High Dimensional (Inverse) Covariance Matrix

Estimation

Ming Yuan

School of Industrial and Systems Engineering
Georgia Institute of Technology
myuan@isye.gatech.edu
http://www.isye.gatech.edu/~myuan

Outline

- What - High dimensional covariance matrix estimation and its challenges
- How - Sparsity and graphical models
- Estimating high dimensional inverse covariance matrix
- Oracle inequality and adaptivity
- Examples - Gene regulatory networks; Gene set co-expression

Covariance Matrix Estimation

Classical Paradigm

- Problem setup
- Data - a sample of n independent copies $X^{(1)}, \ldots, X^{(n)}$ of a r.v. $X \in \mathbb{R}^{d \times 1}$
- Covariance matrix $-\operatorname{cov}(X)=\mathbb{E}\left((X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\top}\right)$
- Traditional Estimate
- Sample covariance matrix

$$
\hat{\Sigma}^{\text {Sample }}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{\top}
$$

- Maximum likelihood estimate

$$
\hat{\Sigma}^{\mathrm{MLE}}=\frac{1}{n} \sum_{i=1}^{n}\left(X^{(i)}-\bar{X}\right)\left(X^{(i)}-\bar{X}\right)^{\top}
$$

- (Asymptotic) Properties
- One of main subjects in multivariate data analysis (e.g., Anderson, 2002; Muirhead, 2005)
- Well understood when d is fixed - Wishart distribution

High Dimensional Problems

- Classical asymptotic theory: number of parameters d fixed whereas sample size $n \rightarrow \infty$
- Modern applications: both d and n may be large
- Science - e.g., High throughput gene expression studies, $d \sim 10^{4}$ and $n \sim 10^{2}$
- Finance - e.g., Common stocks, $d \approx 6000$ and $n \approx 200$
- Engineering - e.g., Image analysis, Speech recognition

Challenges of High Dimensionality

- Sample size $n=50$
- Dimensionality $d=2,2^{2}, \ldots, 2^{10}$

(a) $\left\|\hat{\Sigma}^{\text {Sample }}-\Sigma\right\|$

(b) $\lambda_{\max }\left(\hat{\Sigma}^{\text {Sample }}\right)$

(c) $\theta\left(\nu_{1}, \hat{\nu}_{1}\right)$

How to Handle High Dimensionality

- Not all problems are solvable
- An arbitrary $d \times d$ covariance matrix involves $d(d+1) / 2$ parameters
- Parameter reduction through sparsity
- High ambient dimension; low intrinsic dimension
- Under a certain parametrization, only a small but unknown subset of parameters are nonzero
- Sparse problems might be tractable
- Conceptually - What kind of sparsity
- Methodologically - How to exploit sparsity
- Theoretically - How sparse

Sparsity in Covariance Matrices

Sparsity Type - Sparse Cholesky factors

- One of the earliest work on sparse covariance matrix estimation (Huang et al., 2006)
- Based on modified Cholesky decomposition for time series analysis (Pourahmadi, 1999; 2000)
- Modified Cholesky decomposition $-L \Sigma L^{\top}=D$
- L is lower triangular with ones on the diagonal, D is diagonal
- Regression interpretation

$$
X_{i}=-\sum_{j<i} L_{i j} X_{j}+\epsilon_{i} \quad \operatorname{cov}(\epsilon)=D
$$

- Imposing sparsity on L - Lasso (Tibshirani, 1996) and other variants

Sparsity Type - Sparse Covariance Matrices

- Pioneered by Bickel and Levina (2008a), also motivated by time series setting
- "Bandable" covariance matrices
- Banded covariance matrix - $\sigma_{i j}=0$ if $|i-j| \geq k$
- Approximately banded covariance matrix - i.e., $\sigma_{i j} \sim|i-j|^{-\alpha}$
- Most well-understood
- Methods - banding (Bickel and Levina, 2008a), tapering (Cai, Zhang and Zhou, 2010), block thresholding (Cai and Yuan, 2011), ...
- Theory - minimax optimality (Cai, Zhang and Zhou, 2010), adaptivity (Cai and Yuan, 2011)
- Generalizations - covariance matrix with many zero entries (Bickel and Levina, 2008b; Cai and Zhou, 2010)

