Quantitation in Colocalization Analysis: Beyond "**Red**+Green=Yellow"

Ming Yuan

Department of Statistics Columbia University ming.yuan@columbia.edu http://www.columbia.edu/~my2550

(Joint work with Shulei Wang)

SEEING IS BELIEVING

- ► High contrast
- High specificity (targeted molecules)
- High throughput
- Quantitative (fluorescence intensity, fluorescence lifetime etc.)
- High resolution ($\sim 20nm$)
- Dynamic (monitoring biological events for 24 hour)

•

[Zebrafish; Cutrale, F. et al., 2017]

[Drosophila; Chhetri, R.K. et al., 2015]

What is Colocalization?

A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

What is Colocalization?

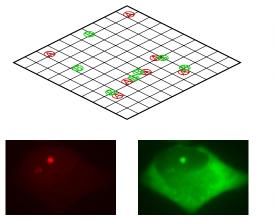
A Statistical View of Colocalization

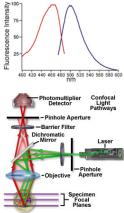
Global Assessment of Colocalization

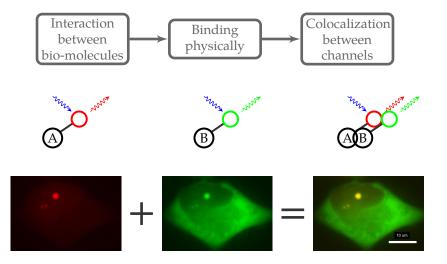
Local Identification of Cololization

Concluding Remarks

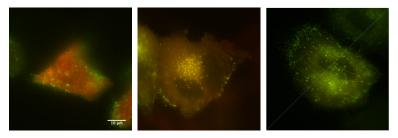
DUAL CHANEL FLUORESENCE IMAGING





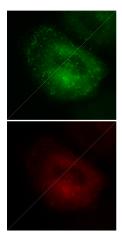


Red + Green = Yellow?



- ▶ Subjective, susceptible to cross-talk, and etc.
- ▶ Time consuming, labor intensive

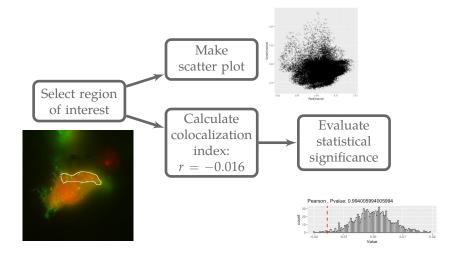
Pixel Based Modeling





(Pioneered by Manders and Co., 1990s)

CURRENT PIPELINE FOR COLOCALIZATION



(see, e.g., Bolte and Cordeliéres, 2006, Dunn et al., 2011)

- ► How to choose region of interest?
- ► How to choose colocalization coefficient?
- ▶ How to evaluate statistical significance?
- ▶ How to do so in a computationally efficient way?

Our goal: a general *statistical/computational* framework for colocalization that is

- Automated
- Statistically valid
- Computationally efficient
- ► Flexible and powerful

What is Colocalization?

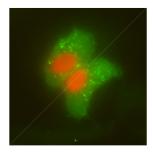
A Statistical View of Colocalization

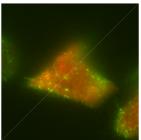
Global Assessment of Colocalization

Local Identification of Cololization

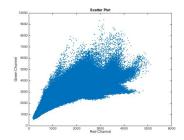
Concluding Remarks

BACKGROUND OR SIGNAL?

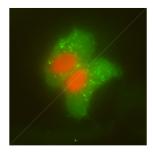


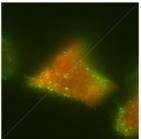


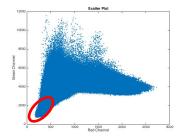


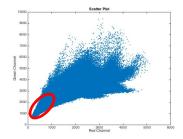


BACKGROUND OR SIGNAL?

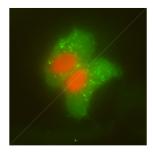


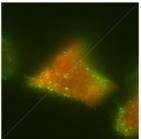


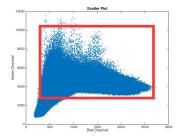


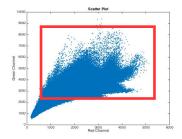


BACKGROUND OR SIGNAL?









