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Abstract: When applying the support vector machine (SVM) to high-
dimensional classification problems, we often impose a sparse structure
in the SVM to eliminate the influences of the irrelevant predictors. The
lasso and other variable selection techniques have been successfully used
in the SVM to perform automatic variable selection. In some problems,
there is a natural hierarchical structure among the variables. Thus, in or-
der to have an interpretable SVM classifier, it is important to respect the
heredity principle when enforcing the sparsity in the SVM. Many variable
selection methods, however, do not respect the heredity principle. In this
paper we enforce both sparsity and the heredity principle in the SVM by
using the so-called structured variable selection (SVS) framework originally
proposed in [20]. We minimize the empirical hinge loss under a set of linear
inequality constraints and a lasso-type penalty. The solution always obeys
the desired heredity principle and enjoys sparsity. The new SVM classi-
fier can be efficiently fitted, because the optimization problem is a linear
program. Another contribution of this work is to present a nonparametric
extension of the SVS framework, and we propose nonparametric heredity
SVMs. Simulated and real data are used to illustrate the merits of the
proposed method.

AMS 2000 subject classifications: Primary 68T10; secondary 62G05.
Keywords and phrases: Classification, Heredity, Nonparametric estima-
tion, Support vector machine, Variable selection.
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1. Introduction

The support vector machine (SVM) is a widely used classification method. Let
x denote a generic feature vector. The class labels, y, are coded as {1,−1}. For
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a given training data set {xi, yi}, i = 1, 2, . . . , n, the SVM can be expressed in
a penalized hinge loss formulation (cf. [11] and [15])

(β̂, β̂0) = argmin
β,β0

n
∑

i=1

[

1 − yi(x
T
i β + β0)

]

+
+ λ‖β‖2

2, (1.1)

where the subscript “+” means the positive part (z+ = max(z, 0)). The SVM

classifier is Sign(β̂0+xT β̂). It is now well known that by imposing some structure
in the SVM, we could significantly enhance its classification performance and
obtain a more interpretable model [11]. For example, when the dimension of the
predictors is high and there are many irrelevant predictors, imposing sparsity
in β via an automatic variable selection procedure can significantly enhance
classification performance of the SVM. Various variable selection proposals have
been introduced in recent years to encourage sparsity in β for the SVM. See [25]
and references therein. In particular, Bradley and Mangasarian [1] and Zhu et
al. [24] suggested to replace the quadratic penalty in (1.1) with the lasso (or l1)
penalty:

n
∑

i=1

[

1 − yi(x
T
i β + β0)

]

+
+ λ‖β‖1. (1.2)

Similar to the lasso [13] for linear regression, the lasso penalty encourages some
of the β coefficients to exact zero and therefore perform variable selection.

Despite their successes, these general-purpose variable selection methods do
not take advantage of the possible interrelationship among features. Consider
for example a quadratic classifier with explanatory variables z1, z2,. . ., zq:

β1z1 + . . . + βqzq + β11z
2
1 + β12z1z2 + . . . + βq,q−1zqzq−1 + βqqz

2
q . (1.3)

In employing the l1 SVM to learn the β coefficients, one may consider using
x ≡ (z1, . . . , zq, z1z2, . . . , zq−1zq, z

2
1 , . . . , z2

q ) as the derived variables in (1.2). In
doing so, we neglect the difference between quadratic effects and linear effects.
In situations like this, it is desirable to invoke the effect heredity principle [18].
There are two popular versions of the effect heredity [3]. Under the strong hered-

ity, for a two-factor interaction effect zizj to be active both its parent effects, zi

and zj, should be active, whereas under the weak heredity only one of its parent
effects needs to be active. Likewise, one may also require that z2

j is allowed to
be active only if zj is active. In this paper we develop a new method that can
simultaneously impose the sparse structure and the heredity structure in the
SVM model.

