Distance Shrinkage and Euclidean Embedding

Ming Yuan

Morgridge Institute for Research and

Department of Statistics
University of Wisconsin-Madison
myuan@stat.wisc.edu

http://www.stat.wisc.edu/~myuan
(Joint work with Luwan Zhang and Grace Wahba)

VPU Sequence Variation

[Pickering et al., 2014]

Multidimensional Scaling

To what extent, does multidimensional scaling (MDS) faithfully reflect features in the original data?

From Dissimilarity to Distance

- A set of objects $\left\{O_{1}, \ldots, O_{n}\right\}$ from an arbitrary domain \mathcal{O}
- Observe pairwise dissimilarity scores $x_{i j} \mathrm{~S}$

$$
x_{i j} \approx \operatorname{dist}\left(O_{i}, O_{j}\right), \quad(i, j) \in \Omega
$$

- "Closest" Euclidean embedding $-p_{1}, \ldots, p_{n} \in \mathbb{R}^{n-1}$

$$
\operatorname{dist}\left(O_{i}, O_{j}\right)=\left\|p_{i}-p_{j}\right\|^{2}, \quad 1 \leq i<j \leq n
$$

- Other applications - protein folding, chromosome conformation capture, graph drawing, ...

What is an EDM

$$
X=\left(x_{i j}\right)_{1 \leq i, j \leq n} \Longrightarrow D=\left(d_{i j}=\left\|p_{i}-p_{j}\right\|^{2}\right)_{1 \leq i, j \leq n} \in \mathcal{D}_{n}
$$

- Nonnegativity $-d_{i j} \geq 0$
- Identity $-d_{i i}=0$
- Symmetry $-d_{i j}=d_{j i}$
- Triangle inequality $-\sqrt{d_{i j}}+\sqrt{d_{j k}} \geq \sqrt{d_{i k}}$
- More than a metric
$\left(\begin{array}{cccc}0 & 1 & 5 & d_{14} \\ 1 & 0 & 4 & 1 \\ 5 & 4 & 0 & 1 \\ d_{14} & 1 & 1 & 0\end{array}\right) \Longrightarrow(\sqrt{5}-1)^{2} \leq d_{14} \leq 4$

Geometry of EDM

A symmetric matrix $D \in \mathbb{R}^{n \times n}$ is an Euclidean distance matrix iff

- It is hollow $-d_{i i}=0$
- It is conditionally negative semi-definite on

$$
\mathcal{X}_{n}=\left\{x \in \mathbb{R}^{n}: x^{\top} \mathbb{l}=0\right\}
$$

Embedding can be identified with the eigenstructure of Schönberg transform of D

$$
\mathscr{R}(D)=-\frac{1}{2} J D J \quad \text { where } J=I-111^{\top} / n
$$

Important consequence:

- The set of $n \times n$ EDMs is a convex cone without interior

Estimating An EDM

$$
x_{i j}=d_{i j}+\varepsilon_{i j} \Longrightarrow D
$$

- Projection type of estimate $-\mathcal{D}_{n}$ is a closed convex hull

$$
\mathscr{P}_{\mathcal{D}_{n}}(X)=\underset{M \in \mathcal{D}_{n}}{\arg \min }\|X-M\|_{\mathrm{F}}^{2}
$$

- Not working - at most $n(n-1) / 2$ observations with $n(n-1) / 2$ parameters
- Accounting for low embedding dimension - MDS

$$
\mathscr{P}_{\mathcal{D}_{n}(r)}(X)=\underset{M \in \mathcal{D}_{n}(r)}{\arg \min }\|X-M\|_{\mathrm{F}}^{2}
$$

- Computationally challenging
- Statistically unstable

Regularized Kernel Estimation

- From EDM to kernel $K=\left(k_{i j}\right)$:

$$
d_{i j}=\left\|p_{i}-p_{j}\right\|^{2}=p_{i}^{\top} p_{i}+p_{j}^{\top} p_{j}-2 p_{i}^{\top} p_{j}=: k_{i i}+k_{j j}-2 k_{i j}
$$

- D is an EDM iff $K \succeq 0$
- Regularized kernel estimate

$$
\widehat{K}=\underset{M \succeq 0}{\arg \min }\{\sum_{(i, j) \in \Omega}(x_{i j}-\underbrace{\left\langle M,\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\top}\right\rangle}_{m_{i i}+m_{j j}-2 m_{i j}})^{2}+\lambda_{n} \operatorname{trace}(M)\}
$$

- Back to distance matrix

$$
\widehat{d}_{i j}=\widehat{k}_{i i}+\widehat{k}_{j j}-2 \widehat{k}_{i j}
$$

Why Does it Work?

- Kernel is not estimable from distance data

$$
\mathscr{T}: \mathcal{S}_{n} \rightarrow \mathcal{D}_{n} \quad M \mapsto\left(m_{i i}+m_{j j}-2 m_{i j}\right)_{1 \leq i, j \leq n} \quad \text { is not injective }
$$

- What are we estimating - Minimum trace kernel
- the preimage $\mathcal{M}(D)$ of any $D \in \mathcal{D}_{n}$ under \mathscr{T} is convex
- there is a unique minimum trace kernel in $\mathcal{M}(D)$

$$
\mathscr{R}(D)=\underset{M \in \mathcal{M}(D)}{\arg \min } \operatorname{trace}(M)
$$

- $\mathscr{R}(\cdot)$ is the Schönberg transform

$$
\mathscr{R}(D)=-\frac{1}{2} J D J
$$

Distance Shrinkage

$$
\widehat{D}=\mathscr{T}(\widehat{K})=\mathscr{P}_{\mathcal{D}_{n}}\left(X-\frac{\lambda_{n}}{2 n} 1111^{\top}\right)
$$

