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PROBLEM OF PREDICTION

◮ Input/output space: X , Y

◮ Training samples: (x1, y1), . . . , (xn, yn) ∈ X × Y , i.i.d. copies of (X,Y ) ∼ P

◮ Prediction: given x ∈ X , find a suitable y ∈ Y

f0 : X 7→ Y : x 7→ f0(x)

◮ Examples:

• Regression: f0(X) = E(Y |X)

• Classification: f0(X) = argmaxy P(Y = y|X)

• Generalized regression

• . . . . . .
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(REGULARIZED) EMPIRICAL RISK MINIMIZATION

argmin
f∈H

[Enℓ(Y ; f(X)) + Jλ(f)]

◮ Loss function: f0 can be given as

argmin
f

Eℓ(Y ; f(X))

• Regression – Least squares

• Support vector machine – Hinge loss

◮ Model space: H

• Parametric – H = {XTβ}

• Nonparametric – H = W2
2 (X)

◮ Penalty Jλ(·)

• Dimension too high, e.g., Lasso

• Functional class too complicated, e.g., smoothing splines
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LEARNING WITH MULTIPLE RKHS

H := l.s.
{

H1

⋃

H2

⋃

. . . . . .
⋃

Hd

}

◮ Each Hj is a reproducing kernel Hilbert space

• Normed linear functional space and Hj → R: fj 7→ fj(x) is continuous

• Equipped with a reproducing kernelKj – fj(x) = 〈fj(·), Kj(x, ·)〉

◮ Consists of all functions that have an additive representation

f = f1 + · · · + fd, fj ∈ Hj , j = 1, . . . , d

◮ Examples

• Finite dimensional dictionaries – Linear regression

• Infinite dimensional dictionaries – Additive models, Functional ANOVA...
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LEARNING WITH MULTIPLE KERNELS

Moore-Aronszajn theorem – one-to-one correspondence between kernel and RKHS

Kernel

Feature Space Learning with Multiple Kernels
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MOTIVATING EXAMPLES

Functional MRI

Hyperspectral Imaging

Gene Set Analysis
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ℓ1 TYPE OF REGULARIZATION

f = f1 + · · · + fd, fj ∈ Hj , j = 1, . . . , d

◮ H can be equipped with ℓ1 type of norm

‖f‖ℓ1 := ‖f‖ℓ1(H) := inf







d∑

j=1

‖fj‖Hj
: f =

d∑

j=1

fj , fj ∈ Hj







◮ Sparse regularization

f̂λ := argmin
f∈H

[En(ℓ(Y, f(X)) + λ‖f‖ℓ1 ]
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ℓ1 REGULARIZATION FOR LINEAR REGRESSION

argmin
β

{
Enℓ(Y,X

Tβ) + λ‖β‖ℓ1

}

◮ Nature of sparsity in high dimensional linear regression model

• Apparent dimensionality – d

• Intrinsic dimensionality (sparsity) – s = card{j : βj 6= 0}

• Sample size – n

◮ ℓ1 regularization (Lasso) works in high dimensional setting

RIP(X is well − conditioned) =⇒ ‖β̂ − β‖2 = Op

(
s log d

n

)

• If we know which βs are zero – s/n

• Additional price pay for not knowing – log d
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ℓ1 REGULARIZATION FOR ADDITIVE MODELS

◮ COSSO (Lin and Zhang, 2006)

Lasso Jλ(g) = λ
Pd

j=1
|βj |

Splines Jλ(g) = λ
Pd

j=1
‖gj‖

2

W2
2

9

=

;

=⇒ Jλ(g) = λ

d
X

j=1

‖gj‖W2
2

◮ Spam (Ravikumar, Lafferty, Liu and Wasserman, 2008)

Group Lasso Jλ(g) = λ
Pd

j=1
‖βj‖

Basis Expansion gj ∈ ls{φj1, . . . , φjm}

9

=

;

=⇒ Jλ(g) = λ

d
X

j=1

‖gj‖n

◮ Nonnegative Garrote (Yuan, 2008)

◮ Sparsity smoothness penalty (Meier, van de Geer and Bühlmann, 2009)

◮ Adaptive group Lasso (Huang, Horowitz and Wei, 2009)

