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Seeing Is Believing

▶ High contrast
▶ High specificity (targeted

molecules)
▶ High throughput
▶ Quantitative (fluorescence

intensity, fluorescence lifetime
etc.)

▶ High resolution (∼ 20nm)
▶ Dynamic (monitoring

biological events for 24 hour)
▶ . . . . . .

[Zebrafish; Cutrale, F. et al., 2017]

[Drosophila; Chhetri, R.K. et al., 2015]
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Dual Chanel Fluoresence Imaging
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Colocalization

Interaction
between

bio-molecules

Binding
physically

Colocalization
between
channels

A B A B
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Qualitative v.s. Quantitative

Red + Green = Yellow?

▶ Subjective, susceptible to cross-talk, and etc.
▶ Time consuming, labor intensive
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Pixel Based Modeling

Xi

Yi

(Pioneered by Manders and Co., 1990s)
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Current Pipeline for Colocalization

Select region
of interest

Make
scatter plot

Calculate
colocalization

index:
r = −0.016

Evaluate
statistical

significance

(see, e.g., Bolte and Cordeliéres, 2006, Dunn et al., 2011)
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But

▶ How to choose region of interest?
▶ How to choose colocalization coefficient?
▶ How to evaluate statistical significance?
▶ How to do so in a computationally efficient way?

Our goal: a general statistical/computational framework for
colocalization that is
▶ Automated
▶ Statistically valid
▶ Computationally efficient
▶ Flexible and powerful
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Background or Signal?
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What are we measuring?

Pearson’s correlation coefficient: Manders’ colocalization coefficients:

r =
∑

i(Xi − X̄)(Yi − Ȳ)√∑
i(Xi − X̄)2∑

i(Yi − Ȳ)2
M1 =

∑
i XiI(Yi>0)∑

i Xi
,M2 =

∑
i YiI(Xi>0)∑

i Yi

Correlation: Co-occurrence:
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Colocalization as Tail Dependence

▶ Positively quadrant dependence (PQD, for short) (Lehmann, 1966):

P(X > x,Y > y) ≥ P(X > x)P(Y > y)

▶ Colocalization manifested as correlated co-occurrent signals:

co − occurence (V) : S(ηx, ηy)− S(ηx,−∞)S(−∞, τy)

correlation (T) : P
{
(X − X̃)(Y − Ỹ) > 0|X, X̃ > ηX;Y, Ỹ > ηY

}
−

P
{
(X − X̃)(Y − Ỹ) < 0|X, X̃ > ηX;Y, Ỹ > ηY

}
.

▶ Background vs signal:

F(x, y|x > ηx, y > ηy) = Fηx,ηy(x, y) ← PQD

14/39



Colocalization via Statistical Lens

C

(
Xi
Yi

)
, i ∈ I

▶ Assume each (Xi,Yi)
⊤ is drawn from a bivariate distribution.

▶ Without colocalization

(Xi,Yi) ∼ F0(x, y)︸ ︷︷ ︸
no PQD

▶ With colocalization

(Xi,Yi) ∼ F1(x, y)︸ ︷︷ ︸
exhibit PQD
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A Hypothesis Testing Approach to Colocalization

C

(
Xi
Yi

)
, i ∈ I

▶ Assume each (Xi,Yi)
⊤ is drawn from a bivariate distribution.

▶ Without colocalization

(Xi,Yi) ∼ F0(x, y)︸ ︷︷ ︸
no PQD

, ∀i

▶ With colocalization located at an unknown set C of pixels

(Xi,Yi) ∼ F1(x, y)︸ ︷︷ ︸
exhibit PQD

, ∀i ∈ C
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IF we know C, . . .

H0 : (Xi,Yi) ∼ F0 ∀i ∈ C vs H1 : (Xi,Yi) ∼ F1 ∀i ∈ C

▶ Positively quadrant dependent property implies

τH := E(sign(Xi − Xj)sign(Yi − Yj)) > 0.

Here τH is called Kendall tau correlation.
▶ Empirical version Kendall tau correlation is a good indicator of

correlation of H(x, y)

τ̂H :=
1

nC(nC − 1)
∑

i ̸=j∈C

sign(Xi − Xj)sign(Yi − Yj)

But we do not know C (or equivalently ηx and ηy)!
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Test for Conditional PQD
▶ Known ηx and ηy – conditioned and normalized Kendall’s tau

τ̂(η) =

{√
18

nη(nη−1)(2nη+5)
∑

i,j∈K(η):i<j sign(Xi − Xj)(Yi − Yj) nη > 1
−∞ nη ≤ 1

where K(η) = {i : Xi ≥ ηx,Yi ≥ ηy} and nη = |K(η)|.