$\widehat{D}=\mathscr{T}(\widehat{K})$ and $\widehat{K}=\mathscr{R}(\widehat{D})$

Effect of Distance Shrinkage

$$
\mathscr{P}_{\mathcal{D}_{3}}(X) \Longrightarrow \mathscr{P}_{\mathcal{D}_{3}}\left(X-\eta D_{0}\right)
$$

- Embedding dim is one if

$$
\frac{1}{3}\left(x_{12}+x_{13}+x_{23}\right)-\frac{\Delta_{x}}{3} \leq \eta<\frac{1}{3}\left(x_{12}+x_{13}+x_{23}\right)+\frac{2 \Delta_{x}}{3}
$$

where

$$
\Delta_{x}:=\sqrt{2\left[\left(x_{12}-x_{13}\right)^{2}+\left(x_{12}-x_{23}\right)^{2}+\left(x_{13}-x_{23}\right)^{2}\right]}
$$

How Well Does it work?

Let $\widehat{D}=\mathscr{P}_{\mathcal{D}_{n}}\left(X-\frac{\lambda}{2 n} 1111^{\top}\right)$. For any $\lambda \geq 2\|X-D\|$,

$$
\|\widehat{D}-D\|_{\mathrm{F}}^{2} \leq \inf _{M \in \mathcal{D}_{n}}\left\{\|M-D\|_{\mathrm{F}}^{2}+\frac{9}{4} \lambda^{2}(\operatorname{dim}(M)+1)\right\}
$$

- If $\operatorname{dim}(D)=r$, then

$$
\|\widehat{D}-D\|_{\mathrm{F}}^{2} \lesssim r\|X-D\|^{2}
$$

- For sub-Gaussian errors $-\lambda \sim \sqrt{n}$

$$
\|\widehat{D}-D\|_{\mathrm{F}}^{2} \lesssim_{p} r n \Longleftarrow \text { Minimax optimal }
$$

Fix Dimension Embedding

- Eigenvalue decomposition of $\mathscr{R}(\widehat{D})$
- Keep the leading r eigenvalues - W_{r}
- Getting back to Euclidean distance matrix $\widehat{D}_{r}=\mathscr{T}\left(W_{r}\right)$

Let $D_{r}=\mathscr{P}_{\mathcal{D}_{n}(r)} D$. For any $\lambda \geq 2\|X-D\|$,

$$
\left\|J\left(\widehat{D}_{r}-D_{r}\right) J\right\|_{\mathrm{F}}^{2} \leq C\left(\min _{M \in \mathcal{D}_{n}(r)}\|J(D-M) J\|_{\mathrm{F}}^{2}+\lambda^{2} r\right)
$$

Projection to EDM

Recall from Schönberg (1935),

$$
\mathcal{D}_{n}=S_{1} \cap S_{2}
$$

where

$$
S_{1}=\left\{M \in \mathbb{R}^{n \times n}: J M J \preceq 0\right\},
$$

and

$$
S_{2}=\left\{M \in \mathbb{R}^{n \times n}: \operatorname{diag}(M)=\mathbf{0}\right\} .
$$

Both $P_{S_{1}}$ and $P_{S_{2}}$ have analytic forms amenable to computation.
[Glunt et al. (1990)]

Alternating Projection Methods

- von Neumann's method of alternating projections (von Neumann, 1933)

$$
S_{1}, S_{2} \text { closed } \Longrightarrow \lim _{n \rightarrow \infty}\left(P_{S_{1}} P_{S_{2}}\right)^{n} x_{0}=P_{S_{1} \cap S_{2}} x_{0}
$$

- Dykstra's algorithm (1986)

$$
x_{n}^{0}:=x_{n-1}^{2}, \quad x_{n}^{i}:=P_{S_{i}}\left(x_{n}^{i-1}-y_{n-1}^{i}\right), \quad y_{n}^{i}=x_{n}^{i}-\left(x_{n}^{i-1}-y_{n-1}^{i}\right)
$$

Dealing with Missing Observations

- Observe

$$
x_{i j}=d_{i j}+\varepsilon_{i j}, \quad(i, j) \in \Omega \subset\{(i, j): 1 \leq i<j \leq n\}
$$

- Goal

$$
\min _{M \in \mathcal{D}_{n}} \sum_{(i, j) \in \Omega}\left[\left(x_{i j}-\eta\right)-m_{i j}\right]^{2}
$$

- EM Algorithm
- Initialization $x_{i j}$ for $(i, j) \in \Omega^{c}$
- M Step - $D^{(t+1)} \approx \mathscr{P}_{\mathcal{D}_{n}}\left(X^{(t)}-\eta D_{0}\right)$
- E Step $-x_{i j}^{(t+1)}=d_{i j}^{(t+1)}$ for $(i, j) \in \Omega^{c}$
- Cross-validation to choose η

VPU Sequence Variation

- 304 Vpu Sequences from 14 HIV-1 infected individuals
- 5 long term non-progressors
- 4 normal progressors
- 5 Rapid progressors

Protein Secondary Structure

- Coordinates of 671 atoms taken from PDB (ID: 2K7Y)
- Simulate pairwise distances with noise

SUMMARY

- The problem of reconstructing EDM from pairwise dissimilarity scores arises naturally in many applications
- Motivated in particular by biological problems:
- Notion of distance between genomic sequences
- Molecular structure determination
- Chromosome conformation
- Distance shrinkage
- Encourages low dimensional embedding
- Leads to improved estimation risk
- Efficient to compute
- Looking ahead - clustering, tree, ...

