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Outline

▶ What – Markowitz optimization enigma (Michaud, 1998)
▶ How – Subspace mean-variance analysis
▶ Why – Asymptotic efficiency
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Markowitz Optimization Enigma 1. Markowitz optimization enigma

Mean-Variance Analysis

min
w∈RN

wTΣw subject to w⊤E = µ, w⊤1l = 1

▶ Investment universe
r ∈ RN

E(r) = E var(r) = Σ

▶ Tangency portfolio

wtp =
Σ−1E

1l⊤Σ−1E

▶ Sharpe ratio

s(wtp) = (E⊤Σ−1E)1/2
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Markowitz Optimization Enigma 1. Markowitz optimization enigma

The Markowitz Optimization Enigma
wtp =

Σ−1E

1l⊤Σ−1E
=⇒ ŵtp =

Σ̂−1Ê

1l⊤Σ̂−1Ê

▶ Classical econometric theory

small N =⇒ Σ̂ ≈T Σ

Ê ≈T E

}
=⇒ ŵtp ≈T wtp =⇒ s(ŵtp) ≈T s(wtp)

▶ Lackluster performance in practice
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Markowitz Optimization Enigma 1. Markowitz optimization enigma

Is Optimized Optimal

▶ Improved moment estimators
• Factor models – e.g., McKinlay and Pastor (2000)
• Shrinkage – e.g., Jorion, 1986; Ledoit and Wolf (2004)

▶ Estimated minimum variance portfolio
• “Minimum-variance portfolio usually performs better out of

sample than mean-variance portfolios – even when performance
measure depends on variance and mean”
– DeMiguel, Garlappi and Uppal (2009)

▶ Impose short-sale constraints
• “Sample covariance matrix (with shortsale constraints) performs

almost as well as those constructed using factor models, shrinkage
estimators or daily returns”
– Jagannathan and Ma (2003)

▶ “Naïve” diversification – DeMiguel, Garlappi and Uppal (2009). . . . . .
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Markowitz Optimization Enigma 1. Markowitz optimization enigma

Are we back to square one?

▶ Difficulty

estimate E,Σ ≫ estimate wtp ≫ achieve optimal Sharpe ratio

▶ Occam’s razor – when N is large
• “Impossibility” in accurate estimation of E and Σ
• “Extreme difficulty” in accurate estimation of wtp

• But it is possible to achieve optimal Sharpe ratio

▶ “Asymptotic” efficient portfolio selection

s(ŵ) ≈T,N s(wtp) =: sopt
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Markowitz Optimization Enigma 2. Subspace mean-variance analysis

Subspace Mean-Variance Analysis

min
w∈P

w⊤Σw subject to w⊤E = µ, w⊤1l = 1

▶ Subspace “Tangency portfolio”

wP
tp =

PP
(
P⊤
P ΣPP

)−1
P⊤
P E

1l⊤PP
(
P⊤
P ΣPP

)−1
P⊤
P E

▶ “Optimal” Sharpe ratio

s(wP
tp) =

{
E⊤PP

(
P⊤
P ΣPP

)−1
P⊤
P E

}−1

▶ Examples
• dim(P) = 1 – Naïve diversification, value weighted porfolio, . . . . . .
• dim(P) = N – Tangency portfolio
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Markowitz Optimization Enigma 2. Subspace mean-variance analysis

A Tale of Two Errors

s(ŵP
tp)− sopt =

[
s(ŵP

tp)− s(wP
tp)

]
︸ ︷︷ ︸

Estimation Error

+
[
s(wP

tp)− sopt
]︸ ︷︷ ︸

Systematic Error

dim(P)

E
rr

o
r

Suboptimality
Estimation Error
Systematic Error

▶ When dim(P) is small
• Easy to estimate – Estimation

Error is small
• Choice may be suboptimal –

Systematic Error could be large

▶ When dim(P) is large
• Difficult to estimate – Curse of

dimensionality
• Systematic Error is small
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Markowitz Optimization Enigma 2. Subspace mean-variance analysis

Constructing A sequence of P
▶ Construction

• Compute the sample covariance matrix
• Construct the linear subspace P̂

P̂ = l.s.{1l,v1, . . . ,vK−1}

where vk is the kth eigenvector of Σ̂
• Construct the subspace tangency portfolio in P̂:

ŵP̂
tp =

PP̂

(
P⊤
P̂ Σ̂PP̂

)−1

P⊤
P̂ Ê

1l⊤PP̂

(
P⊤
P̂
Σ̂PP̂

)−1

P⊤
P̂
Ê
.

