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OUTLINE

e What — High dimensional covariance matrix estimation and its challenges

e How — Sparsity and graphical models
» Estimating high dimensional inverse covariance maitrix

» Oracle inequality and adaptivity

e Examples — Gene regulatory networks; Gene set co-expression
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COVARIANCE MATRIX ESTIMATION
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CLASSICAL PARADIGM

e Problem setup

» Data —a sample of n independent copies X (1), ..., X" of arv. X € R4¥!
» Covariance matrix — cov(X) = E((X — E(X))(X —E(X))")

e Traditional Estimate

» Sample covariance matrix

n

SHSample 1 ) % ) Ve
5 pl:gtizjxﬁ—xxxﬁ—xf
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» Maximum likelihood estimate

n

gWEZEEXX@—XMX@—Xf
mn
1=1

e (Asymptotic) Properties
» One of main subjects in multivariate data analysis (e.g., Anderson, 2002; Muirhead, 2005)

» Well understood when d is fixed — Wishart distribution
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HIGH DIMENSIONAL PROBLEMS

e Classical asymptotic theory: number of parameters d fixed whereas sample size n — oo

e Modern applications: both d and n may be large
» Science — e.g., High throughput gene expression studies, d ~ 10* and n ~ 102
» Finance — e.g., Common stocks, d ~ 6000 and n =~ 200

» Engineering — e.g., Image analysis, Speech recognition

k ' ¥

Georgialnstiute
5 ’ off Technologyy



Ming Yuan — Sparse Inverse Covariance Matrix February 27, 2012

CHALLENGES OF HIGH DIMENSIONALITY

e Sample size n = 50

e Dimensionality d = 2,22, ...,2%0
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How TO HANDLE HIGH DIMENSIONALITY

e Not all problems are solvable

» An arbitrary d X d covariance matrix involves d(d + 1) /2 parameters

e Parameter reduction through sparsity
» High ambient dimension; low intrinsic dimension
» Under a certain parametrization, only a small but unknown subset of parameters are
nonzero
e Sparse problems might be tractable
» Conceptually — What kind of sparsity
» Methodologically — How to exploit sparsity

» Theoretically — How sparse

Georgialnsititute
7 ‘ | off Technologyy



Ming Yuan — Sparse Inverse Covariance Matrix February 27, 2012

SPARSITY IN COVARIANCE MATRICES
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SPARSITY TYPE — SPARSE CHOLESKY FACTORS

e One of the earliest work on sparse covariance matrix estimation (Huang et al., 2006)

e Based on modified Cholesky decomposition for time series analysis (Pourahmadi, 1999; 2000)
» Modified Cholesky decomposition - LY LT = D
» L is lower triangular with ones on the diagonal, D is diagonal

» Regression interpretation

Xz' = — ZL"LJX] + €; COV(G) =D

J<t

e Imposing sparsity on L — Lasso (Tibshirani, 1996) and other variants
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SPARSITY TYPE — SPARSE COVARIANCE MATRICES

e Pioneered by Bickel and Levina (2008a), also motivated by time series setting

e “Bandable” covariance matrices
» Banded covariance matrix— ;; = 01if [i — j| > k

» Approximately banded covariance matrix —i.e., 0;; ~ |i — j| =

e Most well-understood

» Methods — banding (Bickel and Levina, 2008a), tapering (Cai, Zhang and Zhou, 2010),
block thresholding (Cai and Yuan, 2011), ...

» Theory — minimax optimality (Cai, Zhang and Zhou, 2010), adaptivity (Cai and Yuan, 2011)

» Generalizations — covariance matrix with many zero entries (Bickel and Levina, 2008b; Cai
and Zhou, 2010)

Our focus here — Sparse inverse covariance matrix
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UNDIRECTED GRAPHICAL MODEL

e Xy is represented by an undirected graph G(V, &)
» V =1{1,2,3,4,5,6} contains vertices corresponding to the random variables