Earlier interests in the heredity principle came from the analysis of designed
experiments where heredity principle had proven to be powerful tools in resolv-
ing complex aliasing patterns (cf. [3], [4] and [9]). The heredity principle was
routinely followed in general regression problems as well. Efron et al. [7] and
Turlach [14] discussed how to enforce the strong heredity principle in the efficient
Lars algorithm. Later, Yuan, Joseph and Lin [19] proposed more flexible ways of
incorporating the strong and weak heredity principles in linear regression. Zhao,
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Rocha and Yu [23] presented the Composite Absolute Penalties which can pro-
duce a hierarchical model. Choi and Zhu [5] proposed a penalization method for
enforcing the strong heredity principle in fitting a regression model. However,
these earlier methods are primarily designed for the linear regression model. It
is not clear how to generalize them to handle other models such as the SVM
considered in the present paper and still retain their computational efficiency.

More recently, Yuan, Joseph and Zou [20] formalized the concept of struc-

ture variable selection to describe general hierarchical structures among vari-
ables with traditional heredity principles as special cases when doing variable
selection. They argue that appropriately accounting for the general hierarchi-
cal structure among variables not only enhances the model interpretability but
also leads to improved estimation and prediction. The SVS framework gives a
unified treatment of the linear regression model and generalized linear models.
In addition, the SVS framework permits a very efficient implementation and
enjoys nice theoretical properties.

In this paper, we propose to adopt the SVS framework to simultaneously in-
corporate the heredity principle and sparsity into the support vector machine in
a way that retains the computational advantages of the SVM. The main idea is
to introduce a scaling parameter to each effect and then enforce the hierarchical
relationships among predictors and sparsity by a set of linear inequality con-
straints on the corresponding scaling parameters. As a result, the optimization
problem is a linear program and can be very efficiently solved using standard
linear programming techniques. Our approach can handle both strong and weak
heredity principles. Furthermore, we propose a nonparametric extension of the
SVS framework based on which we develop nonparametric heredity SVMs.

The rest of the paper is organized as follows. In the next section, we describe
how to employ the SVS idea to incorporate the strong heredity principle into
the SVM. The weak heredity principle can be implemented in a similar fashion
with an additional convex relaxation step, in order to preserve the computational
efficiency. In Section 3 we propose the nonparametric heredity SVMs. Section 4
contains some discussion.

2. The Generalized Garrote and Heredity Principles

2.1. Method

Breiman’s nonnegative garrote [2] is perhaps the first method in the literature
that uses an l1 constraint to perform variable selection in linear regression mod-
els. As an extension of the original nonnegative garrote, the generalized garrote
is first introduced in [20] to build the SVS framework. Here we show that the
generalized garrote idea can be used in the support vector machine as well. To
provide the readers a complete picture, we first introduce the basic idea of the
garrote in the context of the SVM. Suppose we have computed the l2 SVM
coefficients β̂, then we introduce a scaling parameter θj for each predictor xj
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and then solve the following optimization problem

min{θj},β0

∑n

i=1

[

1 − yi(
∑p

j=1
xij β̂jθj + β0)

]

+

(2.1)

subject to
∑p

j=1
θj ≤ M

θj ≥ 0 ∀j,

where M is the garrote shrinkage parameter. The new classifier is Sign(β̂0 +
∑p

j=1
xj β̂j θ̂j). To compare it with the l1 SVM, we consider another equivalent

formulation of (2.1)

min{θj},β0

∑n

i=1

[

1 − yi(
∑p

j=1
xij β̂jθj + β0)

]

+

+ λ
∑p

j=1
θj (2.2)

subject to θj ≥ 0 ∀j.

When M or λ is properly chosen, some θ̂js will be shrunk to zero, and thus the
corresponding predictors (xjs) will be deleted from the classifier. Therefore, the
garrote performs variable selection in a way similar to the lasso.

The garrote received little attention in the literature compared to the enor-
mous popularity of the lasso. Recently, Yuan and Lin [22] showed the garrote
enjoys excellent finite sample performance if we use some regularized estimators
as the initial estimator. The biggest advantage of the garrote, however, is its
flexibility. We can easily modify the garrote by adding other linear constraints on
the scaling parameters to meet some special requirements, such as the heredity
principle.

