It proceeds in the same fashion as before except
that we use a loss-dependent cross-validation score:∑

v

∑
(yi ,xi )∈Lv

	
(
yi,xi β̂

(v)(M) + β̂
(v)
0 (M)

)
.

5. Simulations. In this section we investigate the finite sample properties of
the proposed estimators. To fix ideas, we focus our attention on the usual normal
linear regression.

5.1. Effect of structural constraints. We first consider a couple of models that
represent different scenarios that may affect the performance of the proposed meth-
ods. In each of the following models, we consider three explanatory variables
X1,X2,X3 that follow a multivariate normal distribution with cov(Xi,Xj ) =
ρ|i−j | with three different values for ρ: 0.5,0 and −0.5. A quadratic model with
nine terms

Y = β1X1 + β2X2 + β3X3 + β11X
2
1 + β12X1X2 + · · · + β33X

2
3 + ε

is considered. Therefore, we have a total of nine predictors, including three main
effects, three quadratic terms and three two-way interactions. To demonstrate the
importance of accounting for potential hierarchical structure among the predictor
variables, we apply the nonnegative garrote estimator that recognizes strong hered-
ity, weak heredity and without heredity constraints. In particular, we enforce the
strong heredity principle by imposing the following constraints:

θ11 ≤ θ1, θ12 ≤ θ1, θ12 ≤ θ2, θ13 ≤ θ1, θ13 ≤ θ3,

θ22 ≤ θ2, θ23 ≤ θ2, θ23 ≤ θ3, θ33 ≤ θ3.

To enforce the weak heredity, we require that

θ11 ≤ θ1, θ12 ≤ θ1 + θ2, θ13 ≤ θ1 + θ3,

θ22 ≤ θ2, θ23 ≤ θ2 + θ3, θ33 ≤ θ3.
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We consider two data-generating models, one follows the strong heredity prin-
ciples and the other follows the weak heredity principles:

Model I. The first model follows the strong heredity principle:

Y = 3X1 + 2X2 + 1.5X1X2 + ε;(5.1)

Model II. The second model is similar to Model I except that the true data gen-
erating mechanism now follows the weak heredity principle:

Y = 3X1 + 2X2
1 + 1.5X1X2 + ε.(5.2)

For both models, the regression noise ε ∼ N(0,32).
For each model, 50 independent observations of (X1,X2,X3, Y ) are collected,

and a quadratic model with nine terms is analyzed. We choose the tuning parame-
ter by ten-fold cross-validation as described in the last section. Following Breiman
(1995), we use the model error (4.3) as the gold standard in comparing different
methods. We repeat the experiment for 1000 times for each model and the results
are summarized in Table 1. The numbers in the parentheses are the standard errors.
We can see that the model errors are smaller for both weak and strong heredity
models compared to the model that does not incorporate any of the heredity prin-
ciples. Paired t-tests confirmed that most of the observed reductions in model error
are significant at the 5% level.

For Model I, the nonnegative garrote that respects the strong heredity principles
enjoys the best performance, followed by the one with weak heredity principles.

TABLE 1
Model error comparisons. Model I satisfies strong heredity and Model II

satisfies weak heredity

No heredity Weak heredity Strong heredity

Model I
ρ = 0.5 1.79 1.70 1.59

(0.05) (0.05) (0.04)
ρ = 0 1.57 1.56 1.43

(0.04) (0.04) (0.04)
ρ = −0.5 1.78 1.69 1.54

(0.05) (0.04) (0.04)

Model II
ρ = 0.5 1.77 1.61 1.72

(0.05) (0.05) (0.04)
ρ = 0 1.79 1.53 1.70

(0.05) (0.04) (0.04)
ρ = −0.5 1.79 1.68 1.76

(0.04) (0.04) (0.04)
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TABLE 2
Frequency of selecting the right model

No heredity Weak heredity Strong heredity

Model I
ρ = 0.5 65.5% 71.5% 82.0%
ρ = 0 85.0% 86.5% 90.5%
ρ = −0.5 66.5% 73.5% 81.5%

