Quantitation in Colocalization Analysis:

Beyond "Red+ =Yellow"

Ming Yuan

Department of Statistics
Columbia University
ming.yuan@columbia.edu
http://www.columbia.edu/~my2550

(Joint work with Shulei Wang)

Seeing Is Believing

- High contrast
- High specificity (targeted molecules)
- High throughput
- Quantitative (fluorescence intensity, fluorescence lifetime etc.)
- High resolution (~20nm)
- Dynamic (monitoring biological events for 24 hour)
[Zebrafish; Cutrale, F. et al., 2017]
[Drosophila; Chhetri, R.K. et al., 2015]

Outline

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

Overview

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

Dual Chanel Fluoresence Imaging

Colocalization

Qualitative v.s. Quantitative

- Subjective, susceptible to cross-talk, and etc.
- Time consuming, labor intensive

Pixel Based Modeling

(Pioneered by Manders and Co., 1990s)

Current Pipeline for Colocalization

(see, e.g., Bolte and Cordeliéres, 2006, Dunn et al., 2011)

But

- How to choose region of interest?
- How to choose colocalization coefficient?
- How to evaluate statistical significance?
- How to do so in a computationally efficient way?

Our goal: a general statistical/computational framework for colocalization that is

- Automated
- Statistically valid
- Computationally efficient
- Flexible and powerful

Overview

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

Background or Signal?

Background or Signal?

Background or Signal?

What are we measuring?

Pearson's correlation coefficient: Manders' colocalization coefficients:

$$
r=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i}\left(X_{i}-\bar{X}\right)^{2} \sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

$$
M_{1}=\frac{\sum_{i} X_{i} I_{\left(Y_{i}>0\right)}}{\sum_{i} X_{i}}, M_{2}=\frac{\sum_{i} Y_{i} I_{\left(X_{i}>0\right)}}{\sum_{i} Y_{i}}
$$

Colocalization as Tail Dependence

- Positively quadrant dependence (PQD, for short) (Lehmann, 1966):

$$
\mathbb{P}(X>x, Y>y) \geq \mathbb{P}(X>x) \mathbb{P}(Y>y)
$$

- Colocalization manifested as correlated co-occurrent signals:

$$
\begin{array}{rc}
\text { co }- \text { occurence }(V): & S\left(\eta_{x}, \eta_{y}\right)-S\left(\eta_{x},-\infty\right) S\left(-\infty, \tau_{y}\right) \\
\text { correlation }(T): & \mathbb{P}\left\{(X-\tilde{X})(Y-\tilde{Y})>0 \mid X, \tilde{X}>\eta_{X} ; Y, \tilde{Y}>\eta_{Y}\right\}- \\
& \mathbb{P}\left\{(X-\tilde{X})(Y-\tilde{Y})<0 \mid X, \tilde{X}>\eta_{X} ; Y, \tilde{Y}>\eta_{Y}\right\}
\end{array}
$$

- Background vs signal:

$$
F\left(x, y \mid x>\eta_{x}, y>\eta_{y}\right)=F_{\eta_{x}, \eta_{y}}(x, y) \quad \leftarrow P Q D
$$

Colocalization via Statistical Lens

- Assume each $\left(X_{i}, Y_{i}\right)^{\top}$ is drawn from a bivariate distribution.
- Without colocalization

$$
\left(X_{i}, Y_{i}\right) \sim \underbrace{F_{0}(x, y)}_{\text {no } P Q D}
$$

- With colocalization

$$
\left(X_{i}, Y_{i}\right) \sim \underbrace{F_{1}(x, y)}_{\text {exhibit } P Q D}
$$

Overview

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

A Hypothesis Testing Approach to Colocalization

- Assume each $\left(X_{i}, Y_{i}\right)^{\top}$ is drawn from a bivariate distribution.
- Without colocalization

$$
\left(X_{i}, Y_{i}\right) \sim \underbrace{F_{0}(x, y)}_{\text {no } P Q D}, \quad \forall i
$$

- With colocalization located at an unknown $\operatorname{set} \mathcal{C}$ of pixels

$$
\left(X_{i}, Y_{i}\right) \sim \underbrace{F_{1}(x, y)}_{\text {exhibit } P Q D}, \quad \forall i \in \mathcal{C}
$$