We adopt some notation from [20] to formally describe general hierarchical
structures among variables. Suppose the dimension of the predictor set is p. The
hierarchical relationships among predictors can be represented by sets {Dj : j =
1, . . . , p}, where Dj contains the parent effects of the jth predictor. Consider,
for example, the predictors in model (1.3). The q + 1th predictor is xq+1 = z1z2

and its parent effects are x1 = z1 and x2 = z2. Thus Dq+1 = {1, 2}.
The strong heredity principle says that if the jth predictor can be consid-

ered for inclusion, all elements of Dj must be included. Note that in the gar-
rote model, the jth predictor is included if and only if its scaling parameter is
nonzero. To further incorporate the strong heredity principle, we generalize the
garrote as follows

min{θj},β0

∑n

i=1

[

1 − yi(
∑p

j=1
xij β̂jθj + β0)

]

+

+ λ
∑p

j=1
θj (2.3)

subject to θj ≥ 0 ∀j

and θj ≤ θr, ∀r ∈ Dj , ∀j. (2.4)

We have imposed a set of inequality constraints on the scaling parameters,
besides the l1 constraint which ensures the sparsity of the estimates. Note that
if θj > 0, these linear inequalities in (2.4) force the scaling parameters in Dj

to be positive. Therefore, the resulting model always obeys the strong heredity
principle. Furthermore, all the constraints are linear in terms of the scaling
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parameters, and the feasible region under these constraints is convex. Therefore,
solving (2.3) remains a linear program.

The same idea can be applied to impose the weak heredity principle. The
weak heredity principle says that if the jth variable is included in the model, at
least one of the elements of Dj must be included. Observe that

max
r∈Dj

θr > 0 ⇔ at least one θr > 0, r ∈ Dj and ∀j.

We could consider the following optimization problem

min{θj},β0

∑n
i=1

[

1 − yi(
∑p

j=1
xij β̂jθj + β0)

]

+

+ λ
∑p

j=1
θj (2.5)

subject to θj ≥ 0 ∀j

and θj ≤ maxr∈Dj
θr , ∀j. (2.6)

It is easy to see that the solution always obeys the weak heredity principle.
However, the feasible region under such constraints is no longer convex. It is
well known that non-convexity may cause various computational problems such
as local minimizer and instability of the solution, etc. To overcome the non-
convexity issue, we suggest to use the convex envelop of these constraints for
the weak heredity principle

min{θj},β0

∑n

i=1

[

1 − yi(
∑p

j=1
xij β̂jθj + β0)

]

+

+ λ
∑p

j=1
θj (2.7)

subject to θj ≥ 0 ∀j

and θj ≤
∑

r∈Dj
θr , ∀j. (2.8)

Note that under (2.8) θj > 0 implies that
∑

r∈Dj
θr > 0 and therefore at least

one of its parents needs to be included in the model, which implies that the
resulting model obeys the weak heredity principle. Since the constraints in (2.8)
are linear and the feasible region under the constraints in (2.7) is convex, solving
(2.7) remains a linear program.

For the purpose of presentation, we refer the new SVMs defined in (2.3) and
(2.7) to as SHSVM and WHSVM, respectively.

2.2. Numerical studies

We use numerical examples to demonstrate the benefits of incorporating hered-
ity principles into the SVM model.

In each simulated example, we generated 100 datasets, each with training
samples of sizes n = 50, 100, and 200, and an independent test sample of size
10000. In a benchmark example, 100 random partitions of the original data
were created, each with a training sample and a test sample. In each example,
all classifiers were fitted on a training sample and their generalization errors
were computed on a test sample. Here the generalization error of a classifier f
is Pr(yf(x) < 0) under 0–1 loss. The Bayes rule minimizes the generalization
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error and its error is called the Bayes error (risk). Note that the Bayes rule is
argmaxc∈{1,−1} Pr(y = c|x) which is unknown in practice. In our simulation
study we can compute the Bayes error because we know the true model. We
reported the Bayes error and the averaged smallest generalization error of each
competitor, thus avoiding the extra level of complexity in the comparison caused
by the tuning parameter selection.

We first consider three simulation models. In the first example the true model
obeys the strong heredity principle, while in the second example the true model
obeys the weak heredity principle. The third example concerns the situation
when the true model does not obey any heredity principle.

Simulation example 1. In the first set of simulation, the generated explana-
tory variables z1, . . . , z7 are standard normal, where the correlation between zr

and zj is ρ|r−j|, ρ = 0, 0.5. The class labels are generated from a logistic regres-
sion model

log

(

Pr(y = 1|z1, . . . , z7)

Pr(y = −1|z1, . . . , z7)

)

= 2z1 + 4z3 + 3z1z3 + 1.

