SPARSITY IN MULTIPLE KERNEL LEARNING

Ming Yuan

School of Industrial and Systems Engineering Georgia Institute of Technology myuan@isye.gatech.edu http://www.isye.gatech.edu/~myuan

(Joint work with Vladimir Koltchinskii)

OUTLINE

- Multiple kernel learning
 - Finite dimensional dictionaries linear regression
 - Infinite dimensional dictionaries additive model, functional ANOVA
- Sparse recovery with ℓ_1 regularization
 - General framework of sparse recovery
 - Excess risk bounds
 - Optimality
- Adaptive learning with multiple kernels
 - Double penalization
 - Adaptive tuning
- Conclusions

PROBLEM OF PREDICTION

- ▶ Input/output space: \mathcal{X} , \mathcal{Y}
- For Training samples: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, i.i.d. copies of $(X, Y) \sim P$
- ▶ Prediction: given $\mathbf{x} \in \mathcal{X}$, find a suitable $y \in \mathcal{Y}$

$$f_0: \mathcal{X} \mapsto \mathcal{Y}: \mathbf{x} \mapsto f_0(\mathbf{x})$$

- Examples:
 - Regression: $f_0(X) = \mathbb{E}(Y|X)$
 - Classification: $f_0(X) = \operatorname{argmax}_y \mathbb{P}(Y = y | X)$
 - Generalized regression
 - • • • •

(REGULARIZED) EMPIRICAL RISK MINIMIZATION

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[\mathbb{E}_n \ell(Y; f(X)) + J_{\lambda}(f) \right]$$

▶ Loss function: f_0 can be given as

$$\operatorname*{argmin}_{f} \mathbb{E}\ell(Y; f(X))$$

- Regression Least squares
- Support vector machine Hinge loss
- ▶ Model space: \mathcal{H}
 - Parametric $\mathcal{H} = \{X^{\mathsf{T}}\beta\}$
 - Nonparametric $\mathcal{H} = \mathcal{W}_2^2(X)$
- ▶ Penalty $J_{\lambda}(\cdot)$
 - Dimension too high, e.g., Lasso
 - Functional class too complicated, e.g., smoothing splines

LEARNING WITH MULTIPLE RKHS

$$\mathcal{H} := \text{l.s.} \left\{ \mathcal{H}_1 \bigcup \mathcal{H}_2 \bigcup \ldots \bigcup \mathcal{H}_d \right\}$$

▶ Each \mathcal{H}_j is a reproducing kernel Hilbert space

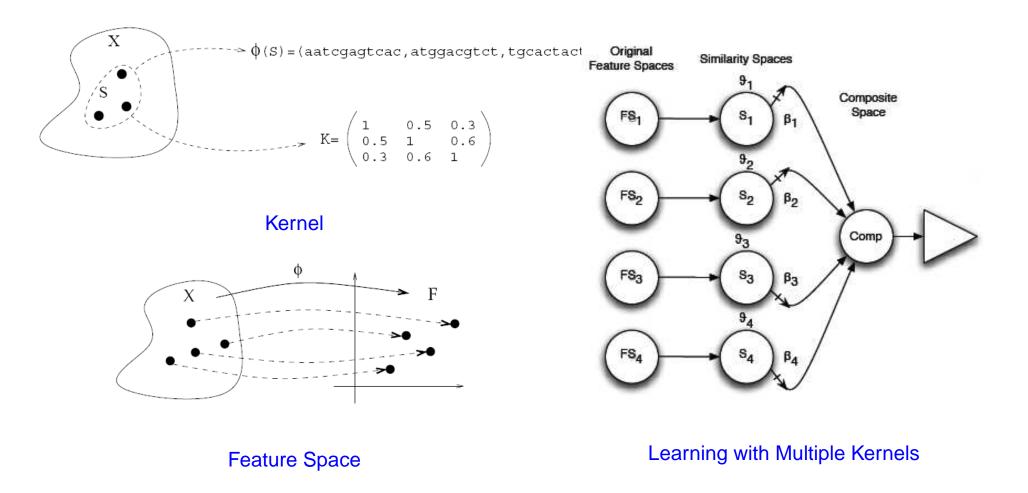
- Normed linear functional space and $\mathcal{H}_j \to \mathbb{R}: f_j \mapsto f_j(\mathbf{x})$ is continuous
- Equipped with a reproducing kernel $K_j f_j(\mathbf{x}) = \langle f_j(\cdot), K_j(\mathbf{x}, \cdot) \rangle$
- Consists of all functions that have an additive representation

