
Computational Statistics & Data Analysis 51 (2006) 1754–1764
www.elsevier.com/locate/csda

Flexible temporal expression profile modelling using the
Gaussian process

Ming Yuan∗

School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive NW, Atlanta, GA 30332, USA

Received 15 August 2005; received in revised form 23 November 2005; accepted 23 November 2005
Available online 19 December 2005

Abstract

Time course gene expression experiments have proved valuable in a variety of biological studies [e.g., Chuang, Y., Chen, Y.,
Gadisetti, V., et al., 2002. Gene expression after treatment with hydrogen peroxide, menadione or t-butyl hydroperoxide in breast
cancer cells. Cancer Res. 62, 6246–6254; Edwards, M.G., Sarkar, D., Klopp, R., Morrow, J.D., Weindruch, R., Prolla, T.A., 2003.
Age-related impairment of the transcriptional response to oxidative stress in the mouse heart. Physiol Genomics 13, 119–127].
A general goal common to many of these time course experiments is to identify genes that exhibit different temporal expression
profiles across multiple biological conditions. Such experiments are, however, often hampered by the lack of data analytical tools.
Taking advantage of the great flexibility of Gaussian processes, we propose a statistical framework for modelling time course gene
expression data. It can be applied to both long and short time series and also allows for multiple differential expression patterns.
The method can identify a gene’s temporal differential expression pattern as well as estimate the expression trajectory. The utility
of the method is illustrated on both simulations and an experiment concerning the relationship between longevity and the ability to
resist oxidative stress.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Time course gene expression experiments monitor simultaneously individual markers in multiple samples over time,
and hence allow for not only a snapshot of the activity in the cell, but also the temporal relationships among different
genes. Such experiments have proved to be a valuable tool in a variety of biological studies (Chuang et al., 2002;
Edwards et al., 2003). A general goal common to many of these time course experiments is to collect gene expression
time series in multiple biological conditions such as different cancer tumor types or different treatments, and identify
genes that exhibit different temporal expression profiles across multiple biological conditions.

In contrast to the rich literature on how to analyze gene expression data under a single time point (Parmigiani et al.,
2003), few methods are available to identify temporally differentially expressed genes. Early statistical approaches are
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largely based on linear regression or two-way analysis of variance (ANOVA) (Guo et al., 2003; Xu et al., 2002). These
methods often suffered from the problem of low sensitivity due to the limited number of replicates in most time course
experiments (Park et al., 2003).

Yuan and Kendziorski (2006) pointed out that more power could be gained if the temporal dependence is appropriately
taken into account. They proposed a hidden Markov modelling (HMM) framework to efficiently identify differentially
expressed genes at each time point and classify genes based on their temporal expression patterns. HMM is applicable
for comparing two or more biological conditions and can be applied to both short and long time series. By directly
targeting the relationship among expression profiles under different conditions, the method not only identifies genes
that have different expression profiles across conditions, but also pinpoints when such difference in expression occurs.

In many time course gene expression studies, the expression trajectory under each condition is also of great interest.
This is especially true when one wants to infer the expression profile between sampling time points. In such cases, one
may want to model the temporal expression profile under individual conditions. Hong and Li (2004) proposed to model
the profile as a linear combination of several B-spline basis functions. Genes that have different trajectories across
different conditions are identified through the inference on the linear coefficients. The model fitting and empirical
Bayes inferences are carried out by a Monte Carlo EM algorithm. Alternatively, Storey et al. (2004) modelled the gene
specific expression profile using splines and a random scalar is introduced to specify the condition dependent variation.
The inference on a gene’s differential expression pattern is based on hypothesis testing of the variance component.

Clearly, HMM and methods based on modelling individual expression profiles each has their own appeal depending
on the experiment setup and goal. HMM provides flexible inference tools for the gene expression level at the sampling
points but does not provide information on the expression profile between time points. The inferences that profile-
modelling based methods can make are more limited, but they yield better description of the expression trajectory
under each condition.