The predictor set for fitting the SVMs is {zj, zrzj, z
2
j }, r, j = 1, . . . , 7. The

predictor zrzj represents the interaction between predictors zr and zj, thus its
parent effects are zr and zj . The predictor z2

j represents the quadratic effect of
zj. We include the quadratic effect only if the linear main effect is included. Let
θj and θjj be the scaling parameters for zj and z2

j , respectively. Let θrj be the
scaling parameter for zrzj (r 6= j). Then the linear constraints in (2.4) become

θrj ≤ θr and θrj ≤ θj , ∀r 6= j, r, j = 1, . . . , 7

θjj ≤ θj j = 1, . . . , 7.

The simulation results are summarized in Table 1. From Table 1 we see that
the SHSVM significantly outperforms the l1 and l2 SVMs in terms of classifica-
tion accuracy regardless of sample sizes, although the differences get smaller as
sample sizes increase. We also computed the frequency that the fitted l1 SVM
obeys the strong heredity principle, as reported in the last column on Table 1.
The low frequency indicates that the l1 SVM is not appropriate when a strong
heredity model is in demand.

Simulation example 2. In the second set of simulation, we use the same
setup in example 1, except that the class labels are generated from a logistic
regression model

log

(

Pr(y = 1|z1, . . . , z7)

Pr(y = −1|z1, . . . , z7)

)

= 3.5z1 + 3z1z2 + 2.5z1z3 + 2z1z4 + 1.5z1z5 + z1z6 + 1.

This model obeys the weak heredity principle and violates the strong heredity
principle. In order to fit the WHSVM, we note that the linear constraints in
(2.8) become

θrj ≤ θr + θj ∀r 6= j, r, j = 1, . . . , 7

θjj ≤ θj j = 1, . . . , 7.
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Table 1

Simulation example 1: The true model obeys the strong heredity principle. Compare the
classification accuracy of the SHSVM, l2 SVM and l1 SVM. The numbers in parentheses
are standard errors and the frequency is the number of times the fitted l1 SVM obeys the

strong heredity principle in 100 replications.

ρ = 0 n WHSVM l2 SVM l1 SVM frequency
50 0.186 (0.003) 0.279 (0.003) 0.206 (0.003) 11/100
100 0.154 (0.001) 0.226 (0.002) 0.169 (0.002) 14/100
200 0.145 (0.001) 0.196 (0.001) 0.149 (0.001) 17/100

Bayes 0.133

ρ = 0.5 n WHSVM l2 SVM l1 SVM frequency
50 0.173 (0.003) 0.248 (0.003) 0.190 (0.003) 12/100
100 0.159 (0.002) 0.216 (0.002) 0.167 (0.002) 16/100
200 0.143 (0.001) 0.188 (0.001) 0.147 (0.001) 20/100

Bayes 0.130

Table 2

Simulation example 2: The true model obeys the weak heredity principle. Compare the
classification accuracy of the WHSVM, l2 SVM and l1 SVM. The numbers in parentheses
are standard errors and the frequency is the number of times the fitted l1 SVM obeys the

weak heredity principle in 100 replications.

ρ = 0 n WHSVM l2 SVM l1 SVM frequency
50 0.248 (0.003) 0.303 (0.003) 0.273 (0.003) 11/100
100 0.198 (0.002) 0.253 (0.002) 0.216 (0.002) 19/100
200 0.163 (0.001) 0.215 (0.002) 0.183 (0.001) 22/100

Bayes 0.142

ρ = 0.5 n WHSVM l2 SVM l1 SVM frequency
50 0.199 (0.001) 0.242 (0.002) 0.220 (0.002) 11/100
100 0.164 (0.001) 0.211 (0.001) 0.181 (0.001) 14/100
200 0.143 (0.001) 0.184 (0.001) 0.154 (0.001) 23/100

Bayes 0.121

Table 2 summarizes the simulation results. The WHSVM performs significantly
better than the l1 SVM and the l2 SVM. The last column in Table 2 shows
the frequency that the fitted l1 SVM obeys the weak heredity principle. Again,
these frequencies are pretty low.