» the edges € = {(1,2), (1,3),...,(5,6)}
e Factorization of probability distribution
p(xv) = Yr2(z1, 2)13(x1, T3)P21(T2, T4)h25 (T2, T5) V26 (T2, T6 )35 (T3, 5 )56 (5, T6)

e Conditional independence, e.g.,
Xo L X3|X1, X4, X5, X6

Georgialnsititute
1 1 ’ | off Technologyy



Ming Yuan — Sparse Inverse Covariance Matrix

February 27, 2012

GAUSSIAN GRAPHICAL MODEL

e Under Normality — X = (X1,..., Xg) ~ Ng(p, %)

plxy) = (2m) ST 2 exp Za

— (27T)_d/2|2\_1/2 H exp{—ai

(1,§):0%9 0

e Graphical model underlying X implies sparsity in the inverse covariance matrix
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SPARSITY AND GRAPH

e Complexity of graphs

deg(X) = deg(G) = mzaxz I(c" #0)
JFi

e Type of sparsity

» Sparse graph — X corresponds to a “low” degree graph
deg(X) < s

» Approximately sparse graph — 22 can be “approximated” by the first type

d
Y[ <M (0<a<y
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EXPLOITING SPARSITY
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EARLIER ATTEMPT — GRAPHICAL LASSO

e Penalized likelihood

) ject t I(o" <M
]%13%{6( ) subject to ; (6 #0) <

e Convex relaxation

D o <M

1<J

™ e A lot of interests since its introduction (Yuan and Lin, 2007)
o]
o e Slightly different version considered by Banerjee et al. (2008)
< e Efficient algorithm proposed by Friedman et al. (2008)
.
. ’ e Some theory given by Ravikumar et al. (2009)

7 é/ Sample

50 100 150 20 e Improves X7*"P° put ...
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PIVOTAL ESTIMATOR?

e Modifying an “initial” estimate
» For covariance matrix — sample covariance matrix

» Initial estimate has some good properties

L ~ Sample

HESample

A

e What about inverse covariance matrix — 2.~ ? Not good
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INVERSE COVARIANCE MATRIX

e Conditional distribution
Xq| X1 ~N (1 + E1,—12:%,_1(4}(—1 — [_1), 211 — E1,—12:%,_12—1,1) :

e Inverse covariance matrix — ) = ¥ 1

. o
;: ;:z = (211 — zi11222_21221)_1 —Q11 31285,
—i55 2218211 %
e Connection
Var(X,|X_;) = Qi
E(X1|X_1) = (u1+ 21,—122%,_1()(—1 —p_1)) — X' 0 11/
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MULTIVARIATE LINEAR REGRESSION

X;| Xy ~ N (i + Zi,—z'z:g,_i(X—z' — pi)y B — XX )

1,—1

e Linear regression — X; ~ X _;:
» Intercept
Q= [ — Ez‘,—izj,_z-,u—z'

» Coefficient
0y = 2:},_1-2—1',@' = —Q_;.:/Q%;

» Variance of idiosyncratic noise

Var(e;) = ¥ — Zz‘,—iz}:1 M = Qfgl

2,
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TAKING ADVANTAGE OF SPARSITY

e Translation of sparsity of {2 to regression coefficients

106y[leo = 124

Lo < deg(Q)

e Exploit regression sparsity

» Lasso (Tibshirani, 1996)
2 :
| X — (a+ XL@)H + A||0]|¢, — min
» Dantzig selector (Candés and Tao, 2007)

min [|6]ls,  subjectto  [[(X—j — p—i) " (Xi — pi)lles, <O
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USEFUL OR NOT

e The obvious — Not working
» Not symmetric
» Often “dismissed” as a candidate estimate

» May expect 6 to be a good estimate, but what about {2?

e The less obvious — Not all bad

» ()is “close” to {2 in terms of matrix £1 norm

» Some improvement may lead to better estimates

Q = argmin ||Q — Q||
Q-0
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THEORY
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GRAPHICAL MODELS

deg(2) < s

e Tuning
5 ~ (n"tlogd)'/?