Both of the existing profile-modelling based approaches, however, have their limits when it comes to more than
two conditions. Hong and Li’s approach can only be applied to two conditions. Although Storey et al.’s approach can
handle more than two conditions, it can only classify genes into two patterns depending on whether it is equivalently
expressed across all conditions or not.

To elaborate on this, consider the aging experiment from Edwards et al. (2003). The experiment was designed to
better understand the genetic basis underlying the relationship between longevity and the ability to resist oxidative
stress as we shall discuss in detail later. After stress induction, the investigators monitored the gene expression level
for young, middle-aged and old mice at five different time points. There are no natural ways of applying Hong and
Li’s approach to compare the three age groups. Storey et al.’s approach can tell us which genes are not equivalently
expressed across all three groups. But it cannot provide information on whether or not the differential expression occurs
only for one group. Furthermore, the validity of both existing profile-modelling methods is questionable with such a
small number of time points.

Similar to Hong and Li (2004) and Storey et al. (2004), the method proposed in this paper is based on modelling
the expression profiles and is useful when expression level between time points is of interest. Taking advantage of the
flexibility of Gaussian processes, the approach proposed here overcomes the aforementioned problems of the existing
approaches. It can be applied to both long and short time series and also allows for multiple differential expression
patterns. The main objective of time course experiment is to make inference regarding functions that represent temporal
expression profiles. In contrast to the traditional approaches that model the functions in a parametric form, the main
idea of our modelling strategy is to view it as a sample from the space of functions. Any inference regarding the profile
then takes place directly in function space.

The rest of the paper is organized as follows. In Section 2, we described a Gaussian process approach to model the
gene expression profiles. Inferences based on the proposed model are discussed in Section 3. The utility of the proposed
method is illustrated by both simulations and a real case study in Sections 4 and 5, respectively. We conclude with
some discussions in Section 6.

2. Gaussian process model

We assume that some preprocessing technique has been applied to adequately normalize the data so that the mea-
surements reflect the true underlying gene expression. The general data structure of many time course microarray
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experiments is as follows. There are multiple biological conditions; and for each condition, there are expression
measurements taken over a set of time points. Often times, replicate measurements are obtained under different bio-
logical conditions at each time point.

Consider gene g under condition c. Suppose thats ngcm replicate expression intensities for gene g are taken at possibly
condition-dependent time point tcm, where m=1, . . . , M . For brevity, we shall omit the subscript of ngcm if no confusion
occurs. Denote by xgcm = (

xgcm1, . . . , xgcmn

)
the log transformed intensity measurements. These measurements are

noisy observations of the true underlying temporal gene expression profile, denoted by �gc(t), sampled at discrete time
points t = tc1, . . . , tcM . Specifically, the observational model could be described as

xgcmr = �gc (tcm) + �gcmr , (1)

where �gc = (
�gcmr : r = 1, . . . , ngcm, m = 1, . . . , M

) ∼ N(0, �) represents the measurement error where � is
a (
∑

m ngcm) × (∑
m ngcm

)
positive definite matrix. The actual experiment design determines the modelling of

variance–covariance matrix �. In many studies, replicate measurements are taken for different subjects. In these
applications, it is reasonable to model the measurement errors as independent variables, i.e., � = �2

0I . In some other
studies, however, expression measurements are taken from the same subjects repeatedly. To account for the structure of
repeated measurements, one needs to model the correlation among the measurement errors. Detailed discussion on this
aspect is beyond the scope of this paper and the interested readers are referred to Heagerty et al. (2004) for common
modelling strategies of �.

The main challenge is how to model the true gene expression profile described by the function �gc(·). Hong and
Li (2004), among others, propose to model it as a linear combination of a finite set of B-spline basis functions. The
rationale behind this modelling approach is the assumption that the temporal process evolves possibly nonlinearly but
smoothly and this smoothness is governed by the number of basis functions used in modelling �gc. How well the profile
can be approximated heavily depends on the number of basis functions and their respective locations. Unfortunately,
the selection of basis functions, most of the time, can only be done on a case-to-case basis. A flexible alternative to the
B-spline approach is to view �gc(·) as a realization of a Gaussian process.