$$f = f_1 + \dots + f_d, \qquad f_j \in \mathcal{H}_j, \ j = 1, \dots, d$$

- Examples
 - Finite dimensional dictionaries Linear regression
 - Infinite dimensional dictionaries Additive models, Functional ANOVA...

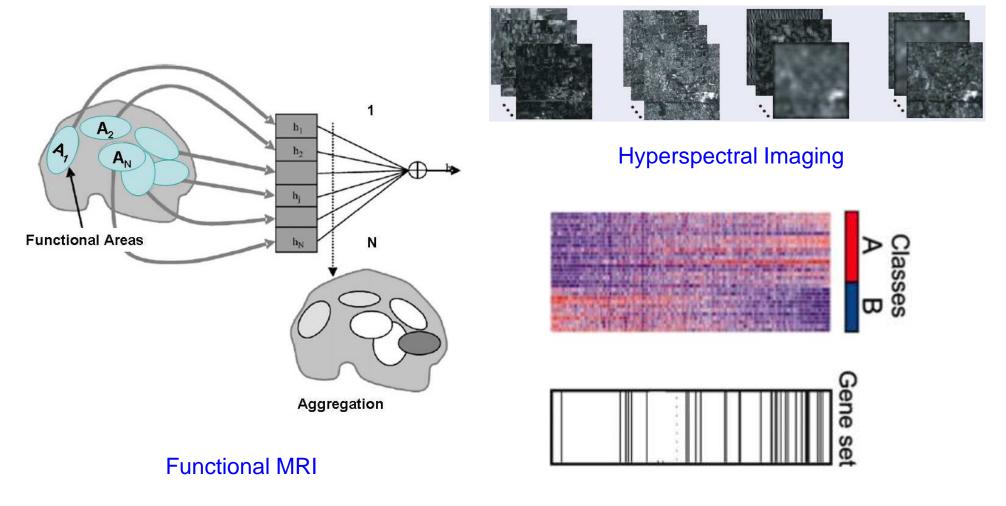
LEARNING WITH MULTIPLE KERNELS

Moore-Aronszajn theorem – one-to-one correspondence between kernel and RKHS



April 11, 2012

MOTIVATING EXAMPLES



Gene Set Analysis

OUTLINE

- ► Multiple kernel learning
 - Finite dimensional dictionaries linear regression
 - Infinite dimensional dictionaries additive model, functional ANOVA
- Sparse recovery with ℓ_1 regularization
 - General framework of sparse recovery
 - Excess risk bounds
 - Optimality
- Adaptive learning with multiple kernels
 - Double penalization
 - Adaptive tuning
- Conclusions

ℓ_1 Type of Regularization

$$f = f_1 + \dots + f_d, \qquad f_j \in \mathcal{H}_j, \ j = 1, \dots, d$$

 $\blacktriangleright \ \mathcal{H}$ can be equipped with ℓ_1 type of norm

$$||f||_{\ell_1} := ||f||_{\ell_1(\mathcal{H})} := \inf\left\{\sum_{j=1}^d ||f_j||_{\mathcal{H}_j} : f = \sum_{j=1}^d f_j, f_j \in \mathcal{H}_j\right\}$$

Sparse regularization

$$\hat{f}_{\lambda} := \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[\mathbb{E}_{n}(\ell(Y, f(X)) + \lambda \| f \|_{\ell_{1}}) \right]$$