Model II
ρ = 0.5 65.5% 75.5% 0.00%
ρ = 0 83.0% 90.0% 0.00%
ρ = −0.5 56.5% 72.5% 0.00%

This example demonstrates the benefit of recognizing the effect heredity. Note that
the model considered here also follows the weak heredity principle, which explains
why the nonnegative garrote estimator with weak heredity outperforms the one that
does not enforce any heredity constraints. For Model II, the nonnegative garrote
with weak heredity performs the best. Interestingly, the nonnegative garrote with
strong heredity performs better than the original nonnegative garrote. One possi-
ble explanation is that the reduced feasible region with strong heredity, although
introducing bias, at the same time makes tuning easier.

To gain further insight, we look into the model selection ability of the structured
variable selection. To separate the strength of a method and effect of tuning, for
each of the simulated data, we check whether or not there is any tuning parameter
such that the corresponding estimate conforms with the true model. The frequency
for each method to select the right model is given in Table 2, which clearly shows
that the proposed structured variable selection methods pick the right models more
often than the original nonnegative garrote. Note that the strong heredity version
of the method can never pick Model II correctly as it violates the strong heredity
principle. We also want to point out that such comparison, although useful, needs
to be understood with caution. In practice, no model is perfect and selecting an
additional main effect X2 so that Model II can satisfy strong heredity may be a
much more preferable alternative to many.

We also checked how effective the ten-fold cross-validation is in picking the
right model when it does not follow any of the heredity principles. We generated
the data from the model

Y = 3X1 + 2X2
1 + 1.5X2

2 + ε,

where the set up for simulation remains the same as before. Note that this model
does not follow any of the heredity principles. For each run, we ran the nonnegative
garrote with weak heredity, strong heredity and no heredity. We chose the best
among these three estimators using ten-fold cross-validation. Note that the three
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FIG. 3. Effect of the magnitude of the interactions.

estimators may take different values of the tuning parameter. Among 1000 runs,
64.1% of the time, nonnegative garrote with no heredity principle was elected. In
contrast, for either Model I or Model II with a similar setup, less than 10% of the
time nonnegative garrote with no heredity principle was elected. This is quite a
satisfactory performance.

5.2. Effect of the size of the interactions. The next example is designed to il-
lustrate the effect of the magnitude of the interaction on the proposed methods. We
use a similar setup as before but now with four main effects X1,X2,X3,X4, four
quadratic terms and six two-way interactions. The true data generating mechanism
is given by

Y = 3X1 + 2X2 + 1.5X3 + α(X1X2 − X1X3) + ε,(5.3)

where α = 1,2,3,4 and ε ∼ N(0, σ 2) with σ 2 chosen so that the signal-to-noise
ratio is always 3 : 1. Similar to before, the sample size n = 50. Figure 3 shows the
mean model error estimated over 1000 runs. We can see that the strong and weak
heredity models perform better than the no heredity model and the improvement
becomes more significant as the strength of the interaction effect increases.

5.3. Large p. To fix the idea, we have focused on using the least squares es-
timator as our initial estimator. The least squares estimators are known to perform
poorly when the number of predictors is large when compared with the sample
size. In particular, it is not applicable when the number of predictors exceeds the
sample size. However, as shown in Yuan and Lin (2007), other initial estimators
can also be used. In particular, they suggested ridge regression as one of the al-
ternatives to the least squares estimator. To demonstrate such an extension, we
consider again the regression model (5.3) but with ten main effects X1, . . . ,X10
and ten quadratic terms, as well as 45 interactions. The total number of effects
(p = 65) exceeds the number of observations (n = 50) and, therefore, the ridge
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FIG. 4. Simulation when p > n: solution for different versions of the nonnegative garrote.

regression tuned with GCV was used as the initial estimator. Figure 4 shows the
solution path of the nonnegative garrote with strong heredity, weak heredity and
without any heredity for a typical simulated data with α = 4.