Although Gaussian process is routinely used in time series and spatial statistics, it may be less familiar to readers
whose main interests are in gene expression analysis. For completeness, we first review some necessary concepts of
Gaussian processes and covariance functions before proceeding. Interested readers are referred to Cressie (1993) or
Stein (1999) for more details.

The idea of Gaussian process modelling is, without parametrizing a function, to view it as a sample from the space
of functions. A Gaussian process defines a distribution over functions. It can be thought of as the generalization of
a multivariate normal distribution over a finite vector space to a function space of infinite dimension. Different from
parametric approaches such as the one used by Hong and Li (2004) where inferences about a function is made via the
inference on the linear coefficients, any inference regarding the function takes place directly in function space with
Gaussian process modelling.

A Gaussian process Z(t) is a stochastic process whose finite dimensional distribution is multivariate normal for every
n and every collection {Z (t1) , Z (t2) , . . . , Z (tn)}. Similar to the multivariate normal distribution, Gaussian processes
are specified by their mean function E(Z(t)) and covariance function

cov
(
Z (ti) , Z

(
tj
))= K

(
ti , tj

)
. (2)

Just as a covariance matrix must be positive definite, a covariance function must also be positive definite in the sense
that for every n > 0, t1, . . . , tn and z1, . . . , zn

n∑
i,j=1

zizjK
(
ti , tj

)
�0, (3)

where the equality holds if and only if z1 = · · · = zn = 0. For a stationary Gaussian process, K (t1, t2) is a function
of t1 − t2. We write K (t1, t2) = K (t1 − t2). One of the most commonly used covariance functions is the Gaussian
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covariance function

K (t1, t2) = �2 exp

(
− (t1 − t2)

2

2�2

)
. (4)

Gaussian processes with such covariance function are infinitely mean square differentiable and therefore especially
appropriate for modelling functions that are known a priori to be smooth.

Now consider the true expression profile �gc(·) for gene g under condition c. We view �gc(·) as a realization of a
Gaussian process with mean function �0(·) and covariance function K(·, ·). We further model the mean function �0(·)
as a linear combination of a set of known basis functions

{
��(·)

}
:

�0(t) =
d∑

�=1

����(t). (5)

Common choices of basis functions
{
��(·)

}
include prespecified B-spline basis functions or low order polynomials.

The primary goal of the time course experiment with multiple conditions is to make inferences concerning
relationships among profiles from different conditions, denoted by �g1, . . . , �gC , based on the observed expression
measurements. Any two profiles �gc1

and �gc2
can either be equivalently expressed, i.e., �gc1

= �gc2
, or differentially

expressed, i.e., �gc1
�= �gc2

. This type of comparison between profiles can be naturally extended to more than two
conditions. For example, in the aging experiment mentioned earlier, there are three conditions: aged, middle-aged and
young. Correspondingly, there are three expression profiles �g,aged, �g,middle and �g,young, and the potential expression
patterns include

H1 : �g,aged = �g,middle = �g,young, (6)

H2 : �g,aged �= �g,middle = �g,young, (7)

H3 : �g,middle �= �g,aged = �g,young, (8)

H4 : �g,young �= �g,aged = �g,middle, (9)

H5 : �g,aged �= �g,middle �= �g,young. (10)

More generally, the number of all possible patterns as a function of the number of conditions C is equal to the Bell
exponential number of possible set partitions. There are also other types of hypotheses that might be of interest for
time course microarray experiments such as the ones considered in Peddada et al. (2003). We chose the current set of
differential expression patterns because it is more natural for comparing multiple conditions (Kendziorski et al., 2003;
Yuan and Kendziorski, 2006). It is worth pointing out that the number of distinct patterns increases exponentially as
the number of conditions increases. Therefore, in practice, prior knowledge narrowing down plausible patterns is very
useful in the case of many conditions. For a gene equivalently expressed under conditions c1 and c2, �gc1

=�gc2
is one

realization of a Gaussian process; and for a differentially expressed gene where �gc1
�= �gc2

, we assume that both �gc1
and �gc2

are two independent realizations of the same Gaussian process.