ℓ_1 regularization for linear Regression

$$\underset{\beta}{\operatorname{argmin}} \left\{ \mathbb{E}_n \ell(Y, X^{\mathsf{T}} \beta) + \lambda \|\beta\|_{\ell_1} \right\}$$

Nature of sparsity in high dimensional linear regression model

- Apparent dimensionality -d
- Intrinsic dimensionality (sparsity) $s = card\{j : \beta_j \neq 0\}$
- Sample size *n*
- \blacktriangleright ℓ_1 regularization (Lasso) works in high dimensional setting

$$\operatorname{RIP}(X \text{ is well} - \operatorname{conditioned}) \Longrightarrow \|\hat{\beta} - \beta\|^2 = O_p\left(\frac{s \log d}{n}\right)$$

- If we know which βs are zero s/n
- Additional price pay for not knowing $\log d$

ℓ_1 Regularization for additive models

COSSO (Lin and Zhang, 2006)

$$\begin{array}{cc} \text{Lasso} & J_{\lambda}(g) = \lambda \sum_{j=1}^{d} |\beta_{j}| \\ \text{Splines} & J_{\lambda}(g) = \lambda \sum_{j=1}^{d} \|g_{j}\|_{\mathcal{W}_{2}^{2}}^{2} \end{array} \end{array} \right\} \Longrightarrow J_{\lambda}(g) = \lambda \sum_{j=1}^{d} \|g_{j}\|_{\mathcal{W}_{2}^{2}}^{2}$$

Spam (Ravikumar, Lafferty, Liu and Wasserman, 2008)

$$\begin{array}{ccc} \text{Group Lasso} & J_{\lambda}(g) = \lambda \sum_{j=1}^{d} \|\beta_{j}\| \\ \text{Basis Expansion} & g_{j} \in \operatorname{ls}\{\phi_{j1}, \dots, \phi_{jm}\} \end{array} \right\} \Longrightarrow J_{\lambda}(g) = \lambda \sum_{j=1}^{d} \|g_{j}\|_{n}$$

- Nonnegative Garrote (Yuan, 2008)
- Sparsity smoothness penalty (Meier, van de Geer and Bühlmann, 2009)
- Adaptive group Lasso (Huang, Horowitz and Wei, 2009)
- Screening (Jiang, Fan and Fan, 2010)

.

MULTIPLE KERNEL LEARNING

"Aggregation" of kernels

conv{
$$K_j : j = 1, ..., d$$
} := $\left\{ \sum_{j=1}^d \theta_j K_j : c_j \ge 0, \sum_{j=1}^d \theta_j = 1 \right\}$

Kernel learning (Lanckriet et al., 2004; Micchelli and Pontil, 2005)

$$(\hat{f}_{\lambda}, \hat{K}_{\lambda}) := \operatorname*{argmin}_{\substack{K \in \operatorname{conv}(K_{j}, j=1, \dots, d) \\ f \in \mathcal{H}_{K}}} [\mathbb{E}_{n}(\ell(Y, f(X)) + \lambda \| f \|_{K}]$$

► Equivalence

$$\hat{f}_{\lambda} := \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[\mathbb{E}_{n}(L(Y, f(X)) + \lambda \underbrace{\min_{\substack{K \in \operatorname{conv}(K_{j}, j=1, \dots, d)}}_{K \in \operatorname{conv}(K_{j}, j=1, \dots, d)}} \|f\|_{K} \right]$$
$$\|f\|_{\ell_{1}(\mathcal{H})} = \inf \{\|f\|_{K} : K \in \operatorname{conv}\{K_{j} : j = 1, \dots, d\}\}$$

AND BEYOND ...