Simulation example 3. Examples 1 and 2 have demonstrated the benefits
of recognizing the effect heredity. It would be interesting to investigate the
performance of the SHSVM and the WHSVM when the true model actually
violates the heredity principle. To this end, we considered the third example.
We generated 5 explanatory variables and simulated the class labels from

log

(

Pr(y = 1|z1, . . . , z5)

Pr(y = −1|z1, . . . , z5)

)

= 3z1 + 2.5z2 + 2z3z4 + 1.5z4z5 + 1.

We fitted the SHSVM, WHSVM, l2 SVM and l1 SVM using the predictor set
{zj, zrzj , z

2
j }, r, j = 1, . . . , 5. Since the true model is sparse, we expect that the

l2 SVM has the worst performance. This is confirmed by the simulation results
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Table 3

Simulation example 3: Compare the SHSVM, WHSVM, l2 SVM and l1 SVM when the true
model obeys no heredity principle. The numbers in parentheses are standard errors.

ρ = 0 n SHSVM WHSVM l2 SVM l1 SVM
50 0.171 (0.002) 0.164 (0.002) 0.203 (0.003) 0.172 (0.003)
100 0.147 (0.002) 0.140 (0.002) 0.173 (0.002) 0.143 (0.002)
200 0.131 (0.001) 0.125 (0.001) 0.151 (0.001) 0.127 (0.001)

Bayes 0.113

ρ = 0.5 n SHSVM WHSVM l2 SVM l1 SVM
50 0.138 (0.002) 0.137 (0.002) 0.156 (0.002) 0.139 (0.002)
100 0.119 (0.001) 0.115 (0.001) 0.134 (0.002) 0.115 (0.001)
200 0.109 (0.001) 0.104 (0.001) 0.128 (0.001) 0.105 (0.001)

Bayes 0.093

in Table 3. We see that there is basically no difference between the WHSVM
and the l1 SVM. This observation suggests that it does not hurt to enforce the
heredity principle along with the sparsity, even when the true model does not
obey the heredity principle.

Birth weight data. We test the proposed structured SVMs on the birth
weight data that concern the birth weight of 189 infants at a US hospital [16].
The problem of interest is to predict if the birth weight is lower than 2.5 kg.
There are 8 explanatory variables depending upon mother’s age (age), weight
(lwt), race (race), smoking status (smoke), number of previous premature labors
(ptl), history of hypertension (ht), uterine irritability (ui), and number of physi-
cian visits in the first trimester (ftv). The variables age and lwt are continu-
ous while dummy variables were used to represent the discrete-valued variables.
Then the predictor set was generated as in the simulation models except that the
quadratic effects of dummy variables were not included. For dummy variables,
the heredity principles were applied to the group level. Because the sample size
is only 189, we used 5-fold cross-validation to estimate the classification error
of each method.

As can be seen from Table 4, the structured SVMs significantly outperforms
both the l2 SVM and the l1 SVM. The best l1 SVM model identifies 10 vari-
ables including age2, age · lwt, age · ftv, lwt2, lwt · race, lwt · smoke, lwt · ptl,
lwt · ht, lwt · ui, and lwt · ftv. This model does not satisfy the heredity princi-
ples, because, for instance, age2 and age · lwt are included without their parent
factor age. The frequencies of the l1 SVM model satisfying the strong and weak
heredity principles were 10/20 and 14/20, respectively. The model selected by
the WHSVM includes age, lwt, and ftv together with the 10 variables in the l1
SVM model. The SHSVM model includes additional variables race, smoke, ptl,
ht, ui, and ftv in the WHSVM model.

One might wonder which heredity SVM should be used in this real data
example. If the modeler does not have a strong preference in using either strong
or weak heredity principle, the data suggest that the WHSVM is perhaps better
than the SHSVM, since they have very similar classification performance and
the WHSVM uses less variables.
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Table 4

Birth weight data: average five-fold cross validation errors with standard errors (reported in
parentheses) based on 30 replications.