It is interesting to notice from Figure 4 that the appropriate heredity principle, in
this case strong heredity, is extremely valuable in distinguishing the true effect X3
from other spurious effects. This further confirms the importance of heredity prin-
ciples.

6. Real data examples. In this section we apply the methods from Section 2
to several real data examples.

6.1. Linear regression example. The first is the prostate data, previously used
in Tibshirani (1996). The data consist of the medical records of 97 male pa-
tients who were about to receive a radical prostatectomy. The response variable is
the level of prostate specific antigen, and there are 8 explanatory variables. The
explanatory variables are eight clinical measures: log(cancer volume) (lcavol),
log(prostate weight) (lweight), age, log(benign prostatic hyperplasia amount)
(lbph), seminal vesicle invasion (svi), log(capsular penetration) (lcp), Gleason
score (gleason) and percentage Gleason scores 4 or 5 (pgg45). We consider
model (1.1) with main effects, quadratic terms and two way interactions, which
gives us a total of 44 predictors. Figure 5 gives the solution path of the nonnegative
garrote with strong heredity, weak heredity and without any heredity constraints.
The vertical grey lines represent the models that are selected by the ten-fold cross-
validation.

To determine which type of heredity principle to use for the analysis, we cal-
culated the ten-fold cross-validation scores for each method. The cross-validation
scores as functions of the tuning parameter M are given in the right panel of Fig-
ure 6.
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FIG. 5. Solution path for different versions of the nonnegative garrote.

Cross-validation suggests the validity of heredity principles. The strong hered-
ity is particularly favored with the smallest score. Using ten-fold cross-validation,
the original nonnegative garrote that neglects the effect heredity chooses a six vari-
able model: lcavol, lweight, lbph, gleason2, lbph:svi and svi:pgg45. Note that this
model does not satisfy heredity principle, because gleason2 and svi:pgg45 are in-
cluded without any of its parent factors. In contrast, the nonnegative garrote with
strong heredity selects a model with seven variables: lcavol, lweight, lbph, svi,
gleason, gleason2 and lbph:svi. The model selected by the weak heredity, although
comparable in terms of cross validation score, is considerably bigger with 16 vari-
ables. The estimated model errors for the strong heredity, weak heredity and no
heredity nonnegative garrote are 0.18, 0.19 and 0.30, respectively, which clearly
favors the methods that account for the effect heredity.

FIG. 6. Cross-validation scores for the prostate data.
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FIG. 7. Solution paths for the heart data.

To further assess the variability of the ten-fold cross-validation, we also ran
the leave-one-out cross-validation on the data. The leave-one-out scores are given
in the right panel of Figure 6. It shows a similar pattern as the ten-fold cross-
validation. In what follows, we shall continue to use the ten-fold cross-validation
because of the tremendous computational advantage it brings about.

6.2. Logisitic regression example. To illustrate the strategy in more general
regression settings, we consider a logistic regression for the South African heart
disease data previously used in Hastie, Tibshirani and Friedman (2003). The data
consist of 9 different measures of 462 subjects and the responses indicating the
presence of heart disease. We again consider a quadratic model. There is one bi-
nary predictor which leaves a total of 53 terms. Nonnegative garrote with strong
heredity, weak heredity and without heredity were applied to the data set. The
solution paths are given in Figure 7.

The cross-validation scores for the three different methods are given in Figure 8.
As we can see from the figure, nonnegative garrote with strong heredity principles
achieves the lowest cross-validation score, followed by the one without heredity
principles.