- Partially linear model
 - Linear component space \mathcal{H}_j univariate linear functions for $j=1,\ldots,d_1$
 - Nonparametric component space \mathcal{H}_j infinite dimensional for $j > d_1$
 - ℓ_1 regularization

$$\underset{\substack{\beta \in \mathbb{R}^{d_1}\\f \in \mathcal{H}_2(X_2)}}{\operatorname{argmin}} \left[\mathbb{E}_n(\ell(Y, X_1^\mathsf{T}\beta + f(X_2)) + \lambda(\|f\|_{\ell_1} + \|\beta\|_{\ell_1}) \right]$$

- Varying coefficient model
 - Components space $\mathcal{H}_j = \{f(X)Z_j : f \in \mathcal{H}_j^0\}$
 - ℓ_1 regularization

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[\mathbb{E}_n(\ell(Y, f(X)) + \lambda \sum_{j=1}^d \|f_j\|_{\mathcal{H}_j^0} \right]$$

OUTLINE

- ► Multiple kernel learning
 - Finite dimensional dictionaries linear regression
 - Infinite dimensional dictionaries additive model, functional ANOVA
- Sparse recovery with ℓ_1 regularization
 - General framework of sparse recovery
 - Excess risk bounds
 - Optimality
- Adaptive learning with multiple kernels
 - Double penalization
 - Adaptive tuning
- Conclusions

EXCESS RISK

• Convex loss ℓ such that $f_0 = \operatorname{argmin}_f \mathbb{E}\ell(Y, f(X))$

- Regression: $\mathcal{Y}=\mathbb{R}$, $\ell(y,u):=\phi(y-u)$ ϕ even and $\phi(0)=0$
- Classification: $\mathcal{Y} = \{\pm 1\}$, $\ell(y,u) := \phi(yu) \phi'(0) < 0$
- Excess risk

$$\mathcal{E}(f) = \mathbb{E}[\ell(Y, f(X))] - \min_{f} \mathbb{E}[\ell(Y, f(X))]$$
$$= \mathbb{E}[\ell(Y, f(X))] - \mathbb{E}[\ell(Y, f_0(X))]$$

• Example – squared loss

$$\mathcal{E}(f) = \|f - f_0\|_{\mathcal{L}_2(\Pi_X)}^2 := \mathbb{E}[f(X) - f_0(X)]^2$$

EXCESS RISK BOUNDS

Finite dimensional dictionary (parametric) – $\dim(\mathcal{H}_j) \leq V$

$$\left. \begin{array}{c} \text{Generalized RIP} \\ \lambda \sim (n^{-1} \log d)^{1/2} \end{array} \right\} \Longrightarrow \mathcal{E}(\hat{f}) = O_p\left(\frac{s(V + \log d)}{n}\right)$$

▶ Infinite dimensional dictionary (nonparametric) – $\dim(\mathcal{H}_j) = \infty$

$$\left. \begin{array}{c} \text{Generalized RIP} \\ \lambda \sim (n^{-1}\log d)^{1/2} \end{array} \right\} \Longrightarrow \mathcal{E}(\hat{f}) = O_p\left(s\sqrt{\frac{\log d}{n}}\right)$$

EXAMPLE – GROUP LASSO

•
$$X = (X_1, \ldots, X_d)^\mathsf{T}$$
 where $X_j \in \mathbb{R}^V$, then

$$\mathcal{E}(\hat{f}^{\text{GroupLasso}}) = O_p\left(\frac{s(V+\log d)}{n}\right)$$

• *s* – Group sparsity

If applying Lasso without group structure

$$\mathcal{E}(\hat{f}^{\text{Lasso}}) = O_p\left(\frac{\tilde{s}\log(dV)}{n}\right)$$

- \tilde{s} individual sparsity
- Advantage of Group Lasso
 - No loss in rate $\tilde{s} \ge s$
 - Could gain substantially $\tilde{s} = sV$

EXAMPLE – ADDITIVE MODELS

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \left\{ \mathbb{E}_n \ell(Y, f(X)) + \lambda \| f \|_{\ell_1} \right\}$$

