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OUTLINE

• What – High dimensional covariance matrix estimation and its challenges

• How – Sparsity and graphical models

▶ Estimating high dimensional inverse covariance matrix

▶ Oracle inequality and adaptivity

• Examples – Gene regulatory networks; Gene set co-expression
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COVARIANCE MATRIX ESTIMATION
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CLASSICAL PARADIGM

• Problem setup

▶ Data – a sample of n independent copies X(1), . . . , X(n) of a r.v. X ∈ Rd×1

▶ Covariance matrix – cov(X) = E((X − E(X))(X − E(X))T)

• Traditional Estimate

▶ Sample covariance matrix

Σ̂Sample =
1

n− 1

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T

▶ Maximum likelihood estimate

Σ̂MLE =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T

• (Asymptotic) Properties

▶ One of main subjects in multivariate data analysis (e.g., Anderson, 2002; Muirhead, 2005)

▶ Well understood when d is fixed – Wishart distribution
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HIGH DIMENSIONAL PROBLEMS

• Classical asymptotic theory: number of parameters d fixed whereas sample size n → ∞

• Modern applications: both d and n may be large

▶ Science – e.g., High throughput gene expression studies, d ∼ 104 and n ∼ 102

▶ Finance – e.g., Common stocks, d ≈ 6000 and n ≈ 200

▶ Engineering – e.g., Image analysis, Speech recognition
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CHALLENGES OF HIGH DIMENSIONALITY

• Sample size n = 50

• Dimensionality d = 2, 22, . . . , 210
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HOW TO HANDLE HIGH DIMENSIONALITY

• Not all problems are solvable

▶ An arbitrary d× d covariance matrix involves d(d+ 1)/2 parameters

• Parameter reduction through sparsity

▶ High ambient dimension; low intrinsic dimension

▶ Under a certain parametrization, only a small but unknown subset of parameters are

nonzero

• Sparse problems might be tractable

▶ Conceptually – What kind of sparsity

▶ Methodologically – How to exploit sparsity

▶ Theoretically – How sparse
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SPARSITY IN COVARIANCE MATRICES
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SPARSITY TYPE – SPARSE CHOLESKY FACTORS

• One of the earliest work on sparse covariance matrix estimation (Huang et al., 2006)

• Based on modified Cholesky decomposition for time series analysis (Pourahmadi, 1999; 2000)

▶ Modified Cholesky decomposition – LΣLT = D

▶ L is lower triangular with ones on the diagonal, D is diagonal

▶ Regression interpretation

Xi = −
∑
j<i

LijXj + ϵi cov(ϵ) = D

• Imposing sparsity on L – Lasso (Tibshirani, 1996) and other variants
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SPARSITY TYPE – SPARSE COVARIANCE MATRICES

• Pioneered by Bickel and Levina (2008a), also motivated by time series setting

• “Bandable” covariance matrices

▶ Banded covariance matrix – σij = 0 if |i− j| ≥ k

▶ Approximately banded covariance matrix – i.e., σij ∼ |i− j|−α

• Most well-understood

▶ Methods – banding (Bickel and Levina, 2008a), tapering (Cai, Zhang and Zhou, 2010),

block thresholding (Cai and Yuan, 2011), ...

▶ Theory – minimax optimality (Cai, Zhang and Zhou, 2010), adaptivity (Cai and Yuan, 2011)

▶ Generalizations – covariance matrix with many zero entries (Bickel and Levina, 2008b; Cai

and Zhou, 2010)

Our focus here – Sparse inverse covariance matrix
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UNDIRECTED GRAPHICAL MODEL

• XV is represented by an undirected graph G(V, E)
▶ V = {1, 2, 3, 4, 5, 6} contains vertices corresponding to the random variables

▶ the edges E = {(1, 2), (1, 3), . . . , (5, 6)}

• Factorization of probability distribution

p(xV) = ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ25(x2, x5)ψ26(x2, x6)ψ35(x3, x5)ψ56(x5, x6)

• Conditional independence, e.g.,

X2 ⊥ X3

∣∣X1, X4,X5,X6
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GAUSSIAN GRAPHICAL MODEL

• Under Normality – X = (X1, . . . , Xd) ∼ Nd(µ,Σ)

p(xV) = (2π)
−d/2 |Σ|−1/2 exp

−
∑
i,j

σij(xi − µi)(xj − µj)/2


= (2π)

−d/2 |Σ|−1/2
∏

(i,j):σij ̸=0

exp
{
−σij(xi − µi)(xj − µj)/2

}
• Graphical model underlying X implies sparsity in the inverse covariance matrix