SHSVM WHSVM l2 SVM l1 SVM
0.291 (0.002) 0.294 (0.002) 0.307 (0.002) 0.305 (0.001)

3. Nonparametric Heredity SVMs

In the previous section we have discussed the heredity principle when each
effect is represented by a single predictor. In many real world applications, we
often need to nonparametrically model the main and interaction effects. Let us
consider the following model where the class label y and explanatory variables
z1, z2, . . . , zq are related through

log

(

Pr(y = 1|z1, . . . , zq)

Pr(y = −1|z1, . . . , zq)

)

=

q
∑

j=1

fj(zj) +

q
∑

r,j=1

frj(zr, zj). (3.1)

We have omitted the constant term for simplicity. The main effect of variable
zj is fj(zj) and the interaction effect between variables zr and zj is frj(zr, zj).
Obviously, the above model is a generalization of the popular Generalized Addi-

tive Model [12]. The model (3.1) can be more appropriate than the generalized
additive model if interaction effects cannot be ignored.

Under the strong heredity, for the interaction effect frj(zr, zj) to be active
both its parent effects, fr(zr) and fj(zj), should be active, whereas under the
weak heredity only one of its parent effects needs to be active. In this section
we develop a method that can automatically identify significant effects while
respecting the heredity principle.

3.1. Imposing heredity principles

If we assume fj(zj) = βjzj and frj(zr, zj) = βrjzrzj , then the model reduces
to the parametric case. We show here that the parametric assumption is not
necessary in order to implement the heredity principle by using the SVS frame-
work. Suppose that we have found a good initial estimate of the full model (3.1)

and we denote the initial estimates by f̂j(zj) and f̂rj(zr, zj). We assign scaling
parameters θj to fj(zj) and θrj to frj(zr, zj). The SHSVM can be formulated
as follows

min
∑n

i=1

[

1 − yi(
∑q

j=1
f̂j(zj)θj +

∑q

r,j=1
f̂rj(zr, zj)θrj)

]

+

(3.2)

subject to
∑q

j=1
θj +

∑q

r,j=1
θrj ≤ M

θj ≥ 0 θrj ≥ 0 ∀r, j

θrj ≤ θr and θrj ≤ θj ∀r, j. (3.3)
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Likewise, we define the WHSVM as

min
∑n

i=1

[

1 − yi(
∑q

j=1
f̂j(zj)θj +

∑q

r,j=1
f̂rj(zr, zj)θrj)

]

+

(3.4)

subject to
∑q

j=1
θj +

∑q

r,j=1
θrj ≤ M

θj ≥ 0 θrj ≥ 0 ∀r, j

θrj ≤ θr + θj ∀r, j. (3.5)

The final classifier is Sign
(

f̂j(zj)θ̂j +
∑q

r,j=1
f̂rj(zr, zj)θ̂rj

)

. The linear inequal-

ities in (3.3) guarantee that the SHSVM obeys the strong heredity principle.
Similarly, the linear inequalities in (3.5) guarantee that the WHSVM obeys the
weak heredity principle. Moreover, solving the scaling parameters is a linear
program.

3.2. Computing the initial estimator

There are many nonparametric estimation methods that can give us a good
initial estimator of the model (3.1). The choice of the estimation method is
not essential for using the SHSVM and the WHSVM. In this work, for com-
putational considerations, we obtain the initial estimates by using penalized
B-splines [6]. Penalized B-splines have been widely used in statistics for non-
parametric function estimation (cf. [8], [11] and [17]). For each variable zj , we
take a basis of B-spline functions bj,k(zj) for k = 1, 2, . . . , Nj for representing
the function fj(zj). Then the Nr ×Nj dimensional tensor product basis defined
by

gk1,k2
(zr, zj) = br,k1

(zr)bj,k2
(zj), k1 = 1, 2, . . . , Nr and k2 = 1, 2, . . . , Nj

can be used for representing the interaction effect frj(zr, zj). With B-spline basis
functions at hand, we can compute the l2 SVM estimate of the model (3.1) by
minimizing

n
∑

i=1

[

1 − yi

(

α0 +

q
∑

j=1

Nj
∑

k=1

αjkbj,k(zj)

+

q
∑

r,j=1

Nr
∑

k1=1

Nj
∑

k2=1

αrjk1k2
br,k1

(zr)bj,k2
(zj)

)]

+

+ λ‖α‖2
2,

where ‖α‖2
2 =

∑Nj

k=1
α2

jk +
∑q

r,j=1

∑Nr

k1=1

∑Nj

k2=1
α2

rjk1k2
. Then the initial esti-

mates are

f̂j(zj) =

Nj
∑

k=1

α̂jkbj,k(zj),

f̂rj(zr, zj) =

Nr
∑

k1=1

Nj
∑

k2=1

α̂rjk1k2
br,k1

(zr)bj,k2
(zj).