- Smoothness index $\alpha \lambda_m(K_j) \sim m^{-2\alpha}$ (e.g., Sobolev space of order α)
- Sparsity $s \operatorname{card}(\operatorname{supp}(f)) = s$ where $\operatorname{supp}(f) = \{j : f_j \neq 0\}$
- Assume that
 - $\{X_j : j \in \operatorname{supp}(f)\}$ are not too similar
 - $\{X_j : j \in \operatorname{supp}(f)\}$ and $\{X_j : j \notin \operatorname{supp}(f)\}$ are not too similar

Then

$$\lambda \sim (n^{-1}\log p)^{1/2} \Longrightarrow \mathcal{E}(\hat{f}) = O_p\left(s\sqrt{\frac{\log d}{n}}\right)$$

PARAMETRIC VS NONPARAMETRIC

- ▶ If *s* is finite, consistent estimate with ℓ_1 regularization iff $\log d = o(n)$
 - Parametric $s \ll n(\log d)^{-1}$
 - Nonparametric $s \ll n^{1/2} (\log d)^{-1/2}$
- ► Sample size calculation
 - Parametric $n \gg s \log d$
 - Nonparametric $n \gg s^2 \log d$

No effect of smoothness \implies Optimality for nonparametric case??

OUTLINE

- Multiple kernel learning
 - Finite dimensional dictionaries linear regression
 - Infinite dimensional dictionaries additive model, functional ANOVA

Sparse recovery with ℓ_1 regularization

- General framework of sparse recovery
- Excess risk bounds
- Optimality
- Adaptive learning with multiple kernels
 - Double penalization
 - Adaptive tuning
- Conclusions

IDEALIZED MODEL

- Additive model but know apriori that
 - X_j s are independent
 - Direct observation on each component function

$$dY_j(t) = f_j(t)dt + \sigma dW_j(t)$$

- ▶ Optimal rate for ℓ_1 regularization
 - Ultra-high dimensional $d\sim \exp(n^\gamma)$ and s is finite

 $\inf_{\lambda} \mathcal{E}(\hat{f}) \sim (\log d/n)^{1/2} \quad \text{(rate cannot be improved)}$

- High dimensional $d \sim n^{\gamma}$ and s is finite

$$\inf_{\lambda} \mathcal{E}(\hat{f}) \sim \begin{cases} n^{-\frac{2\alpha}{2\alpha+1}} + \frac{\gamma(2\alpha-1)}{2\alpha+1} & \text{if } \gamma \leq \frac{1}{2} \\ \left(\log d/n\right)^{1/2} & \text{if } \gamma > \frac{1}{2} \end{cases} \text{ (phase transition)}$$

MINIMAX OPTIMALITY

$$\begin{split} \inf_{\tilde{f}(\cdot;\text{data})} \sup_{f \in \mathcal{H}; \text{supp}(f) \leq s} \mathcal{E}(\tilde{f}) \sim s \left(\underbrace{n^{-\frac{2\alpha}{2\alpha+1}}}_{\text{effect of smoothing}} + \underbrace{n^{-1}\log d}_{\text{effect of high dim}} \right) \\ \blacktriangleright \text{ When } \log d \ll n^{1/(2\alpha+1)} \\ \inf_{\tilde{f}(\cdot;\text{data})} \sup_{f \in \mathcal{H}; \text{supp}(f) \leq s} \mathcal{E}(\tilde{f}) \sim sn^{-\frac{2\alpha}{2\alpha+1}} \\ \blacktriangleright \text{ When } \log d \ll n^{1/(2\alpha+1)} \\ \inf_{\tilde{f}(\cdot;\text{data})} \sup_{f \in \mathcal{H}; \text{supp}(f) \leq s} \mathcal{E}(\tilde{f}) \sim sn^{-1}\log d \end{split}$$