Σ−1 =



σ11 σ12 σ13 0 0 0

σ21 σ22 0 σ24 σ25 σ26

σ31 0 σ33 0 σ35 0

0 σ42 0 σ44 0 0

0 σ52 σ53 0 σ55 σ56

0 σ62 0 0 σ65 σ66


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SPARSITY AND GRAPH

• Complexity of graphs

deg(Σ) = deg(G) = max
i

∑
j ̸=i

I(σij ̸= 0)

• Type of sparsity

▶ Sparse graph – Σ corresponds to a “low” degree graph

deg(Σ) < s

▶ Approximately sparse graph – Σ can be “approximated” by the first type

max
1≤i≤d

d∑
j=1

∣∣σij
∣∣α ≤ M (0 < α < 1)
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EXPLOITING SPARSITY
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EARLIER ATTEMPT – GRAPHICAL LASSO

• Penalized likelihood

max
Σ≻0

ℓ(Σ) subject to
∑
i<j

I(σij ̸= 0) ≤ M

• Convex relaxation ∑
i<j

|σij | ≤ M ′
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• A lot of interests since its introduction (Yuan and Lin, 2007)

• Slightly different version considered by Banerjee et al. (2008)

• Efficient algorithm proposed by Friedman et al. (2008)

• Some theory given by Ravikumar et al. (2009)

• Improves Σ̂Sample but ...
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PIVOTAL ESTIMATOR?

• Modifying an “initial” estimate

▶ For covariance matrix – sample covariance matrix

▶ Initial estimate has some good properties

∥Σ̂Sample − Σ∥max := max
i,j

∣∣∣σ̂Sample
ij − σij

∣∣∣ = Op

(√
log d

n

)

• What about inverse covariance matrix – Σ̂−? Not good
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INVERSE COVARIANCE MATRIX

• Conditional distribution

X1|X−1 ∼ N
(
µ1 +Σ1,−1Σ

−1
−1,−1(X−1 − µ−1),Σ11 − Σ1,−1Σ

−1
−1,−1Σ−1,1

)
.

• Inverse covariance matrix – Ω = Σ−1

 Σ11 Σ12

Σ21 Σ22

−1

=


Ω11︷ ︸︸ ︷(

Σ11 − Σ12Σ
−1
22 Σ21

)−1 −Ω11Σ12Σ
−1
22

−Σ−1
22 Σ21Ω11 ∗


• Connection

Var(X1|X−1) = Ω−1
11

E(X1|X−1) =
(
µ1 +Σ1,−1Σ

−1
−1,−1(X−1 − µ−1)

)
−XT

−1Ω−1,1/Ω11
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MULTIVARIATE LINEAR REGRESSION

Xi|X−i ∼ N
(
µi +Σi,−iΣ

−1
−i,−i(X−i − µ−i),Σii − Σi,−iΣ

−1
−i,−iΣ−i,i

)
.

• Linear regression – Xi ∼ X−i:

Xi = αi +XT
−iθ(i) + ei

▶ Intercept

αi = µi − Σi,−iΣ
−1
−i,−iµ−i

▶ Coefficient

θ(i) = Σ−1
−i,−iΣ−i,i = −Ω−i,i/Ωii

▶ Variance of idiosyncratic noise

Var(ei) = Σii − Σi,−iΣ
−1
−i,−iΣ−i,i = Ω−1

ii
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TAKING ADVANTAGE OF SPARSITY

• Translation of sparsity of Ω to regression coefficients

∥θ(i)∥ℓ0 = ∥Σ−i,i∥ℓ0 ≤ deg(Ω)

• Exploit regression sparsity

▶ Lasso (Tibshirani, 1996)∥∥Xi − (α+XT
−iθ)

∥∥2 + λ∥θ∥ℓ1 7→ min

▶ Dantzig selector (Candès and Tao, 2007)

min ∥θ∥ℓ1 subject to ∥(X−i − µ−i)
T(Xi − µi)∥ℓ∞ ≤ δ
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USEFUL OR NOT

• The obvious – Not working

▶ Not symmetric

▶ Often “dismissed” as a candidate estimate

▶ May expect θ to be a good estimate, but what about Ω?