Wu, Zou and Yuan/Structured support vector machines 113

In computing the initial estimates, although there are q variables, the actual
dimension of the predictor set is

∑q
j=1

Nj +
∑q

r,j=1
NjNr, which could be a large

number. The quadratic penalty not only regularizes the nonparametric fit but
also allows for an efficient implementation through singular value decomposition
[10]. Let B denote the basis functions in the predictor set. We need to solve

(α̂0, α̂) = arg min
α0,α

n
∑

i=1

[1 − yi(α0 + Biα)]+ + λαT α.

Suppose the singular value decomposition of B is B = UDV T = RV T where R
is a n × n matrix, then we solve

(γ̂0, γ̂) = argmin
γ0,γ

n
∑

i=1

[1 − yi(α0 + Riγ)]+ + λγT γ,

and α̂ = V γ̂ and α̂0 = γ̂0. See theorem 1 in [10]. Therefore, the computations
can be done in a n dimensional space instead of the original high-dimensional
predictor space.

3.3. Numerical examples

We now present some numerical examples to demonstrate the performance of the
nonparametric heredity SVMs. We compared the nonparametric heredity SVMs
with the l2 SVM and the Gaussian kernel SVM. In all examples, the l2 SVM
was fitted using the same B-Spline basis functions for fitting the nonparametric
heredity SVMs.

Simulation example 4. We first generated explanatory variables z1,. . .,z5

from a multivariate normal distribution in which the correlation between zr

and zj is 0.5|r−j|. We considered a sparse model where the class labels were
generated from a logistic regression model

log

(

Pr(y = 1|z1, . . . , z5)

Pr(y = −1|z1, . . . , z5)

)

= f1(z1) + f2(z2) + f12(z1, z2) + 1.

The true model obeys the strong heredity principle. We used five B-spline ba-
sis functions {bj,1(zj), . . . , bj,5(zj)} to represent each fj(zj), and the interac-
tion effect frj(zr, zj) was represented by the tensor product basis functions
{br,1(zr)bj,1(zj), br,1(zr)bj,2(zj), . . ., br,5(zr)bj,5(zj)}. The representing coeffi-
cients (α) were chosen as follows: (i) Coefficients of the 5 basis functions for
f1(z1) are (2.1, −2.9, 0.3, 2.7, −0.1), (ii) coefficients of the 5 basis functions
for f2(z2) are (−2.8, −1.2, 1.8, 1.7, −0.8), and (iii) coefficients of the 25 basis
functions for f12(z1, z2) are (−2.4, −0.1, 0.6, 3, 2.8, −0.9, 0.3, 1, −0.9, −1.3,
0.9, 2.3, 1.9, 0.8, −0.2, 1.2, 2.1, 1.0, −0.8, −1.7, −0.8, −1.2, 2.1, −2.8, 0.1).

It should be mentioned that in this model the dimension of the predictor set
is 275. On the other hand, this model is very sparse in terms of the number
of active effects (only three active effects). We simulated a training sample of
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Table 5

Compare the SHSVM, the l2 SVM and the Gaussian kernel SVM when the true model obeys
the strong heredity principle. The numbers in parentheses are standard errors.

SHSVM l2 SVM GK-SVM Bayes
0.209 (0.001) 0.214 (0.001) 0.218 (0.001) 0.202

Table 6

Compare the WHSVM, the l2 SVM and the Gaussian kernel SVM when the true model
obeys the strong heredity principle. The numbers in parentheses are standard errors.

WHSVM l2 SVM GK-SVM Bayes
0.217 (0.001) 0.226 (0.001) 0.222 (0.001) 0.197

size 100 from the above model and collected an independent test sample of size
10000 to compute the generalization error of each competitor. The simulation
was repeated 100 times. The simulations results are summarized in Table 5
from which two interesting observations can be made. First we see that the l2
SVM actually does better than the Gaussian kernel SVM in this example. This
observation suggests that although the Gaussian kernel SVM is perhaps the
most popular nonparametric SVM classifier, it is not always the best choice in
all problems. Second and more importantly, the SHSVM is clearly the winner
among all three competitors.