3. Inferences

There are two most important questions in time course experiments. First, one wants to identify a gene’s differential
expression pattern. Second, we are also interested in estimating the temporal expression profile. The first goal can be
achieved by gauging the posterior probabilities for the possible patterns. The second task can be fulfilled by exploring
the posterior distribution in the function space. To fix ideas, in the following, we will assume that �0(·) = �0 is a
constant function and K(·, ·) is a Gaussian covariance function known up to parameters �2 and �2. The discussion
should, however, be easily extended to more general setup.
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3.1. Expression pattern

Denote by K the number of distinct patterns of expression under investigation. For pattern Hk , let r(k) be the number
of distinct temporal profiles among �g1, . . . , �gC . Conditions 1, . . . , C can be divided into r(k) exclusive subsets
Si, i = 1, . . . , r(k), with conditions from Si sharing the same profile. For example, in the case of two conditions, for
pattern �gc1

=�gc2
, r(1)= 1 and S1 ={c1, c2}; for pattern �gc1

�= �gc2
, r(2)= 2 and S1 ={c1} , S2 ={c2}. In the aging

experiment, K = 5 as described in the previous section and

r(1) = 1, S1 = {aged, middle-aged, young},
r(2) = 2, S1 = {aged}, S2 = {middle-aged, young},
r(3) = 2, S1 = {middle-aged}, S2 = {aged, young},
r(4) = 2, S1 = {young}, S2 = {aged, middle-aged},
r(5) = 3, S1 = {aged}, S2 = {middle-aged}, S3 = {young}.

For a gene g with pattern Hk , the marginal distribution of xg can be expressed as fk

(
xg

) =∏r(k)
i=1 f

(
xgSi

)
where

xg is the vector of all measurements taken for gene g, xgSi
is the vector of all measurements taken under conditions

within Si for gene g, and f
(
xgSi

)
is its marginal distribution. fk

(
xg

)
can be derived in closed-form and therefore

allows for fast computation. Details are provided in the appendix. Let 	k be the prior probabilities for the hypotheses
Hk , k = 1, . . . , K . Applying the Bayes Theorem, the posterior probabilities for the hypothesis are

P
(
Hk|xg

)= 	kfk

(
xg

)
	1f1

(
xg

)+ · · · + 	KfK

(
xg

) . (11)

Once the posterior probabilities defined in (11) are obtained, inferences can be made based on these quantities.
For example, under 0–1 loss, we shall assign gene g to an expression pattern with the highest posterior probability
(Berger, 1985). Certainly, in practice, other thresholds might also be used to give more conservative lists of potential
differentially expressed genes. A natural question is how to measure the effectiveness of a cutoff probability 
. The false
discovery rate (FDR) introduced by Benjamini and Hochberg (1995) is a common criterion in the multiple testing setup.
In the current context, when claiming that a gene has pattern Hk , it can be interpreted as P (a gene has pattern other
than Hk| the posterior probability that it has pattern Hk > 
). Simple mathematical derivation leads to the following
estimate of the false discovery rate (Newton et al., 2004):

̂FDRk =
∑

g:P(Hk |xg)>

(
1 − P

(
Hk|xg

))
card

{
g : P

(
Hk|xg

)
> 

} . (12)

Using (12), we can estimate FDR for a specific cutoff 
, i.e. 
=0.5.Alternatively, for a given FDR level, i.e. FDR=0.05,
we can also identify a cutoff 
 which leads to the most powerful list of genes with FDR controlled at the given level.

