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OUTLINE

» What — Markowitz optimization enigma (Michaud, 1998)
» How — Subspace mean-variance analysis

» Why — Asymptotic efficiency



Markowitz Optimization Enigma
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MEAN-VARIANCE ANALYSIS
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THE MARKOWITZ OPTIMIZATION ENIGMA
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» Lackluster performance in practice
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Is OPTIMIZED OPTIMAL

Improved moment estimators

e Factor models — e.g., McKinlay and Pastor (2000)
e Shrinkage — e.g., Jorion, 1986; Ledoit and Wolf (2004)

v

» Estimated minimum variance portfolio
o “Minimum-variance portfolio usually performs better out of
sample than mean-variance portfolios — even when performance

measure depends on variance and mean’
— DeMiguel, Garlappi and Uppal (2009)

Impose short-sale constraints

v

o “Sample covariance matriz (with shortsale constraints) performs
almost as well as those constructed using factor models, shrinkage
estimators or daily returns’

— Jagannathan and Ma (2003)

» “Naive” diversification — DeMiguel, Garlappi and Uppal (2009)......
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ARE WE BACK TO SQUARE ONE?

» Difficulty
estimate F/, ¥ >> estimate w¢, > achieve optimal Sharpe ratio

» Occam’s razor — when N is large

e “Impossibility” in accurate estimation of £ and X
o “Extreme difficulty” in accurate estimation of wyp
e But it is possible to achieve optimal Sharpe ratio

» “Asymptotic” efficient portfolio selection

s(w) ~r,N s(Wip) =1 Sopt
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Subspace Mean-Variance Analysis
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SUBSPACE MEAN-VARIANCE ANALYSIS

min w ' Yw subject tow ' E=p, w'l=1
weP

» Subspace “Tangency portfolio”

»  Pp(PisPp) ' PIE
tp —

17 Pp (PLSPp) ' PLE

» “Optimal” Sharpe ratio

1 -1
s(wl) = {ETPP (PAsPp) P;E}
» Examples
e dim(P) = 1 — Naive diversification, value weighted porfolio, . .....
e dim(P) = N — Tangency portfolio
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Error

MAarkowITZ OPTIMIZATION ENIGMA 2. SUBSPACE MEAN-VARIANCE ANALYSIS

A TALE oF Two ERRORS

s(wh) = sope = [s(wh) = s(wly)] + [s(wh) = sop]
—_—

Systematic Error

Estimation Error

» When dim(P) is small

— Suboptimality . . .
- - Estimation Error e Fasy to estimate — Estimation
-+ Systematic Error Error is small

e Choice may be suboptimal —
Systematic Error could be large

» When dim(P) is large
e Difficult to estimate — Curse of

dimensionality
e Systematic Error is small
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CONSTRUCTING A SEQUENCE OF P

» Construction

e Compute the sample covariance matrix
e Construct the linear subspace P

75 = l.s.{]l,vl, AN ,’UK_1}

where vy, is the kth eigenvector of by
e Construct the subspace tangency portfolio in P:

Py (PLSPs) TR

Wy

P N —1 -
1Py (PISPs)  PLE
> 751 C7§2C...C75N
° 751 leads to nalve diversification

o Py leads to sample tangency portfolio
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CAN WE DO BETTER THAN 1/N?

» Fama-French portfolios formed on Size and Book-to-Market —
2x3, 5Hx5, 10x10

» Period: 50 years (01/01/1961 — 12/31,/2010)

» Black — T'= 120 months Red — T =180 Green — T = 240
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Asymptotic Efficiency



MARKOWITZ OPTIMIZATION ENIGMA ——— 3. ASYMPTOTIC EFFICIENCY
STRUCTURE OF ASSET RETURNS

» Approximate factor model
rje = Ej+Bi1 fut. . +Bjk fri+es, Jj=1...,N; ¢t=1,....T
» Beta pricing relationship

Ej:aj+ﬁj1[£{—|—...+ﬁj}(/.t{(, ij=12...,N

Introduced by Chamberlain and Rothchild (1983)

Detailed discussion in Connor, Goldberg and Korajczyk (2010)
No arbitrage <= o o is bounded — Huberman (1982)
Examples — CAPM, APT

» Idiosyncratic noise

e Weakly temporal dependence — e.g., a-mixing
e Allow cross-section dependence — ¥, has eigenvalues bounded
away from 0 and oo
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How 1O CHOOSE P

Best choice — P* = [B4,...,Bk]
Second best choice — P = leading eigenspace of X := cov(r)

Feasible choice — P = leading eigenspace of 3

vV v . v Y

Estimated subspace tangency portfolio

s Pp(PISP) oy

wtp =

1
= 5 X
1Py (PISPs)  PLE

» Error analysis

s(l)—s(wep) = [s(@h) = s(wl)| + [s(wh) — s(wh)] + [s(w]) — s(w)]

Estimation Error I Estimation Error II Systematic Error
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ASYMPTOTIC EFFICIENCY

s(wh) ~nr s(wep)

» Estimation Error I

e Suffices to estimate Pg Y Pp and Pg E

o Classical large sample analysis — s('&;;’i) — s(w&) ~r 0

» Estimation Error II
e High dimensional data analysis — Large T and N

s(wiy) =y s(wiy)
» Systematic Error — Effect of large market

s(wfy) ~n s(wip)
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NUMERICAL EXPERIMENTS
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» 3 factor model calibrated » Green — Estimated TP
» Black — Tangency portfolio > — Naive
» Red — Estimated subspace TP » Blue — Estimated MV
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SUMMARY

» As the size of the investment universe increases, plug-in strategy
becomes less efficient for implementing mean-variance portfolio

» Estimation error and systematic error trade-off can be balanced
through subspace mean-variance analysis

» Under approximate factor model, it is possible to achieve
asymptotic efficient portfolio selection even with a large number
of assets
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