Manders' colocalization coefficients:
$M_{1} = \frac{\sum_{i} X_{i} I_{(Y_{i} > 0)}}{\sum_{i} X_{i}}, M_{2} = \frac{\sum_{i} Y_{i} I_{(X_{i} > 0)}}{\sum_{i} Y_{i}}$
Co-occurrence:

COLOCALIZATION AS TAIL DEPENDENCE

Positively quadrant dependence (PQD, for short) (Lehmann, 1966):

$$\mathbb{P}(X > x, Y > y) \ge \mathbb{P}(X > x)\mathbb{P}(Y > y)$$

Colocalization manifested as correlated co-occurrent signals:

correlation (V):

$$S(\eta_x, \eta_y) - S(\eta_x, -\infty)S(-\infty, \tau_y)$$
correlation (T):

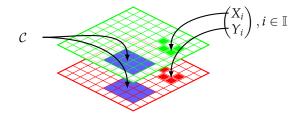
$$\mathbb{P}\left\{ (X - \tilde{X})(Y - \tilde{Y}) > 0 | X, \tilde{X} > \eta_X; Y, \tilde{Y} > \eta_Y \right\} -$$

$$\mathbb{P}\left\{ (X - \tilde{X})(Y - \tilde{Y}) < 0 | X, \tilde{X} > \eta_X; Y, \tilde{Y} > \eta_Y \right\}.$$

Background vs signal:

$$F(x, y|x > \eta_x, y > \eta_y) = F_{\eta_x, \eta_y}(x, y) \quad \leftarrow PQD$$

COLOCALIZATION VIA STATISTICAL LENS



Assume each (X_i, Y_i)[⊤] is drawn from a bivariate distribution.
 Without colocalization

$$(X_i, Y_i) \sim \underbrace{F_0(x, y)}_{\text{no } PQD}$$

With colocalization

$$(X_i, Y_i) \sim \underbrace{F_1(x, y)}_{\text{exhibit PQL}}$$

What is Colocalization?

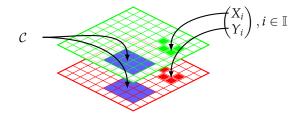
A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

A Hypothesis Testing Approach to Colocalization



Assume each (X_i, Y_i)[⊤] is drawn from a bivariate distribution.
 Without colocalization

$$(X_i, Y_i) \sim \underbrace{F_0(x, y)}_{\text{no PQD}}, \quad \forall i$$

▶ With colocalization located at an *unknown* set *C* of pixels

$$(X_i, Y_i) \sim \underbrace{F_1(x, y)}_{\text{exhibit } PQD}, \quad \forall i \in C$$

 $H_0: (X_i, Y_i) \sim F_0 \quad \forall i \in \mathcal{C} \qquad \text{vs} \qquad H_1: (X_i, Y_i) \sim F_1 \quad \forall i \in \mathcal{C}$

Positively quadrant dependent property implies

$$\tau_H := \mathbb{E}(\operatorname{sign}(X_i - X_j)\operatorname{sign}(Y_i - Y_j)) > 0.$$

Here τ_H is called *Kendall tau correlation*.

 Empirical version Kendall tau correlation is a good indicator of correlation of H(x, y)

$$\widehat{\tau}_H := \frac{1}{n_{\mathcal{C}}(n_{\mathcal{C}} - 1)} \sum_{i \neq j \in \mathcal{C}} \operatorname{sign}(X_i - X_j) \operatorname{sign}(Y_i - Y_j)$$

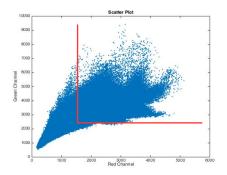
But we do *not* know C (or equivalently η_x and η_y)!

Test for Conditional PQD

▶ Known η_x and η_y – *conditioned and normalized* Kendall's tau

$$\widehat{\tau}(\eta) = \begin{cases} \sqrt{\frac{18}{n_{\eta}(n_{\eta}-1)(2n_{\eta}+5)}} \sum_{i,j \in \mathcal{K}(\eta): i < j} \operatorname{sign}(X_i - X_j)(Y_i - Y_j) & n_{\eta} > 1\\ -\infty & n_{\eta} \le 1 \end{cases}$$

where $\mathcal{K}(\eta) = \{i : X_i \ge \eta_x, Y_i \ge \eta_y\}$ and $n_\eta = |\mathcal{K}(\eta)|$.