◮ Screening (Jiang, Fan and Fan, 2010)

◮ . . . . . .
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MULTIPLE KERNEL LEARNING

◮ “Aggregation” of kernels

conv{Kj : j = 1, . . . , d} :=







d∑

j=1

θjKj : cj ≥ 0,
d∑

j=1

θj = 1







◮ Kernel learning (Lanckriet et al., 2004; Micchelli and Pontil, 2005)

(f̂λ, K̂λ) := argmin
K∈conv(Kj ,j=1,...,d)

f∈HK

[En(ℓ(Y, f(X)) + λ‖f‖K ]

◮ Equivalence

f̂λ := argmin
f∈H








En(L(Y, f(X)) + λ min
K∈conv(Kj ,j=1,...,d)

‖f‖K

︸ ︷︷ ︸

⇓








‖f‖ℓ1(H) = inf {‖f‖K : K ∈ conv{Kj : j = 1, . . . , d}}
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AND BEYOND . . .

◮ Partially linear model

• Linear component space – Hj univariate linear functions for j = 1, . . . , d1

• Nonparametric component space – Hj infinite dimensional for j > d1

• ℓ1 regularization

argmin
β∈R

d1

f∈H2(X2)

[
En(ℓ(Y,XT

1 β + f(X2)) + λ (‖f‖ℓ1 + ‖β‖ℓ1)
]

◮ Varying coefficient model

• Components space – Hj = {f(X)Zj : f ∈ H0
j}

• ℓ1 regularization

argmin
f∈H



En(ℓ(Y, f(X)) + λ
d∑

j=1

‖fj‖H0
j
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EXCESS RISK

◮ Convex loss ℓ such that f0 = argminf Eℓ(Y, f(X))

• Regression: Y = R, ℓ(y, u) := φ(y − u) – φ even and φ(0) = 0

• Classification: Y = {±1}, ℓ(y, u) := φ(yu) – φ′(0) < 0

◮ Excess risk

E(f) = E[ℓ(Y, f(X))] − min
f

E[ℓ(Y, f(X))]

= E[ℓ(Y, f(X))] − E[ℓ(Y, f0(X))]

• Example – squared loss

E(f) = ‖f − f0‖
2
L2(ΠX) := E[f(X) − f0(X)]2
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EXCESS RISK BOUNDS

◮ Finite dimensional dictionary (parametric) – dim(Hj) ≤ V

Generalized RIP

λ ∼ (n−1 log d)1/2






=⇒ E(f̂) = Op

(
s(V + log d)

n

)

◮ Infinite dimensional dictionary (nonparametric) – dim(Hj) = ∞

Generalized RIP

λ ∼ (n−1 log d)1/2






=⇒ E(f̂) = Op

(

s

√

log d

n

)
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EXAMPLE – GROUP LASSO

◮ X = (X1, . . . , Xd)
T where Xj ∈ R

V , then

E(f̂GroupLasso) = Op

(
s(V + log d)

n

)

• s – Group sparsity

◮ If applying Lasso without group structure

E(f̂Lasso) = Op

(
s̃ log(dV )

n

)

• s̃ – individual sparsity

◮ Advantage of Group Lasso

• No loss in rate – s̃ ≥ s

• Could gain substantially – s̃ = sV
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EXAMPLE – ADDITIVE MODELS

argmin
f∈H

{Enℓ(Y, f(X)) + λ‖f‖ℓ1}

◮ Smoothness index α – λm(Kj) ∼ m−2α (e.g., Sobolev space of order α)

◮ Sparsity s – card(supp(f)) = s where supp(f) = {j : fj 6= 0}

◮ Assume that

• {Xj : j ∈ supp(f)} are not too similar

• {Xj : j ∈ supp(f)} and {Xj : j /∈ supp(f)} are not too similar

◮ Then

λ ∼ (n−1 log p)1/2 =⇒ E(f̂) = Op

(

s

√

log d

n

)
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PARAMETRIC VS NONPARAMETRIC

◮ If s is finite, consistent estimate with ℓ1 regularization iff log d = o(n)