▶ P̂1 ⊂ P̂2 ⊂ . . . ⊂ P̂N

• P̂1 leads to naïve diversification
• P̂N leads to sample tangency portfolio
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Markowitz Optimization Enigma 2. Subspace mean-variance analysis

Can we do better than 1/N?

▶ Fama-French portfolios formed on Size and Book-to-Market –
2× 3, 5× 5, 10× 10

▶ Period: 50 years (01/01/1961 – 12/31/2010)
▶ Black – T = 120 months Red – T = 180 Green – T = 240
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Markowitz Optimization Enigma 3. Asymptotic efficiency

Structure of Asset Returns

▶ Approximate factor model

rjt = Ej+βj1f1t+. . .+βjKfKt+εjt, j = 1, . . . , N ; t = 1, . . . , T

▶ Beta pricing relationship

Ej = αj + βj1µ
f
1 + . . .+ βjKµf

K , j = 1, 2, . . . , N

• Introduced by Chamberlain and Rothchild (1983)
• Detailed discussion in Connor, Goldberg and Korajczyk (2010)
• No arbitrage ⇐⇒ α⊤α is bounded – Huberman (1982)
• Examples – CAPM, APT

▶ Idiosyncratic noise
• Weakly temporal dependence – e.g., α-mixing
• Allow cross-section dependence – Σε has eigenvalues bounded

away from 0 and ∞
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Markowitz Optimization Enigma 3. Asymptotic efficiency

How to Choose P

▶ Best choice – P∗ = [β1, . . . ,βK ]

▶ Second best choice – P = leading eigenspace of Σ := cov(r)

▶ Feasible choice – P̂ = leading eigenspace of Σ̂
▶ Estimated subspace tangency portfolio

ŵP̂
tp =

PP̂

(
P⊤
P̂ Σ̂PP̂

)−1

P⊤
P̂ Ê

1l⊤PP̂

(
P⊤
P̂
Σ̂PP̂

)−1

P⊤
P̂
Ê

▶ Error analysis

s(ŵP̂
tp)−s(wtp) =

[
s(ŵP̂

tp)− s(wP̂
tp)

]
︸ ︷︷ ︸

Estimation Error I

+
[
s(wP̂

tp)− s(wP
tp)

]
︸ ︷︷ ︸
Estimation Error II

+
[
s(wP

tp)− s(wtp)
]

︸ ︷︷ ︸
Systematic Error
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Markowitz Optimization Enigma 3. Asymptotic efficiency

Asymptotic Efficiency

s(ŵP̂
tp) ≈N,T s(wtp)

▶ Estimation Error I
• Suffices to estimate P⊤

P̂ ΣPP̂ and P⊤
P̂ E

• Classical large sample analysis – s(ŵP̂
tp)− s(wP̂

tp) ≈T 0

▶ Estimation Error II
• High dimensional data analysis – Large T and N

s(wP̂
tp) ≈N,T s(wP

tp)

▶ Systematic Error – Effect of large market

s(wP
tp) ≈N s(wtp)
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Markowitz Optimization Enigma 3. Asymptotic efficiency

Numerical Experiments
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▶ 3 factor model calibrated
▶ Black – Tangency portfolio
▶ Red – Estimated subspace TP

▶ Green – Estimated TP
▶ Light blue – Naïve
▶ Blue – Estimated MV

16



Markowitz Optimization Enigma 3. Asymptotic efficiency

Summary

▶ As the size of the investment universe increases, plug-in strategy
becomes less efficient for implementing mean-variance portfolio

▶ Estimation error and systematic error trade-off can be balanced
through subspace mean-variance analysis

▶ Under approximate factor model, it is possible to achieve
asymptotic efficient portfolio selection even with a large number
of assets
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