Unknown η_x and η_y,
 τ^{*} := max (T_x≥X_(i), T_y≥Y_(i):i,j≥⌊n/2⌋ τ̂(T)
 Test
 ψ_T = { reject H₀ if τ^{*} > q_α accept H₀ otherwise

Statistical significance by permutation test:

- Calculate τ_{app}^* and record it as E_0 .
- ► For j = 1 : B, block-wise randomly shuffle $\{X_i\}_{i \in \mathbb{I}}$ with block size *D*. Calculate τ^*_{app} on shuffled data and recorded it as E_j .
- ▶ *P*-value: $\#{E_j > E_0}/B$

7	0			7	0	0	
7	8	9		7	8	9	
4	5	6		4	5	6	
1	2	3		1	2	3	
Ļ							
7	8	9		1	5	3	
4	5	6		2	7	9	
	9	Ŭ.				- ⁻	

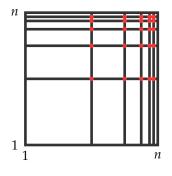
COMPUTATIONAL CONSIDERATION

Fast computation:

$$\tau_f^* := \max_{T_x = X_{(j)}, T_y = Y_{(k)}: j, k \in \mathcal{R}_n} \widehat{\tau}(T)$$

where

$$\mathcal{R}_n := \left\{ s : s = \left\lfloor n - \left(1 + \frac{1}{\log \log n}\right)^j \right\rfloor j = 1, 2, \dots \text{ and } s \ge \lfloor n/2 \rfloor \right\}.$$



τ_f^{*} is faster to compute
 τ^{} τ_f*^{*}
 # τ̂(*T*) *O*(*n*²) *O*(log³ *n*)
 And just as powerful

► Assume that $\{(X_i, Y_i) : i \in \mathbb{I}\}$ $(n := |\mathbb{I}|)$ are *independently* sampled from *F* obeying

$$\sup_{\eta_X,\eta_Y} V(\eta_X,\eta_Y) \cdot T^2(\eta_X,\eta_Y) \gg \frac{\log \log n}{n}$$

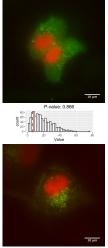
Then Δ is a consistent test in that we reject H_0 in favor of H_1 with probability tending to one.

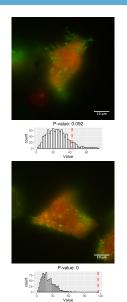
Conversely, there exists a constant c > 0 such that for any α-level test ∆ based on sample {(X_i, Y_i) : i ∈ I}, there is an instance where joint distribution function F obeying

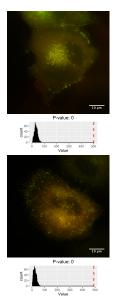
$$\sup_{\eta_X,\eta_Y} V(\eta_X,\eta_Y) \cdot T^2(\eta_X,\eta_Y) \ge c \frac{\log \log n}{n}$$

and yet, we accept H_0 with probability tending to $1 - \alpha$ as if H_0 holds.

DOES IT REALLY WORK?







What is Colocalization?

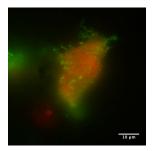
A Statistical View of Colocalization

Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

WHERE IS COLOCALIZATION?



$$p = 0$$

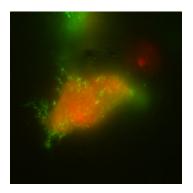
10 µm

$$p = 0.092$$

LOCAL QUANTIFICATION OF COLOCALIZATION

► Pixel-wise hypothesis:

 $H_{k,0}: F_k \in \mathcal{F}_0$ v.s. $H_{k,1}: F_k \in \mathcal{F}_1, \quad k \in \mathbb{I}$ where F_k is the distribution of (X_k, Y_k) .



Colocalization as tail dependence:

$$H_{k,0}:Q(F_k;\eta_X,\eta_Y)=0$$

and

$$H_{k,1}:Q(F_k;\eta_X,\eta_Y)>0.$$

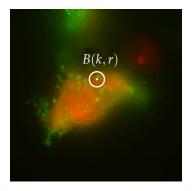
for pre-specified η_X and η_Y .

• Only one pair (X_k, Y_k) available for each pixel *k*.