IF we know \mathcal{C}, \ldots

$$
H_{0}:\left(X_{i}, Y_{i}\right) \sim F_{0} \quad \forall i \in \mathcal{C} \quad \text { vs } \quad H_{1}:\left(X_{i}, Y_{i}\right) \sim F_{1} \quad \forall i \in \mathcal{C}
$$

- Positively quadrant dependent property implies

$$
\tau_{H}:=\mathbb{E}\left(\operatorname{sign}\left(X_{i}-X_{j}\right) \operatorname{sign}\left(Y_{i}-Y_{j}\right)\right)>0 .
$$

Here τ_{H} is called Kendall tau correlation.

- Empirical version Kendall tau correlation is a good indicator of correlation of $H(x, y)$

$$
\widehat{\tau}_{H}:=\frac{1}{n_{\mathcal{C}}\left(n_{\mathcal{C}}-1\right)} \sum_{i \neq j \in \mathcal{C}} \operatorname{sign}\left(X_{i}-X_{j}\right) \operatorname{sign}\left(Y_{i}-Y_{j}\right)
$$

But we do not know \mathcal{C} (or equivalently η_{x} and η_{y})!

Test for Conditional PQD

- Known η_{x} and η_{y} - conditioned and normalized Kendall's tau

$$
\widehat{\tau}(\eta)= \begin{cases}\sqrt{\frac{18}{n_{\eta}\left(n_{\eta}-1\right)\left(2 n_{\eta}+5\right)}} \sum_{i, j \in \mathcal{K}(\eta): i<j} \operatorname{sign}\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right) & n_{\eta}>1 \\ -\infty & n_{\eta} \leq 1\end{cases}
$$

where $\mathcal{K}(\eta)=\left\{i: X_{i} \geq \eta_{x}, Y_{i} \geq \eta_{y}\right\}$ and $n_{\eta}=|\mathcal{K}(\eta)|$.

- Unknown η_{x} and η_{y},

$$
\tau^{*}:=\max _{T_{x} \geq X_{(i)}, T_{y} \geq Y_{(i)}: i, j \geq\lfloor n / 2\rfloor} \widehat{\tau}(T)
$$

- Test

$$
\psi_{T}=\left\{\begin{array}{lll}
\text { reject } & H_{0} & \text { if } \tau^{*}>q_{\alpha} \\
\text { accept } & H_{0} & \text { otherwise }
\end{array}\right.
$$

Sampling Distribution Estimation

Statistical significance by permutation test:

- Calculate $\tau_{\text {app }}^{*}$ and record it as E_{0}.
- For $j=1: B$, block-wise

7	8	9
4	5	6
1	2	3

7	8	9
4	5	6
1	2	3

- P-value: $\#\left\{E_{j}>E_{0}\right\} / B$

7	8	9
4	5	6
1	2	3

1	5	3
2	7	9
6	4	8

Computational Consideration

Fast computation:

$$
\tau_{f}^{*}:=\max _{T_{x}=X_{(j)}, T_{y}=Y_{(k)}: j, k \in \mathcal{R}_{n}} \widehat{\tau}(T)
$$

where

$$
\mathcal{R}_{n}:=\left\{s: s=\left\lfloor n-\left(1+\frac{1}{\log \log n}\right)^{j}\right\rfloor j=1,2, \ldots \quad \text { and } \quad s \geq\lfloor n / 2\rfloor\right\} .
$$

- τ_{f}^{*} is faster to compute

	τ^{*}	τ_{f}^{*}
$\# \widehat{\tau}(T)$	$O\left(n^{2}\right)$	$O\left(\log ^{3} n\right)$

- And just as powerful

Does it work?

- Assume that $\left\{\left(X_{i}, Y_{i}\right): i \in \mathbb{I}\right\}(n:=|\mathbb{I}|)$ are independently sampled from F obeying

$$
\sup _{\eta_{X}, \eta_{Y}} V\left(\eta_{X}, \eta_{Y}\right) \cdot T^{2}\left(\eta_{X}, \eta_{Y}\right) \gg \frac{\log \log n}{n}
$$

Then Δ is a consistent test in that we reject H_{0} in favor of H_{1} with probability tending to one.