Our focus here - Sparse inverse covariance matrix

Undirected Graphical Model

- $X_{\mathcal{V}}$ is represented by an undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$
- $\mathcal{V}=\{1,2,3,4,5,6\}$ contains vertices corresponding to the random variables
- the edges $\mathcal{E}=\{(1,2),(1,3), \ldots,(5,6)\}$
- Factorization of probability distribution

$$
p\left(\mathbf{x}_{\mathcal{V}}\right)=\psi_{12}\left(x_{1}, x_{2}\right) \psi_{13}\left(x_{1}, x_{3}\right) \psi_{24}\left(x_{2}, x_{4}\right) \psi_{25}\left(x_{2}, x_{5}\right) \psi_{26}\left(x_{2}, x_{6}\right) \psi_{35}\left(x_{3}, x_{5}\right) \psi_{56}\left(x_{5}, x_{6}\right)
$$

- Conditional independence, e.g.,

$$
X_{2} \perp X_{3} \mid X_{1}, X_{4}, X_{5}, X_{6}
$$

Gaussian Graphical Model

- Under Normality - $X=\left(X_{1}, \ldots, X_{d}\right) \sim \mathcal{N}_{d}(\mu, \Sigma)$

$$
\begin{aligned}
p\left(\mathbf{x}_{\mathcal{V}}\right) & =(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2} \exp \left\{-\sum_{i, j} \sigma^{i j}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) / 2\right\} \\
& =(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2} \prod_{(i, j): \sigma^{i j} \neq 0} \exp \left\{-\sigma^{i j}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) / 2\right\}
\end{aligned}
$$

- Graphical model underlying X implies sparsity in the inverse covariance matrix

$$
\Sigma^{-1}=\left[\begin{array}{cccccc}
\sigma^{11} & \sigma^{12} & \sigma^{13} & 0 & 0 & 0 \\
\sigma^{21} & \sigma^{22} & 0 & \sigma^{24} & \sigma^{25} & \sigma^{26} \\
\sigma^{31} & 0 & \sigma^{33} & 0 & \sigma^{35} & 0 \\
0 & \sigma^{42} & 0 & \sigma^{44} & 0 & 0 \\
0 & \sigma^{52} & \sigma^{53} & 0 & \sigma^{55} & \sigma^{56} \\
0 & \sigma^{62} & 0 & 0 & \sigma^{65} & \sigma^{66}
\end{array}\right]
$$

Sparsity and Graph

- Complexity of graphs

$$
\operatorname{deg}(\Sigma)=\operatorname{deg}(\mathcal{G})=\max _{i} \sum_{j \neq i} \mathbf{I}\left(\sigma^{i j} \neq 0\right)
$$

- Type of sparsity
- Sparse graph - Σ corresponds to a "low" degree graph

$$
\operatorname{deg}(\Sigma)<s
$$

- Approximately sparse graph $-\Sigma$ can be "approximated" by the first type

$$
\max _{1 \leq i \leq d} \sum_{j=1}^{d}\left|\sigma^{i j}\right|^{\alpha} \leq M \quad(0<\alpha<1)
$$

Exploiting Sparsity

Earlier Attempt - Graphical Lasso

- Penalized likelihood

$$
\max _{\Sigma \succ 0} \ell(\Sigma) \quad \text { subject to } \quad \sum_{i<j} \mathbf{I}\left(\sigma^{i j} \neq 0\right) \leq M
$$

- Convex relaxation

$$
\sum_{i<j}\left|\sigma^{i j}\right| \leq M^{\prime}
$$

- A lot of interests since its introduction (Yuan and Lin, 2007)
- Slightly different version considered by Banerjee et al. (2008)
- Efficient algorithm proposed by Friedman et al. (2008)
- Some theory given by Ravikumar et al. (2009)
- Improves $\hat{\Sigma}^{\text {Sample }}$ but ...

Pivotal Estimator?

- Modifying an "initial" estimate
- For covariance matrix - sample covariance matrix
- Initial estimate has some good properties

$$
\left\|\hat{\Sigma}^{\text {Sample }}-\Sigma\right\|_{\max }:=\max _{i, j}\left|\hat{\sigma}_{i j}^{\text {Sample }}-\sigma_{i j}\right|=O_{p}\left(\sqrt{\frac{\log d}{n}}\right)
$$

- What about inverse covariance matrix $-\hat{\Sigma}^{-}$? Not good

Inverse Covariance Matrix

- Conditional distribution

$$
X_{1} \mid X_{-1} \sim \mathcal{N}\left(\mu_{1}+\Sigma_{1,-1} \Sigma_{-1,-1}^{-1}\left(X_{-1}-\mu_{-1}\right), \Sigma_{11}-\Sigma_{1,-1} \Sigma_{-1,-1}^{-1} \Sigma_{-1,1}\right)
$$

- Inverse covariance matrix $-\Omega=\Sigma^{-1}$

$$
\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\overbrace{\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}}^{\Omega_{11}} & -\Omega_{11} \Sigma_{12} \Sigma_{22}^{-1} \\
-\Sigma_{22}^{-1} \Sigma_{21} \Omega_{11} & *
\end{array}\right)
$$

