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Distance Shrinkage 1. Introduction

VPU Sequence Variation

[Pickering et al., 2014] Multidimensional Scaling

To what extent, does multidimensional scaling (MDS) faithfully
reflect features in the original data?
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Distance Shrinkage 2. Estimating EDM

From Dissimilarity to Distance

▶ A set of objects {O1, . . . , On} from an arbitrary domain O
▶ Observe pairwise dissimilarity scores xijs

xij ≈ dist(Oi, Oj), (i, j) ∈ Ω

▶ “Closest” Euclidean embedding – p1, . . . , pn ∈ Rn−1

dist(Oi, Oj) = ∥pi − pj∥2, 1 ≤ i < j ≤ n

▶ Other applications – protein folding, chromosome conformation
capture, graph drawing, ...
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Distance Shrinkage 2. Estimating EDM

What is an EDM

X = (xij)1≤i,j≤n =⇒ D = (dij = ∥pi − pj∥2)1≤i,j≤n ∈ Dn

▶ Nonnegativity – dij ≥ 0

▶ Identity – dii = 0

▶ Symmetry – dij = dji

▶ Triangle inequality –
√
dij +

√
djk ≥

√
dik

▶ More than a metric
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Distance Shrinkage 2. Estimating EDM

Geometry of EDM

A symmetric matrix D ∈ Rn×n is an Euclidean distance matrix iff
▶ It is hollow – dii = 0

▶ It is conditionally negative semi-definite on

Xn = {x ∈ Rn : x⊤1l = 0}

Embedding can be identified with the eigenstructure of Schönberg
transform of D

R(D) = −1

2
JDJ where J = I − 1l1l⊤/n

Important consequence:
▶ The set of n× n EDMs is a convex cone without interior

[Schönberg (1935)]
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Distance Shrinkage 2. Estimating EDM

Estimating an EDM

xij = dij + εij =⇒ D

▶ Projection type of estimate – Dn is a closed convex hull

PDn(X) = argmin
M∈Dn

∥X −M∥2F.

▶ Not working – at most n(n− 1)/2 observations with n(n− 1)/2
parameters

▶ Accounting for low embedding dimension – MDS

PDn(r)(X) = argmin
M∈Dn(r)

∥X −M∥2F.

• Computationally challenging
• Statistically unstable
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Distance Shrinkage 2. Estimating EDM

Regularized Kernel Estimation

▶ From EDM to kernel K = (kij):

dij = ∥pi − pj∥2 = p⊤i pi + p⊤j pj − 2p⊤i pj =: kii + kjj − 2kij

• D is an EDM iff K ⪰ 0

▶ Regularized kernel estimate

K̂ = argmin
M⪰0


∑

(i,j)∈Ω

xij −
⟨
M, (ei − ej)(ei − ej)

⊤
⟩

︸ ︷︷ ︸
mii+mjj−2mij


2

+ λntrace(M)


▶ Back to distance matrix

d̂ij = k̂ii + k̂jj − 2k̂ij

[Lu et al. (2005) and Weinberger et al. (2007)]
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Distance Shrinkage 3. Distance Shrinkage

Why Does it Work?

▶ Kernel is not estimable from distance data

T : Sn → Dn M 7→ (mii+mjj−2mij)1≤i,j≤n is not injective

▶ What are we estimating – Minimum trace kernel
.

......

• the preimage M(D) of any D ∈ Dn under T is convex
• there is a unique minimum trace kernel in M(D)

R(D) = argmin
M∈M(D)

trace(M)

• R(·) is the Schönberg transform

R(D) = −1

2
JDJ
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Distance Shrinkage 3. Distance Shrinkage

Distance Shrinkage

D̂ = T (K̂) and K̂ = R(D̂)

.

......
D̂ = T (K̂) = PDn

(
X − λn

2n
1l1l⊤

)
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Distance Shrinkage 3. Distance Shrinkage

Effect of Distance Shrinkage

▶ Embedding dim is one if

1

3
(x12 + x13 + x23)−

∆x

3
≤ η <

1

3
(x12 + x13 + x23) +

2∆x

3
,

where

∆x :=
√

2[(x12 − x13)2 + (x12 − x23)2 + (x13 − x23)2]
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Distance Shrinkage 4. Operating Characteristics

How Well Does it work?

.

......

Let D̂ = PDn

(
X − λ

2n1l1l
⊤
)
. For any λ ≥ 2∥X −D∥,

∥D̂ −D∥2F ≤ inf
M∈Dn

{
∥M −D∥2F +

9

4
λ2(dim(M) + 1)

}
.

▶ If dim(D) = r, then

∥D̂ −D∥2F ≲ r∥X −D∥2

▶ For sub-Gaussian errors – λ ∼
√
n

∥D̂ −D∥2F ≲p rn ⇐= Minimax optimal
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Distance Shrinkage 4. Operating Characteristics

Fix Dimension Embedding

▶ Eigenvalue decomposition of R(D̂)

▶ Keep the leading r eigenvalues – Wr

▶ Getting back to Euclidean distance matrix D̂r = T (Wr)

.

......

Let Dr = PDn(r)D. For any λ ≥ 2∥X −D∥,

∥J(D̂r −Dr)J∥2F ≤ C

(
min

M∈Dn(r)
∥J(D −M)J∥2F + λ2r

)
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Distance Shrinkage 4. Operating Characteristics

Projection to EDM

Recall from Schönberg (1935),

Dn = S1 ∩ S2

where
S1 = {M ∈ Rn×n : JMJ ⪯ 0},

and
S2 = {M ∈ Rn×n : diag(M) = 0}.

Both PS1 and PS2 have analytic forms amenable to computation.

[Glunt et al. (1990)]
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Distance Shrinkage 4. Operating Characteristics

Alternating Projection Methods

▶ von Neumann’s method of alternating projections (von
Neumann, 1933)

S1, S2 closed =⇒ lim
n→∞

(PS1PS2)
nx0 = PS1∩S2x0

▶ Dykstra’s algorithm (1986)

x0
n := x2

n−1, xi
n := PSi(x

i−1
n − yin−1), yin = xi

n − (xi−1
n − yin−1)
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Distance Shrinkage 4. Operating Characteristics

Dealing with Missing Observations

▶ Observe

xij = dij + εij , (i, j) ∈ Ω ⊂ {(i, j) : 1 ≤ i < j ≤ n}

▶ Goal
min

M∈Dn

∑
(i,j)∈Ω

[(xij − η)−mij ]
2

▶ EM Algorithm
• Initialization xij for (i, j) ∈ Ωc

• M Step – D(t+1)≈PDn(X
(t) − ηD0)

• E Step – x
(t+1)
ij = d

(t+1)
ij for (i, j) ∈ Ωc

▶ Cross-validation to choose η
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Distance Shrinkage 5. Data Examples

VPU Sequence Variation

▶ 304 Vpu Sequences from 14
HIV-1 infected individuals

• 5 long term non-progressors
• 4 normal progressors
• 5 Rapid progressors
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Distance Shrinkage 5. Data Examples

Protein Secondary Structure
▶ Coordinates of 671 atoms taken from PDB (ID: 2K7Y)
▶ Simulate pairwise distances with noise
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Distance Shrinkage 5. Concluding Remarks

Summary

▶ The problem of reconstructing EDM from pairwise dissimilarity
scores arises naturally in many applications

▶ Motivated in particular by biological problems:
• Notion of distance between genomic sequences
• Molecular structure determination
• Chromosome conformation

▶ Distance shrinkage
• Encourages low dimensional embedding
• Leads to improved estimation risk
• Efficient to compute

▶ Looking ahead – clustering, tree, . . .
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