3.2. Expression profile

In order to recover the expression trajectory, we should be able to make inferences about �gc (t0) for any time point
t0. Clearly, the estimating procedure of �gc (t0) depends on the expression pattern. To avoid propagating the pattern
identification error in estimating �gc (t0), it is often of interest to estimate it using only the observations obtained under
condition c, xgc. Let �gc be an ngc × 1 vector representing the true expression levels corresponding to xgc. By the

definition of Gaussian process and (1),
(
�gc(t0), x′

gc

)′
follows a multivariate normal distribution:

(
�gc (t0)

xgc

)
∼ N

(
�01ngc+1 ,

(
�2 st0
s′
t0

V + �

))
, (13)
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where st0 = cov
(
�gc (t0) , �gc

)
and V = var

(
�gc

)
. Therefore,

�gc (t0) |xgc ∼ N
(
�0+st0(V + �)−1 (xgc−�01ngc

)
, �2 − st0(V +�)−1s′

t0

)
. (14)

From (14), a natural estimate of �gc (t0) is its conditional mean:

�̂gc (t0) = �0 + st0(V + �)−1 (xgc − �01ngc

)
. (15)

Furthermore, one could also construct the so-called Bayesian confidence interval (Wahba, 1990) for �gc (t0) using (14).
In particular, the 1 − 
 Bayesian confidence interval for �gc (t0) is(

�̂gc (t0) ± z
/2

√
�2 − st0(V + �)−1s′

t0

)
, (16)

where z
/2 is the 
/2 critical value of the standard normal distribution.

3.3. Model fitting

In the discussion above, we assume that parameters such as �2
0, �2, �2, 	1, . . . , 	K and �′s are all known a priori. This

is certainly not the case in practice. Here, we introduce an EM algorithm to estimate the parameters in an empirical
Bayes fashion. The EM algorithm is based on the concept of incomplete data. In the case of our Gaussian process
model, the expression patterns J can be treated as the missing data. The complete log-likelihood is then

log f (x, J ) =
∑
g

log
(
fJg

(
xg

))
. (17)

The EM algorithm proceeds by iterating between the so-called E-step and M-step. In the E-step, we compute the
expectation of the complete log-likelihood (17) conditional on the observed expressions xg and the current estimate of
unknown parameters. The resultant quantity is the so-called Q-function. In the M-step, the estimates of the unknown
parameters are updated by maximizing the Q-function with respect to the unknown parameters.

4. Simulation

To illustrate the utility of the proposed method, we first apply the method on a simulated dataset. The data were
simulated from the Gaussian process model as follows:

(i) Each gene is randomly assigned to a pattern so that 72% of the genes have pattern H1, and 7% of the genes have
each of the rest four patterns.

(ii) Depending on its expression pattern, condition-dependent profiles �gc are generated from a Gaussian process with
mean function 5.27 and Gaussian covariance function with � = 1.08 and � = 4 (hours).

(iii) Three expression measurements under each combination of three conditions and five time points, 0, 1, 3, 5, 7 h,
are generated with �0 = 0.28.

The parameters used here are chosen so that the simulated data share similar characteristics as the aging experiment.
For each dataset, 5000 genes were generated and their differential expression patterns are determined using Bayes rule
after model fitting. Table 1 summarizes the performance in identifying expression patterns averaged over 100 simulated
datasets.

Fig. 1 demonstrates how to predict a gene’s temporal expression profile using our Gaussian process model. The
circles represent simulated expression measurements of a typical gene under a single condition. The solid black line is
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Table 1
Simulation result

Identified Truth

pattern H1 H2 H3 H4 H5

H1 3599.39 0.21 0.24 0.16 0.00
H2 16.47 332.96 0.03 0.08 0.46
H3 16.84 0.12 332.38 0.10 0.56
H4 17.23 0.11 0.04 332.09 0.53
H5 1.33 14.13 14.40 13.93 306.21

0

4.0

4.5

5.0

5.5

Time

lo
g 

in
te

ns
ity

7654321

Fig. 1. True and estimated temporal expression profile.

the estimate obtained using (15) and the broken lines are its 99% Bayesian confidence bands as described by (16). The
gray line is the true expression profile simulated.