Simulation example 5. In this example we considered the same setup in
example 4, except that the class labels were generated from a logistic regression
model

log

(

Pr(y = 1|z1, . . . , z5)

Pr(y = −1|z1, . . . , z5)

)

= f1(z1) + f2(z2) + f15(z1, z5) + f23(z2, z3) − 1.

Hence this model obeys the weak heredity principle. As in example 4, we used B-
splines to model each effect. The representing coefficients are chosen as follows:
(i) Coefficients of the 5 basis functions for f1(z1) are (3.0, −2.5, 2.0, −1.5, 1.0),
(ii) coefficients of the 5 basis functions for f2(z2) are (1.5, 2.0, −3.0, −2.5, −2.0),
(iii) coefficients of the 25 basis functions for f15(z1, z5) are (7.1, −9.8, 1.1, 9.0,
−0.3, −8.1, −0.4, 2.0, 10, 9.4, −3.1, 1.0, 3.2, −3.1, −4.3, 3.1, 7.7, 6.2, 2.7,
−0.7, 3.9, 6.8, 3.4, −2.5, −5.6), and (iv) coefficients of the 25 basis functions for
f23(z2, z3) are (−2.6, −3.8, 7.0, −9.4, 0.5, −9.2, −4.0, 6.1, 5.6, −2.7, 5.5, 9.3,
−5.4, 9.1, −2.8, 5.1, 3.9, 6.6, −0.6, 6.8, 0.8, 8, −3.6, −2.5, −6).

As can be seen from Table 6, in this example the Gaussian kernel SVM
outperforms the l2 SVM, but the best performance is given by the WHSVM.

South African Heart Disease Data. Here we demonstrate the utility
of the nonparametric heredity SVMs through an analysis of the South African
heart disease data [11] which consist of 462 samples of 9 risk factors (8 continuous
and 1 binary). The responses indicates the presence of heart disease. Previous
studies of this data suggest that nonparametric functions should be used to
model the effects of these 9 risk factors. We first used the popular Gaussian
kernel SVM to analyze the data whose classification error can be used as a good
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Table 7

South African heart disease data: average 5-fold cross-validation errors based on 30
replications. The numbers in parentheses are standard errors.

SHSVM WHSVM GK-SVM
0.267 (0.001) 0.270 (0.001) 0.276 (0.001)

benchmark for comparison. To fit the SHSVM and the WHSVM, we used B-
splines to flexibly model the main effects of 8 continuous risk factors and use the
tensor product basis functions of B-splines to model the interaction effects. In
total, there are 33 basis functions and 480 basis functions used for representing
the main effects and the interaction effects, respectively. Since we did not have
an independent test set, we found the smallest 5-fold cross-validation error of
each competitor. Then we repeated the whole procedure 30 times and reported
the average 5-fold cross-validation errors. As can be seen from Table 7, the
SHSVM does significantly better than the Gaussian kernel SVM.

4. Discussion

In this paper we have developed a unified framework for simultaneously incor-
porating the heredity principle and sparsity into the support vector machine.
By adopting the scaling parameter idea from the nonnegative garrote, we have
shown that both strong and weak heredity principles can be enforced by a set of
linear inequality constraints on the scaling parameters. Our approach is compu-
tationally efficient, as the optimization problem a linear program. Moreover, we
have also extended the framework to handle nonparametric models, which shows
the flexibility of our method. The encouraging numerical results suggest that
the newly proposed method is a useful addition to the classification toolbox.

To fix the main idea, we have used the penalized l2 SVM to construct the
initial classifier. Based on our experience, this choice of initial classifier worked
quite well even when the dimension of predictors exceeds the sample size. It is
possible to further improve the heredity SVMs by using better initial classifiers
in certain problems.

Finally, we comment on the path-based computation of the structured SVMs.
Yuan and Lin [22] showed that the solution path of the original nonnegative
garrote is piecewise linear and constructed an efficient algorithm for building
its whole solution path. One may expect the same is true for the garrote SVM.
With the heredity constraints, the solution paths of θs will remain piece-wise
linear as a function of their l1 norm. However, the path-following algorithm will
become considerably more complicated. It is not clear if computing the whole
solution path will provide us considerable computational savings, compared with
running linear programming for a grid of tuning parameters.
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