▶ Unknown ηx and ηy,

τ∗ := max
Tx≥X(i),Ty≥Y(i):i,j≥⌊n/2⌋

τ̂(T)

▶ Test

ψT =

{
reject H0 if τ∗ > qα
accept H0 otherwise

19/39



Sampling Distribution Estimation

Statistical significance by permutation
test:
▶ Calculate τ∗app and record it as E0.
▶ For j = 1 : B, block-wise

randomly shuffle {Xi}i∈I with
block size D. Calculate τ∗app on
shuffled data and recorded it as
Ej.

▶ P-value: #{Ej > E0}/B

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

6 4 8

2 7 9

1 5 3
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Computational Consideration
Fast computation:

τ∗f := max
Tx=X(j),Ty=Y(k):j,k∈Rn

τ̂(T)

where

Rn :=

{
s : s =

⌊
n−

(
1 +

1
log log n

)j
⌋

j = 1, 2, . . . and s ≥ ⌊n/2⌋
}
.

1 n1

n

▶ τ∗f is faster to compute

τ∗ τ∗f
# τ̂(T) O(n2) O(log3 n)

▶ And just as powerful
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Does it work?

▶ Assume that {(Xi,Yi) : i ∈ I} (n := |I|) are independently sampled
from F obeying

sup
ηX,ηY

V(ηX, ηY) · T2(ηX, ηY)≫
log log n

n
.

Then ∆ is a consistent test in that we reject H0 in favor of H1 with
probability tending to one.

▶ Conversely, there exists a constant c > 0 such that for any α-level
test ∆ based on sample {(Xi,Yi) : i ∈ I}, there is an instance
where joint distribution function F obeying

sup
ηX,ηY

V(ηX, ηY) · T2(ηX, ηY) ≥ c log log n
n

and yet, we accept H0 with probability tending to 1− α as if H0
holds.
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Does it REALLY work?
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Where is Colocalization?

p = 0.092 p = 0
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Local Quantification of Colocalization

▶ Pixel-wise hypothesis:

Hk,0 : Fk ∈ F0 v.s. Hk,1 : Fk ∈ F1, k ∈ I

where Fk is the distribution of (Xk,Yk).

▶ Colocalization as tail dependence:

Hk,0 : Q(Fk; ηX, ηY) = 0

and

Hk,1 : Q(Fk; ηX, ηY) > 0.

for pre-specified ηX and ηY .
▶ Only one pair (Xk,Yk) available for

each pixel k.
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Local Quantification of Colocalization

Weighted Kendall tau’s correlation in a neighborhood B(k, r)

τw(k; r) :=
∑

i ̸=j wi(k; r)wj(k; r)sign(Xi − Xj)sign(Yi − Yj)∑
i ̸=j wi(k; r)wj(k; r)

B(k, r)

▶ Weight wi(k; r) is decomposed as

wi(k; r) = Kl

(
d(i, k)

r

)
Kb(Xi,Yi)

▶ Kl gives less weight to the pixel i
whose location is far from k.

▶ Kb(Xi,Yi) = 1(Xi>ηX)1(Yi>ηY) deals
with background.
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Propagation-Separation

wi(k; r0)
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. . .
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Multiscale Adaptive Test

▶ Test statistics for Hk,0 against Hk,1 is

Z(k; rT) =
3
2

√
Ñ(T)

k · τw(k; rT)

where

Ñ(T)
k =

(∑
i

wi(k; rT)

)2/∑
i

w2
i (k; rT).

▶ Under Hk,0s, Z(k; rT)s behave like standard normal distribution.
▶ Correct for multiple testing issue by either Bonferroni method,

false discovery rate method or random field theory.
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Example
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Multiple Channels

(Becker and Sherer, 2017)
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




Dynamical Colocalization

(Becker and Sherer, 2017)
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}




Collaborative Team
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Summary

▶ Colocalization analysis is wide used
▶ Quantitation in colocalization analysis
▶ Challenges in quantitative imaging
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Thank you!
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