5. Real example

The experiment reported by Edwards et al. (2003) was done to investigate the transcriptional response to oxidative
stress in the heart and how it changes with age. The question is of interest for a number of reasons, a main one being
evidence relating longevity with the ability to resist oxidative stress. Although it is well known that age confers varied
susceptibility to various forms of stress, little is known about the genetic basis for this change. Affymetrix MG-U74A
arrays were used to measure the expression levels of 12,588 genes in the heart tissue of young, middle-age, and old
mice at baseline and at four times following stress induction (1, 3, 5, and 7 h). Three mice were considered for each time
and age combination to give a total of 45 arrays. Following data collection, Affymetrix disclosed that approximately
20% of the genes on the MG-U74A arrays were defective. As a result, 2545 probes were removed from the analysis
leaving 10,043 genes. Details of the data processing and normalization are given in Edwards et al. (2003). In short,
all Affymetrix image files were processed using GeneChip Analysis Suite 5.0 software to give a Signal score for each
gene. The data were normalized across arrays using the Global Scaling method implemented in that software.

Bayes rule classifies 7396 genes to H1; 369 genes to H2; 731 to H3; 1467 to H4, and 80 to H5. Fig. 2 depicts the
expression measurements and estimated expression profiles for a sample of 15 genes. The black circles, red triangles
and green pluses represent the expression measurements taken for aged, middle-aged and young age group, respectively.
The solid lines are the estimated expression profile and the broken lines stand for the 99% Bayesian confidence bands.
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Table 2
A sample of genes known to be related to oxidative stress

Symbol Description Identified pattern

Atp5l ATP synthase, H+ transporting, mitochondrial F0 complex subunit, g Young DE (H4)

Atp5a1 ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit, isoform 1 Middle-aged DE (H3)

Atp5c1 ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide 1 Middle-aged DE (H3)

Atp5g2 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c (subunit 9), isoform 2 Aged DE (H2)

Atp6v1a1 ATPase, H+ transporting, V1 subunit A, isoform 1 Middle-aged DE (H3)

Atp6v1d ATPase, H+ transporting, V1 subunit D Young DE (H4)

Cox6a2 Cytochrome c oxidase, subunit VI a, polypeptide 2 Young DE (H4)

Cox6c Cytochrome c oxidase, subunit VIc& cytochrome-c oxidase activity Middle-aged DE (H3)

Cox7c Cytochrome c oxidase, subunit VIIc All DE (H5)

Epx Eosinophil peroxidase Young DE (H4)

Mpo Myeloperoxidase Middle-aged DE (H3)

MGI:1914434 Genes associated with retinoid-IFN-induced mortality 19 Young DE (H4)

Ndufb3 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3 Young DE (H4)

Ndufb8 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 8 Middle-aged DE(H3)

Tcirg1 T-cell, immune regulator 1 Middle-aged DE (H3)

Ucp1 Uncoupling protein 1 (mitochondrial, proton carrier) Young DE (H4)

The three genes from the first column are identified as H1, and as indicated by the plot, the three estimated expression
profiles are very similar. The second to fourth column each has three genes classified to pattern H2, H3 and H4,
respectively, where one age group shows different expression profile from the other two. The fifth column corresponds
to pattern H5. These genes have three different expression profiles under different conditions. Such plot not only helps
us determine a gene’s expression pattern but also visualizes a gene expression trajectory under different conditions.

Table 2 lists 16 genes that are identified to be differentially expressed under at least one condition. They are all known
to be responsive to oxidative stress or involved in the oxidative phosphorylation pathway.