e Closeness in matrix £1 norm — with overwhelming probability

log d

Q—Ql|, ~
Qozlj\l/:()(s) 0H€1 ’ n

e Optimality
log d

inf sup EHQ—QOH& > (C's

Q(data) QoeM(s) n
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OTHER MATRIX NORMS

e Matrix £, norm — || Al[e. = || A||¢, for symmetric A
. log d
sup ||€2 — QOHe ~ S °5
QoeM(s) > n

e Bounding spectral norm — for symmetric A
A7, < Al llAlle. = IAIZ,

» Therefore
log d

Q—Qll, ~
QO?}\E(S)H 0”62 N,
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ESTIMABILITY AND SPARSITY

e When deg(G) = o(n'/? log™—!/? d), 2 or 3. can be “consistently” estimated

log d

I% = Zlle, 12 = Qlle, = Oy | 5 -

o Ifdeg(G) > n/21og™/? d, ) or & can not be “consistently” estimated

n > s*logd

e Impact of gene set size (d) is
less significant than the con-

nectivity ()

e More samples are neces-

sary if there is a “hub” gene
(a) More Difficult (b) Easier
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BEYOND GRAPHICAL MODELS

[2 = 0], < Cint (||~ |, +5.(2,9))

e Sparsity bound

> If
§ ~ (n"tlogd)l/?

» Then

Bn(Qv 5) — deg(Q)5

e Matrix norm — £, ¥5 and ¢

e Example — Take 2 = () for graphical models
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ADAPTIVITY — APPROXIMATE SPARSITY

d
> 195" <M
j=1

e Construct an approximation to €2

Qz’j = Q;;1 (|Q4,] > ()
e Tuning

5 log d

n

e Applying oracle inequality — matrix £1, £ and £, norms

11—«

A logd\ 2
sup 1= Dol ~ M (E7)

QOGM(aaM) n

e Optimality

1—a
inf sup P{HQQQHel > CM <logd) 5 } .

Q QpeM(a,M) n
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NUMERICAL EXPERIMENTS
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GENE/TISSUE NETWORK

e 13,182 publicly available microarray samples from Affymetrixs HGU133a platform
» Downloaded from GEO and Array Express
» Contains 2,717 tissue types

» 22,283 probes —> 12,719 genes

(a) Gene Expression Network (b) Tissue Network
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GENE SET DIFFERENTIAL CO-EXPRESSION

control disease Regular Coexpression

Highly coexpressed subnetwork
over normal samples

Pathway
Regulator Activity

G1234

genes

®
®

Coexpression

Disruption NOT coexpressed

subnetwark
Mutated of Pathway over cancer samples
Regulator Activity — = - i
. > i A /@ C ) \\

G1234

genes

B
&

G1234
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DIFFERENTIAL CO-EXPRESSION

e Lung cancer data (Beer et al., 2002)
» Tumor tissue (86)
» Normal tissue (44)
e Gene set definition (Choi and
Kendziorski, 2009)
» GO categories (3471)
» KEGG pathways (178)
» Size ranging from 3 to 3703

e Preliminary “analysis”

» Inverse covariance matrices esti-

mated

» Distance in terms of spectral norm

used as statistics

» Normalized with s(n_l log d)1/2

0.05
0.04
0.03
o0.02
o.o1
0.00

(a) Regulation of DNA Binding (GO:0051101; 23)

(b) Immune System Development (GO:0002520; 76)

30
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CONCLUSIONS

e When it comes to high dimensional (inverse) covariance matrix estimation, sparse problems

are more manageable

e Sparsity of covariance matrix can be exploited in multiple ways, with inverse covariance matrix

connected with graphical models

e Taking advantage of the connection between multivariate normal and multivariate linear
regression, a computationally feasible approach is proposed to harness sparsity in inverse

covariance matrix

e The proposed approach can effectively and adaptively recover “approximately” sparse inverse

covariance matrices
e Although focusing on multivariate normal, marginal subgaussianity is sufficient

e (Inverse) covariance matrix estimation is often not the ultimate goal of statistical analysis.

Further research is needed in understanding its role in procedures such as PCA, LDA and etc.
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