• The less obvious – Not all bad

▶ Ω̃ is “close” to Ω in terms of matrix ℓ1 norm

▶ Some improvement may lead to better estimates

Ω̂ = argmin
Ω⪰0

∥Ω− Ω̃∥ℓ1
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THEORY
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GRAPHICAL MODELS

deg(Ω) < s

• Tuning

δ ∼ (n−1 log d)1/2

• Closeness in matrix ℓ1 norm – with overwhelming probability

sup
Ω0∈M(s)

∥∥Ω̂− Ω0

∥∥
ℓ1

∼ s

√
log d

n

• Optimality

inf
Ω̄(data)

sup
Ω0∈M(s)

E
∥∥Ω̄− Ω0

∥∥
ℓ1

≥ Cs

√
log d

n
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OTHER MATRIX NORMS

• Matrix ℓ∞ norm – ∥A∥ℓ∞ = ∥A∥ℓ1 for symmetric A

sup
Ω0∈M(s)

∥∥Ω̂− Ω0

∥∥
ℓ∞

∼ s

√
log d

n

• Bounding spectral norm – for symmetric A

∥A∥2ℓ2 ≤ ∥A∥ℓ1∥A∥ℓ∞ = ∥A∥2ℓ1

▶ Therefore

sup
Ω0∈M(s)

∥∥Ω̂− Ω0

∥∥
ℓ2

∼ s

√
log d

n
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ESTIMABILITY AND SPARSITY

• When deg(G) = o(n1/2 log−1/2 d), Ω or Σ can be “consistently” estimated

∥Σ̂− Σ∥ℓq , ∥Ω̂− Ω∥ℓq = Op

(
s

√
log d

n

)

• If deg(G) ≫ n1/2 log−1/2 d, Ω or Σ can not be “consistently” estimated

(a) More Difficult (b) Easier

n ≫ s2 log d

• Impact of gene set size (d) is

less significant than the con-

nectivity (s)

• More samples are neces-

sary if there is a “hub” gene
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BEYOND GRAPHICAL MODELS

∥∥Ω̂− Ω0

∥∥
ℓq

≤ C inf
Ω

(∥∥Ω− Ω0

∥∥
ℓ1
+ βn(Ω, δ)

)
• Sparsity bound

▶ If

δ ∼ (n−1 log d)1/2

▶ Then

βn(Ω, δ) = deg(Ω)δ

• Matrix norm – ℓ1, ℓ2 and ℓ∞

• Example – Take Ω = Ω0 for graphical models
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ADAPTIVITY – APPROXIMATE SPARSITY

d∑
j=1

|Ωij |α ≤ M

• Construct an approximation to Ω

Ω̄ij = Ωij1 (|Ωij | > ζ)

• Tuning

δ ∼
√

log d

n

• Applying oracle inequality – matrix ℓ1, ℓ2 and ℓ∞ norms

sup
Ω0∈M(α,M)

∥Ω̂− Ω0∥ℓq ∼M

(
log d

n

) 1−α
2

• Optimality

inf
Ω̄

sup
Ω0∈M(α,M)

P

{∥∥Ω̄− Ω0

∥∥
ℓ1

≥ CM

(
log d

n

) 1−α
2

}
> 0
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NUMERICAL EXPERIMENTS

27



Ming Yuan – Sparse Inverse Covariance Matrix February 27, 2012

GENE/TISSUE NETWORK

• 13,182 publicly available microarray samples from Affymetrixs HGU133a platform

▶ Downloaded from GEO and Array Express

▶ Contains 2,717 tissue types

▶ 22,283 probes =⇒ 12,719 genes

(a) Gene Expression Network (b) Tissue Network
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GENE SET DIFFERENTIAL CO-EXPRESSION
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DIFFERENTIAL CO-EXPRESSION

• Lung cancer data (Beer et al., 2002)

▶ Tumor tissue (86)

▶ Normal tissue (44)

• Gene set definition (Choi and

Kendziorski, 2009)

▶ GO categories (3471)

▶ KEGG pathways (178)

▶ Size ranging from 3 to 3703

• Preliminary “analysis”

▶ Inverse covariance matrices esti-

mated

▶ Distance in terms of spectral norm

used as statistics

▶ Normalized with s(n−1 log d)1/2
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CONCLUSIONS

• When it comes to high dimensional (inverse) covariance matrix estimation, sparse problems

are more manageable

• Sparsity of covariance matrix can be exploited in multiple ways, with inverse covariance matrix

connected with graphical models

• Taking advantage of the connection between multivariate normal and multivariate linear

regression, a computationally feasible approach is proposed to harness sparsity in inverse

covariance matrix

• The proposed approach can effectively and adaptively recover “approximately” sparse inverse

covariance matrices

• Although focusing on multivariate normal, marginal subgaussianity is sufficient

• (Inverse) covariance matrix estimation is often not the ultimate goal of statistical analysis.

Further research is needed in understanding its role in procedures such as PCA, LDA and etc.
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