• Parametric – s≪ n(log d)−1

• Nonparametric – s≪ n1/2(log d)−1/2

◮ Sample size calculation

• Parametric – n≫ s log d

• Nonparametric – n≫ s2 log d

No effect of smoothness =⇒ Optimality for nonparametric case??
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IDEALIZED MODEL

◮ Additive model but know apriori that

• Xjs are independent

• Direct observation on each component function

dYj(t) = fj(t)dt+ σdWj(t)

◮ Optimal rate for ℓ1 regularization

• Ultra-high dimensional d ∼ exp(nγ) and s is finite

inf
λ

E(f̂) ∼ (log d/n)
1/2

(rate cannot be improved)

• High dimensional d ∼ nγ and s is finite

inf
λ

E(f̂) ∼







n
− 2α

2α+1
+

γ(2α − 1)
2α+1

if γ ≤ 1
2

(log d/n)1/2 if γ > 1
2

(phase transition)
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MINIMAX OPTIMALITY

inf
f̃(·;data)

sup
f∈H;supp(f)≤s

E(f̃) ∼ s




 n−

2α
2α+1

︸ ︷︷ ︸

effect of smoothing

+ n−1 log d
︸ ︷︷ ︸

effect of high dim






◮ When log d≪ n1/(2α+1)

inf
f̃(·;data)

sup
f∈H;supp(f)≤s

E(f̃) ∼ sn−
2α

2α+1

◮ When log d≪ n1/(2α+1)

inf
f̃(·;data)

sup
f∈H;supp(f)≤s

E(f̃) ∼ sn−1 log d
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DOUBLE PENALIZATION

◮ ℓ1 regularization serves two purposes simulataneously

• For smoothing – λ ∼ n−2α/(2α+1)

• For sparsity – λ ∼ (n−1 log d)1/2

◮ Minimax optimal approach – double penalization

f̂λ := argmin
f∈H










En(ℓ(Y, f(X)) + λ1

d∑

j=1

‖fj‖
2
Hj

︸ ︷︷ ︸

for smoothing

+λ2

d∑

j=1

‖fj‖L2(Πn)

︸ ︷︷ ︸

for sparsity










◮ Tuning

λ1 = λ2
2 ∼ n−2α/(2α+1) + n−1 log d =⇒ E(f̂) ∼ s

(

n−2α/(2α+1) + n−1 log d
)
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LEARNING WITH KERNELS – ADAPTIVITY

◮ In additive models, α identifies with smoothness – modeling assumption

◮ In general, α is determined by the decay rate of eigenvalues of a kernel
∫

K(s, t)ψm(s)dΠX(s) = λmψm(t) =⇒ λm ∼ m−2α

• X ∈ R
d0 and H is Sobolev space of order β – K(s, t) = k(s− t), where

F(k)m = (‖m‖2 + 1)−β, m ∈ Z
d0

• Then α = β/d0, leading to

optimal rate of convergence n−2β/(2β+d0)

• supp(ΠX) ⊂ R
d1 where d1 < d0, then α = (β − (d0 − d1)/2)/d1

optimal rate of convergence n−(2β−(d0−d1))/(2β−d0+2d1)

α is not known even if Kjs are known
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ADAPTIVE TUNING

◮ Gram matrix

Gj =
(
n−1Kj(Xi, Xl)

)

n×n

◮ Eigenvalue decomposition ρ̂1 ≥ ρ̂2 ≥ . . .

◮ λj = cη̂(Kj) ∼ n−2α/(2α+1)

η̂(Kj) =







η ≥ (n−1 log p)1/2 :




1

n

∑

k≥1

ρ̂k ∧ δ2





1/2

≤ ηδ + η2, ∀δ ∈ [0, 1]







◮ Choice motivated by study of Rademacher process (Mendelson, 2002)

◮ Excess risk bound

E(f̂) ≤ Cs

(

n−2α/(2α+1) +
log d

n

)
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SUMMARY

◮ A number of common techniques can be formulated in a unified framework

◮ The unified framework gives insight to the connection among methods and allows systematic

study of different methods

◮ Sparse recovery is possible with ℓ1 type regularization if log d = o(n) for a large class of

model

◮ Similarity and difference between finite and infinite dimensional dictionaries

◮ More efficient approach with double penalization separating model selection from smoothing
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