- Conversely, there exists a constant $c>0$ such that for any α-level test Δ based on sample $\left\{\left(X_{i}, Y_{i}\right): i \in \mathbb{I}\right\}$, there is an instance where joint distribution function F obeying

$$
\sup _{\eta_{X}, \eta_{Y}} V\left(\eta_{X}, \eta_{Y}\right) \cdot T^{2}\left(\eta_{X}, \eta_{Y}\right) \geq c \frac{\log \log n}{n}
$$

and yet, we accept H_{0} with probability tending to $1-\alpha$ as if H_{0} holds.

Does it REALLY work?

P-value: 0.866

P-value: 0.702

P-value: 0.092

Overview

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

Where is Colocalization?

$p=0.092$

$p=0$

Local Quantification of Colocalization

- Pixel-wise hypothesis:

$$
H_{k, 0}: F_{k} \in \mathcal{F}_{0} \quad \text { v.s. } \quad H_{k, 1}: F_{k} \in \mathcal{F}_{1}, \quad k \in \mathbb{I}
$$

where F_{k} is the distribution of $\left(X_{k}, Y_{k}\right)$.

- Colocalization as tail dependence:

$$
H_{k, 0}: Q\left(F_{k} ; \eta_{X}, \eta_{Y}\right)=0
$$

and

$$
H_{k, 1}: Q\left(F_{k} ; \eta_{X}, \eta_{Y}\right)>0
$$

for pre-specified η_{X} and η_{Y}.

- Only one pair $\left(X_{k}, Y_{k}\right)$ available for each pixel k.

Local Quantification of Colocalization

Weighted Kendall tau's correlation in a neighborhood $B(k, r)$

$$
\tau_{w}(k ; r):=\frac{\sum_{i \neq j} w_{i}(k ; r) w_{j}(k ; r) \operatorname{sign}\left(X_{i}-X_{j}\right) \operatorname{sign}\left(Y_{i}-Y_{j}\right)}{\sum_{i \neq j} w_{i}(k ; r) w_{j}(k ; r)}
$$

- Weight $w_{i}(k ; r)$ is decomposed as

$$
w_{i}(k ; r)=\mathbf{K}_{l}\left(\frac{d(i, k)}{r}\right) \mathbf{K}_{b}\left(X_{i}, Y_{i}\right)
$$

- \mathbf{K}_{l} gives less weight to the pixel i whose location is far from k.
- $\mathbf{K}_{b}\left(X_{i}, Y_{i}\right)=\mathbf{1}_{\left(X_{i}>\eta_{X}\right)} \mathbf{1}_{\left(Y_{i}>\eta_{Y}\right)}$ deals with background.

Propagation-Separation

$$
\begin{gathered}
w_{i}\left(k ; r_{0}\right) \\
\vdots \\
\tau_{w}\left(k ; r_{0}\right)
\end{gathered}
$$

Propagation-Separation

$$
w_{i}\left(k ; r_{0}\right) \quad w_{i}\left(k ; r_{1}\right)
$$

Propagation-Separation

$$
w_{i}\left(k ; r_{0}\right) \quad w_{i}\left(k ; r_{1}\right)
$$

Propagation-Separation

Propagation-Separation

Multiscale Adaptive Test

- Test statistics for $H_{k, 0}$ against $H_{k, 1}$ is

$$
Z\left(k ; r_{T}\right)=\frac{3}{2} \sqrt{\tilde{N}_{k}^{(T)}} \cdot \tau_{w}\left(k ; r_{T}\right)
$$

where

$$
\tilde{N}_{k}^{(T)}=\left(\sum_{i} w_{i}\left(k ; r_{T}\right)\right)^{2} / \sum_{i} w_{i}^{2}\left(k ; r_{T}\right)
$$

- Under $H_{k, 0} \mathrm{~s}, \mathrm{Z}\left(k ; r_{T}\right) \mathrm{s}$ behave like standard normal distribution.
- Correct for multiple testing issue by either Bonferroni method, false discovery rate method or random field theory.

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

Overview

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

Multiple Channels

(Becker and Sherer, 2017)

Dynamical Colocalization

(Becker and Sherer, 2017)

Collaborative Team

Summary

- Colocalization analysis is wide used
- Quantitation in colocalization analysis
- Challenges in quantitative imaging

Thank you!