LOCAL QUANTIFICATION OF COLOCALIZATION

Weighted Kendall tau's correlation in a neighborhood B(k, r)

$$\tau_w(k;r) := \frac{\sum_{i \neq j} w_i(k;r) w_j(k;r) \operatorname{sign}(X_i - X_j) \operatorname{sign}(Y_i - Y_j)}{\sum_{i \neq j} w_i(k;r) w_j(k;r)}$$

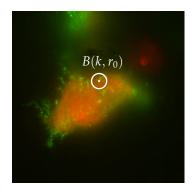


• Weight $w_i(k; r)$ is decomposed as

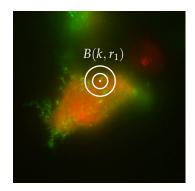
$$w_i(k;r) = \mathbf{K}_l\left(\frac{d(i,k)}{r}\right)\mathbf{K}_b(X_i,Y_i)$$

- ► **K**_{*l*} gives less weight to the pixel *i* whose location is far from *k*.
- $\mathbf{K}_b(X_i, Y_i) = \mathbf{1}_{(X_i > \eta_X)} \mathbf{1}_{(Y_i > \eta_Y)}$ deals with background.

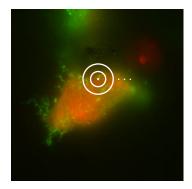
 $w_i(k;r_0)$ \downarrow $\tau_w(k;r_0)$



 $w_i(k;r_0)$ $w_i(k;r_1)$



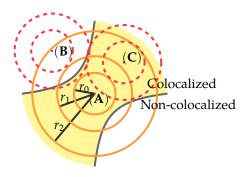
 $w_i(k;r_0)$ $w_i(k;r_1)$



 $w_i(k;r_0)$ $w_i(k;r_1)$ $w_i(k;r_s)$



 $w_i(k; r_0)$ $w_i(k; r_1)$ $w_i(k; r_s)$



• Test statistics for $H_{k,0}$ against $H_{k,1}$ is

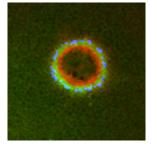
$$Z(k;r_T) = \frac{3}{2}\sqrt{\tilde{N}_k^{(T)}} \cdot \tau_w(k;r_T)$$

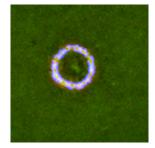
where

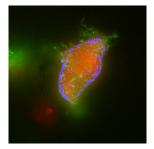
$$\tilde{N}_k^{(T)} = \left(\sum_i w_i(k; r_T)\right)^2 / \sum_i w_i^2(k; r_T).$$

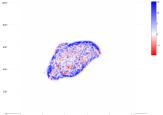
• Under $H_{k,0}$ s, $Z(k; r_T)$ s behave like standard normal distribution.

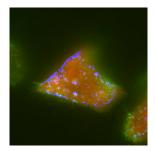
 Correct for multiple testing issue by either Bonferroni method, false discovery rate method or random field theory.

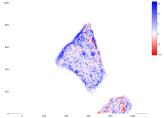


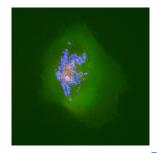


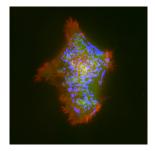


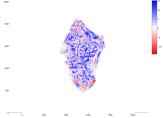


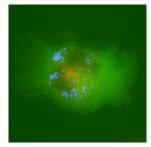


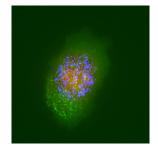


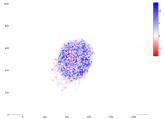












What is Colocalization?

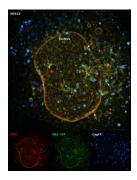
A Statistical View of Colocalization

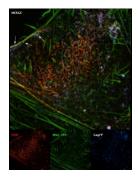
Global Assessment of Colocalization

Local Identification of Cololization

Concluding Remarks

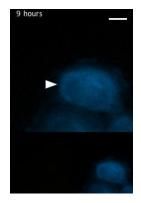
$Multiple \ Channels$





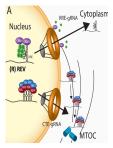
(Becker and Sherer, 2017)

Dynamical Colocalization



(Becker and Sherer, 2017)

Collaborative Team



- ► Colocalization analysis is wide used
- Quantitation in colocalization analysis
- Challenges in quantitative imaging

Thank you!