- Connection

$$
\begin{aligned}
\operatorname{Var}\left(X_{1} \mid X_{-1}\right) & =\Omega_{11}^{-1} \\
\mathbb{E}\left(X_{1} \mid X_{-1}\right) & =\left(\mu_{1}+\Sigma_{1,-1} \Sigma_{-1,-1}^{-1}\left(X_{-1}-\mu_{-1}\right)\right)-X_{-1}^{\top} \Omega_{-1,1} / \Omega_{11}
\end{aligned}
$$

Multivariate Linear Regression

$$
X_{i} \mid X_{-i} \sim \mathcal{N}\left(\mu_{i}+\Sigma_{i,-i} \Sigma_{-i,-i}^{-1}\left(X_{-i}-\mu_{-i}\right), \Sigma_{i i}-\Sigma_{i,-i} \Sigma_{-i,-i}^{-1} \Sigma_{-i, i}\right) .
$$

- Linear regression $-X_{i} \sim X_{-i}$:

$$
X_{i}=\alpha_{i}+X_{-i}^{\top} \theta_{(i)}+e_{i}
$$

- Intercept

$$
\alpha_{i}=\mu_{i}-\Sigma_{i,-i} \Sigma_{-i,-i}^{-1} \mu_{-i}
$$

- Coefficient

$$
\theta_{(i)}=\Sigma_{-i,-i}^{-1} \Sigma_{-i, i}=-\Omega_{-i, i} / \Omega_{i i}
$$

- Variance of idiosyncratic noise

$$
\operatorname{Var}\left(e_{i}\right)=\Sigma_{i i}-\Sigma_{i,-i} \Sigma_{-i,-i}^{-1} \Sigma_{-i, i}=\Omega_{i i}^{-1}
$$

Taking advantage of Sparsity

- Translation of sparsity of Ω to regression coefficients

$$
\left\|\theta_{(i)}\right\|_{\ell_{0}}=\left\|\Sigma_{-i, i}\right\|_{\ell_{0}} \leq \operatorname{deg}(\Omega)
$$

- Exploit regression sparsity
- Lasso (Tibshirani, 1996)

$$
\left\|X_{i}-\left(\alpha+X_{-i}^{\top} \theta\right)\right\|^{2}+\lambda\|\theta\|_{\ell_{1}} \mapsto \min
$$

- Dantzig selector (Candès and Tao, 2007)

$$
\min \|\theta\|_{\ell_{1}} \quad \text { subject to } \quad\left\|\left(X_{-i}-\mu_{-i}\right)^{\top}\left(X_{i}-\mu_{i}\right)\right\|_{\ell_{\infty}} \leq \delta
$$

Useful or not

- The obvious - Not working
- Not symmetric
- Often "dismissed" as a candidate estimate
- May expect θ to be a good estimate, but what about Ω ?
- The less obvious - Not all bad
- $\tilde{\Omega}$ is "close" to Ω in terms of matrix ℓ_{1} norm
- Some improvement may lead to better estimates

$$
\hat{\Omega}=\underset{\Omega \succeq 0}{\operatorname{argmin}}\|\Omega-\tilde{\Omega}\|_{\ell_{1}}
$$

Theory

Graphical Models

$$
\operatorname{deg}(\Omega)<s
$$

- Tuning

$$
\delta \sim\left(n^{-1} \log d\right)^{1 / 2}
$$

- Closeness in matrix ℓ_{1} norm - with overwhelming probability

$$
\sup _{\Omega_{0} \in \mathcal{M}(s)}\left\|\hat{\Omega}-\Omega_{0}\right\|_{\ell_{1}} \sim s \sqrt{\frac{\log d}{n}}
$$

- Optimality

$$
\inf _{\bar{\Omega}(\operatorname{data})} \sup _{\Omega_{0} \in \mathcal{M}(s)} \mathbb{E}\left\|\bar{\Omega}-\Omega_{0}\right\|_{\ell_{1}} \geq C s \sqrt{\frac{\log d}{n}}
$$

Other Matrix Norms

- Matrix ℓ_{∞} norm $-\|A\|_{\ell_{\infty}}=\|A\|_{\ell_{1}}$ for symmetric A

$$
\sup _{\Omega_{0} \in \mathcal{M}(s)}\left\|\hat{\Omega}-\Omega_{0}\right\|_{\ell_{\infty}} \sim s \sqrt{\frac{\log d}{n}}
$$

- Bounding spectral norm - for symmetric A

$$
\|A\|_{\ell_{2}}^{2} \leq\|A\|_{\ell_{1}}\|A\|_{\ell_{\infty}}=\|A\|_{\ell_{1}}^{2}
$$