6.3. Prediction performance on several benchmark data. To gain further in-
sight on the merits of the proposed structured variable selection and estimation
techniques, we apply them to seven benchmark data sets, including the previous
two examples. The Ozone data, originally used in Breiman and Friedman (1985),
consist of the daily maximum one-hour-average ozone reading and eight meteo-
rological variables in the Los Angeles basin for 330 days in 1976. The goal is
to predict the daily maximum one-hour-average ozone reading using the other
eight variables. The Boston housing data include statistics for 506 census tracts
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FIG. 8. Cross-validation scores for the heart data.

of Boston from the 1970 census [Harrison and Rubinfeld (1978)]. The problem is
to predict the median value of owner-occupied homes based on 13 demographic
and geological measures. The Diabetes data, previously analyzed by Efron et al.
(2004), consist of eleven clinical measurements for a total of 442 diabetes patients.
The goal is to predict a quantitative measure of disease progression one year after
the baseline using the other ten measures that were collected at the baseline. Along
with the prostate data, these data sets are used to demonstrate our methods in the
usual normal linear regression setting.

To illustrate the performance of the structured variable selection and estimation
in more general regression settings, we include two other logistic regression ex-
amples along with the South African Heart data. The Pima Indians Diabetes data
have 392 observations on nine variables. The purpose is to predict whether or not
a particular subject has diabetes using eight remaining variables. The BUPA Liver
Disorder data include eight variables and the goal is to relate a binary response with
seven clinical measurements. Both data sets are available from the UCI Repository
of machine learning databases [Newman et al. (1998)].

We consider methods that do not incorporate heredity principles or respect weak
or strong heredity principles. For each method, we estimate the prediction error us-
ing ten-fold cross-validation, that is, the mean squared error in the case of the four
linear regression examples, and the misclassification rate in the case of the three
classification examples. Table 3 documents the findings. Similar to the Heart data
we discussed earlier, the total number of effects (p) can be different for the same
number of main effects (q) due to the existence of binary variables. As the re-
sults from Table 3 suggest, incorporating the heredity principles leads to improved
prediction for all seven data sets. Note that for the four regression data sets, the
prediction error depends on the scale of the response and therefore should not be
compared across data sets. For example, the response variable of the diabetes data
ranges from 25 to 346 with a variance of 5943.331. In contrast, the response vari-
able of the prostate data ranges from −0.43 to 5.48 with a variance of 1.46.
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TABLE 3
Prediction performance on seven real data sets

Data n q p No heredity Weak heredity Strong heredity

Boston 506 13 103 12.609 12.403 12.661
Diabetes 442 10 64 3077.471 2987.447 3116.989
Ozone 203 9 54 16.558 15.100 15.397
Prostate 97 8 44 0.624 0.632 0.584

BUPA 345 6 27 0.287 0.279 0.267
Heart 462 9 53 0.286 0.275 0.262
Pima 392 8 44 0.199 0.214 0.196

7. Discussions. When a large number of variables are entertained, variable
selection becomes important. With a number of competing models that are vir-
tually indistinguishable in fitting the data, it is often advocated to select a model
with the smaller number of variables. But this principle alone may lead to models
that are not interpretable. In this paper we proposed structured variable selection
and estimation methods that can effectively incorporate the hierarchical structure
among the predictors in variable selection and regression coefficient estimation.
The proposed methods select models that satisfy the heredity principle and are
much more interpretable in practice. The proposed methods adopt the idea of the
nonnegative garrote and inherit its advantages. They are easy to compute and enjoy
good theoretical properties.

Similar to the original nonnegative garrote, the proposed method involves the
choice of a tuning parameter which also amounts to the selection of a final model.
Throughout the paper, we have focused on using the cross-validation for such a
purpose. Other tuning methods could also be used. In particular, it is known that
prediction-based tuning may result in unnecessarily large models. Several heuristic
methods are often adopted in practice to alleviate such problems. One of the most
popular choices is the so-called one standard error rule [Breiman et al. (1984)],
where instead of choosing the model that minimizes the cross-validation score,
one chooses the simplest model with a cross-validation score within one standard
error from the smallest. Our experience also suggests that a visual examination of
the solution path and the cross-validation scores often leads to further insights.

The proposed method can also be used in other statistical problems whenever
the structures among predictors should be respected in model building. In some
applications, certain predictor variables may be known apriori to be more impor-
tant than the others. This may happen, for example, in time series prediction where
more recent observations generally should be more predictive of future observa-
tions.
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