OUTLINE

- Multiple kernel learning
 - Finite dimensional dictionaries linear regression
 - Infinite dimensional dictionaries additive model, functional ANOVA
- Sparse recovery with ℓ_1 regularization
 - General framework of sparse recovery
 - Excess risk bounds
 - Optimality
- Adaptive learning with multiple kernels
 - Double penalization
 - Adaptive tuning
- Conclusions

DOUBLE PENALIZATION

- \triangleright ℓ_1 regularization serves two purposes simulataneously
 - For smoothing $\lambda \sim n^{-2\alpha/(2\alpha+1)}$
 - For sparsity $\lambda \sim (n^{-1}\log d)^{1/2}$
- Minimax optimal approach double penalization

$$\hat{f}_{\lambda} := \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[\mathbb{E}_{n}(\ell(Y, f(X)) + \underset{i=1}{\lambda_{1}} \sum_{j=1}^{d} \|f_{j}\|_{\mathcal{H}_{j}}^{2} + \underset{j=1}{\lambda_{2}} \sum_{j=1}^{d} \|f_{j}\|_{\mathcal{L}_{2}(\Pi_{n})}}_{\text{for smoothing}} \underbrace{\underbrace{}_{\text{for sparsity}}}_{\text{for sparsity}} \right]$$

$$\lambda_1 = \lambda_2^2 \sim n^{-2\alpha/(2\alpha+1)} + n^{-1}\log d \Longrightarrow \mathcal{E}(\hat{f}) \sim s\left(n^{-2\alpha/(2\alpha+1)} + n^{-1}\log d\right)$$

- In additive models, α identifies with smoothness modeling assumption
- \blacktriangleright In general, α is determined by the decay rate of eigenvalues of a kernel

$$\int K(s,t)\psi_m(s)d\Pi_X(s) = \lambda_m\psi_m(t) \Longrightarrow \lambda_m \sim m^{-2\alpha}$$

• $X \in \mathbb{R}^{d_0}$ and \mathcal{H} is Sobolev space of order $\beta - K(s,t) = k(s-t)$, where

$$\mathcal{F}(k)_m = (||m||^2 + 1)^{-\beta}, \quad m \in \mathbb{Z}^{d_0}$$

• Then
$$lpha=eta/d_0$$
 , leading to

optimal rate of convergence $n^{-2\beta/(2\beta+d_0)}$

• $\operatorname{supp}(\Pi_X) \subset \mathbb{R}^{d_1}$ where $d_1 < d_0$, then $\alpha = (\beta - (d_0 - d_1)/2)/d_1$ optimal rate of convergence $n^{-(2\beta - (d_0 - d_1))/(2\beta - d_0 + 2d_1)}$ α is not known even if K_i s are known

ADAPTIVE TUNING

Gram matrix

$$G_j = \left(n^{-1}K_j(X_i, X_l)\right)_{n \times n}$$

▶ Eigenvalue decomposition $\hat{\rho}_1 \geq \hat{\rho}_2 \geq \dots$

$$\lambda_{j} = c\hat{\eta}(K_{j}) \sim n^{-2\alpha/(2\alpha+1)}$$
$$\hat{\eta}(K_{j}) = \left\{ \eta \ge (n^{-1}\log p)^{1/2} : \left(\frac{1}{n}\sum_{k\ge 1}\hat{\rho}_{k} \wedge \delta^{2}\right)^{1/2} \le \eta\delta + \eta^{2}, \forall \delta \in [0,1] \right\}$$

- Choice motivated by study of Rademacher process (Mendelson, 2002)
- Excess risk bound

$$\mathcal{E}(\hat{f}) \le Cs\left(n^{-2\alpha/(2\alpha+1)} + \frac{\log d}{n}\right)$$

SUMMARY

- A number of common techniques can be formulated in a unified framework
- The unified framework gives insight to the connection among methods and allows systematic study of different methods
- Sparse recovery is possible with ℓ_1 type regularization if $\log d = o(n)$ for a large class of model
- Similarity and difference between finite and infinite dimensional dictionaries
- More efficient approach with double penalization separating model selection from smoothing