6. Conclusion

Two of the most important tasks in time course gene expression experiments under multiple conditions are identifying
temporal differential expression pattern and reconstructing the expression trajectory. Although important, no existing
method can satisfactorily address both tasks. In this paper, we proposed a Gaussian process approach which can be
used to identify genes’ temporal differential expression patterns as well as recover the temporal expression profile. The
method extends the empirical Bayes approach developed by Newton et al. (2001) and Kendziorski et al. (2003) to the
comparison among multiple temporal expression profiles. The utility of the proposed method was demonstrated on
both simulated and case study data.

The main objective in the analysis of time course experiments is the expression profile as a function of time.
Gaussian process provides a more flexible modelling approach for functions than traditional methods. In this paper,
we introduce such a powerful tool to the modelling of time course gene expression data. Gaussian process based time
course experiment modelling is certainly valuable in applications beyond comparing multiple conditions as we focused
on in this paper. For example, ongoing research on applying such idea in clustering time course data is encouraging.

7. Appendix—Marginal likelihood function

To compute the marginal likelihood of xg under pattern Hk , it suffices to compute the marginal likelihood for xgSi
.

Without loss of generality, we assume that Si contains only one condition c in the following. If Si contains more than
one element, similar calculation can be carried out by pooling the measurements taken under conditions in Si as if they
were taken under a single “condition”.

For brevity, we will also assume that �=�2
0I . Derivation for more general � can proceed similarly. Write �2 =K(0),

�2V = (
K
(
tci , tcj

))
, �gc = (

�gc (tc1) , . . . , �gc (tcM)
)′, zgc = xgc − �0 and wgc = �gc − �01M . Under the proposed
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Gaussian process model, the marginal distribution of xgc can be derived:∫
f
(
xgc|�gc (tc1) , . . . , �gc (tcM)

)
f
(
�gc (tc1) , . . . , �gc (tcM)

)
× d�gc (tc1) . . . d�gc (tcM)

=
∫ (

M∏
m=1

f
(
xgcm|�gc (tcm)

))
f
(
�gc (tc1) , . . . , �gc (tcM)

)
× d�gc (tc1) . . . d�gc (tcM)

=
∫ (

1/
√

2	
)ngc

(
1/�2

0

)ngc/2
exp

(
−
∑

m

∑
r

(
zgcmr − wgcm

)2
2�2

0

)

×
(

1/
√

2	
)M(

1/�2
)M/2

(det(V ))−1/2 exp
(
−w′

gcV
−1wgc/2�2

)
× dwgc1 . . . dwgcM

=
(

1/

√
2	�2

0

)ngc

exp

⎛⎝−
∑

m

(∑
rz

2
gcmr − ngcmz̄2

gcm·
)

2�2
0

⎞⎠(√2	
)M(

�2
0

)M/2

× (det(D))−1/2
∫
N
(
z̄gcm·|wgc, �

2
0D

−1
)
N
(

wgc|0, �2V
)

dwgc1 . . . dwgcM

=
(

1/

√
2	�2

0

)ngc

exp

⎛⎝−
∑

m

(∑
rz

2
gcmr − ngcmz̄2

gcm·
)

2�2
0

⎞⎠(√2	
)M(

�2
0

)M/2

× (det(D))−1/2N
(
z̄gcm·|0, �2

0D
−1 + �2V

)

=
⎛⎜⎝ 1√

2	�2
0

⎞⎟⎠
ngc

exp

⎛⎝−
∑

m

(∑
rz

2
gcmr − ngcmz̄2

gcm

)
2�2

0

⎞⎠
×
(

det
(
I + �D1/2V D1/2

))−1/2

× exp

⎛⎝− z̄′
gc·D1/2

(
I + �D1/2V D1/2

)−1
D1/2z̄gc·

2�2
0

⎞⎠ , (18)

where ngc=∑M
m=1 ngcm, D=diag

(
ngc1, . . . , ngcM

)
, z̄gcm=∑ngcm

r=1 zgcmr/ngcm, z̄gc·=
(
z̄gc1, . . . , z̄gcM

)′ and �=�2/�2
0.
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