- Therefore

$$
\sup _{\Omega_{0} \in \mathcal{M}(s)}\left\|\hat{\Omega}-\Omega_{0}\right\|_{\ell_{2}} \sim s \sqrt{\frac{\log d}{n}}
$$

Estimability and Sparsity

- When $\operatorname{deg}(\mathcal{G})=o\left(n^{1 / 2} \log ^{-1 / 2} d\right), \Omega$ or Σ can be "consistently" estimated

$$
\|\hat{\Sigma}-\Sigma\|_{\ell_{q}},\|\hat{\Omega}-\Omega\|_{\ell_{q}}=O_{p}\left(s \sqrt{\frac{\log d}{n}}\right)
$$

- If $\operatorname{deg}(\mathcal{G}) \gg n^{1 / 2} \log ^{-1 / 2} d, \Omega$ or Σ can not be "consistently" estimated

$$
n \gg s^{2} \log d
$$

- Impact of gene set size (d) is less significant than the connectivity (s)
- More samples are necessary if there is a "hub" gene

Beyond Graphical Models

$$
\left\|\hat{\Omega}-\Omega_{0}\right\|_{\ell_{q}} \leq C \inf _{\Omega}\left(\left\|\Omega-\Omega_{0}\right\|_{\ell_{1}}+\beta_{n}(\Omega, \delta)\right)
$$

- Sparsity bound
- If

$$
\delta \sim\left(n^{-1} \log d\right)^{1 / 2}
$$

- Then

$$
\beta_{n}(\Omega, \delta)=\operatorname{deg}(\Omega) \delta
$$

- Matrix norm $-\ell_{1}, \ell_{2}$ and ℓ_{∞}
- Example - Take $\Omega=\Omega_{0}$ for graphical models

Adaptivity - Approximate Sparsity

$$
\sum_{j=1}^{d}\left|\Omega_{i j}\right|^{\alpha} \leq M
$$

- Construct an approximation to Ω

$$
\bar{\Omega}_{i j}=\Omega_{i j} \mathbf{1}\left(\left|\Omega_{i j}\right|>\zeta\right)
$$

- Tuning

$$
\delta \sim \sqrt{\frac{\log d}{n}}
$$

- Applying oracle inequality - matrix ℓ_{1}, ℓ_{2} and ℓ_{∞} norms

$$
\sup _{\Omega_{0} \in \mathcal{M}(\alpha, M)}\left\|\hat{\Omega}-\Omega_{0}\right\|_{\ell_{q}} \sim M\left(\frac{\log d}{n}\right)^{\frac{1-\alpha}{2}}
$$

- Optimality

$$
\inf _{\bar{\Omega}} \sup _{\Omega_{0} \in \mathcal{M}(\alpha, M)} \mathbb{P}\left\{\left\|\bar{\Omega}-\Omega_{0}\right\|_{\ell_{1}} \geq C M\left(\frac{\log d}{n}\right)^{\frac{1-\alpha}{2}}\right\}>0
$$

Numerical Experiments

Gene/Tissue Network

- 13,182 publicly available microarray samples from Affymetrixs HGU133a platform
- Downloaded from GEO and Array Express
- Contains 2,717 tissue types
- 22,283 probes $\Longrightarrow 12,719$ genes

Gene Set Differential Co-Expression

Differential Co-expression

- Lung cancer data (Beer et al., 2002)
- Tumor tissue (86)
- Normal tissue (44)
- Gene set definition (Choi and Kendziorski, 2009)
- GO categories (3471)
- KEGG pathways (178)
- Size ranging from 3 to 3703
- Preliminary "analysis"
- Inverse covariance matrices estimated
- Distance in terms of spectral norm used as statistics
- Normalized with $s\left(n^{-1} \log d\right)^{1 / 2}$

(a) Regulation of DNA Binding (GO:0051101; 23)

(b) Immune System Development (GO:0002520; 76)

Conclusions

- When it comes to high dimensional (inverse) covariance matrix estimation, sparse problems are more manageable
- Sparsity of covariance matrix can be exploited in multiple ways, with inverse covariance matrix connected with graphical models
- Taking advantage of the connection between multivariate normal and multivariate linear regression, a computationally feasible approach is proposed to harness sparsity in inverse covariance matrix
- The proposed approach can effectively and adaptively recover "approximately" sparse inverse covariance matrices
- Although focusing on multivariate normal, marginal subgaussianity is sufficient
- (Inverse) covariance matrix estimation is often not the ultimate goal of statistical analysis.

Further research is needed in understanding its role in procedures such as PCA, LDA and etc.

