Detection of Very Short Signal Segments

Ming Yuan

Morgridge Institute for Research
and
Department of Statistics
University of Wisconsin-Madison
myuan@stat.wisc.edu
http://www.stat.wisc.edu/~myuan

(Joint work with Tony Cai)
1. Introduction

Copy Number Variation

[Xie and Tammi, 2009]
1. Introduction

PEAK DETECTION

![Coverage in Chromosome 1](image1)

![Coverage in Chromosome 1](image2)
Astronomy

Structured Signal Detection

\[X_i = \mu_i + \varepsilon_i, \quad i = 1, 2, \ldots, n \]

- Without signal
 \[\mu_1 = \mu_2 = \ldots = \mu_n = 0 \]

- With signals located at unknown segments \(S = \{S_j = (a_j, b_j]\} \)
 \[\mu_i = \begin{cases}
 f_j((i - a_j)/(b_j - a_j)) & \text{if } i \in S_j \\
 0 & \text{otherwise}
\end{cases} \]

 - Short signal – \(|S_j| < n^\xi \) for some \(\xi < 1 \)

- Examples
 - Biology – Copy number variation
 - Engineering – Peak detection
 - Astronomy – Detecting planets (see, e.g., Fabrycky et al., 2012)
 -
Structured signal detection

1. Introduction

Detection of Signals

- Hypothesis testing $H_0 : \mu_i = 0$ vs

$$H_a : \mu_i = \begin{cases} f((i - a)/(b - a)) & \text{if } i \in S := (a, b] \\ 0 & \text{otherwise} \end{cases}$$

- Questions of interests
 - When is a signal detectable?
 - How to detect a “detectable” signal?

- Determining factors
 - Signal amplitude – $A = \|f\|_{L_2}$
 - Signal duration – $d = b - a$
1. Introduction

Effect of Amplitude
1. Introduction

Effect of Duration

[Diagrams showing data distribution and analysis]
Optimal Rates of Detection

- Signal of known shape
 \[A_n^2 \asymp d_n^{-1} \log n \]

- Signal of arbitrary shape
 \[A_n^2 \asymp d_n^{-1} \log + \sqrt{d_n^{-1} \log n} \]

- Signal of smooth shape
 - Hölder class with \(\alpha = 1 \)
 - \(\alpha = \frac{1}{5} \)
Signals with Known Shape

\[f_n(\cdot) = A_n f_0(\cdot) \quad \text{where} \quad \int_0^1 f_0^2 = 1 \]

- Constant signals – Arias-Castro et al. (2004), Jeng et al. (2004)....
- Known position and duration – Likelihood ratio type test
 \[L(a_n, a_n + d_n) := \left(\sum_i f_0^2(i/d_n) \right)^{-1/2} \sum_{i=1}^{d_n} X_{a_n+i} f_0 \left(\frac{i}{d_n} \right) \]
- Unknown position and duration – scan statistic
 \[L_n = \max_{a_n, d_n} L(a_n, a_n + d_n) \implies T_n := \begin{cases} \text{reject } H_0 & \text{if } L_n \geq c_n \\ \text{accept } H_0 & \text{otherwise} \end{cases} \]
- With critical value \(c_n = c_0 \sqrt{\log n} \), \(T_n \) can detect any signal such that
 \[A_n^2 \gtrsim d_n^{-1} \log(n/d_n) \]
Optimality

Optimal rate of detection: \(A_n^2 \asymp d_n^{-1} \log(n/d_n) \)

- Detection is achievable with \(A_n^2 \gtrsim d_n^{-1} \log(n/d_n) \)

\[
\mathbb{P}(T_n = 1|H_0) + \sup_{H_1} \mathbb{P}(T_n = 0|H_1) \to 0.
\]

- For signals with \(A_n^2 \lesssim d_n^{-1} \log(n/d_n) \), any test is powerless in that

\[
\inf_{\tilde{T}} \left\{ \mathbb{P}(\tilde{T} = 1|H_0) + \sup_{H_1} \mathbb{P}(\tilde{T} = 0|H_1) \right\} \to 1.
\]

- Effect of multiplicity
 - Known location – \(d_n^{-1} \)
 - Price for not knowing the location – \(\log n \)
3. Arbitrary Signal

Signals with Arbitrary Shape

- Evidence based on quadratic statistic

\[L(a_n, a_n + d_n) := 2^{-1/2} (d_n^{1/2} + \log^{1/2} n)^{-1} \sum_{i=1}^{d_n} (X_{a_n+i}^2 - 1) \]

- Scan over all possible segments

\[L_n = \max_{a_n, d_n} L(a_n, a_n + d_n) \implies T_n := \begin{cases} \text{reject } H_0 & \text{if } L_n \geq c_n \\ \text{accept } H_0 & \text{otherwise} \end{cases} \]

- \(T_n \) (\(c_n = c_0 \sqrt{\log n} \)) can detect any signal such that

\[A_n^2 \gtrsim \left(\frac{\log n}{d_n} \right) + \left(\frac{\log n}{d_n} \right)^{1/2} \]

- For short signals \((d_n \ll \log n)\) – \(A_n^2 \gtrsim d_n^{-1} \log n \)
- For long signals \((d_n \gg \log n)\) – \(A_n^2 \gtrsim (d_n^{-1} \log n)^{1/2} \)
Optimality

The optimal rate of detection is given by:

$$ A_n^2 \gtrsim d_n^{-1} \log(n) + (d_n^{-1} \log(n))^{1/2} $$

- **Every** test is powerless if

 $$ A_n^2 \lesssim \left(\frac{\log n}{d_n} \right) + \left(\frac{\log n}{d_n} \right)^{1/2} $$

- **Adversarial case** – signal is random ± A_n

- **Comparison with signals of known shape**

<table>
<thead>
<tr>
<th>Known</th>
<th>Arbitrary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \lesssim \log n$</td>
<td>$A_n^2 \gtrsim d^{-1} \log n$</td>
</tr>
<tr>
<td>$d \gtrsim \log n$</td>
<td>$A_n^2 \gtrsim d^{-1} \log n$</td>
</tr>
</tbody>
</table>

- **Effect of multiplicity** – only $\sqrt{\log n}$ when $d \gtrsim \log n$
3. Arbitrary Signal

Linear vs Quadratic Scan

The figure above illustrates the comparison between linear and quadratic scans in signal detection. The top graph shows a scattering plot with a linear scan, while the bottom graph presents a score plot for the quadratic scan. The red box highlights a specific region of interest where the difference between the two scans is evident.
Smooth Signals

- f_n is α times differentiable in that

\[|f^{(\lfloor \alpha \rfloor)}(x) - f^{(\lfloor \alpha \rfloor)}(x')| \leq L|x - x'|^{\alpha - \lfloor \alpha \rfloor} \]

- Optimal rate of detection
 - Determining factors – amplitude, duration and degree of smoothness

- How to scan for smooth signal – combining linear and quadratic statistics
 - Linear statistics most powerful if signal is almost constant
 - Quadratic statistics most powerful if signal changes rapidly
Scan for Smooth Signals

- Divide the segment \((a_n, b_n]\) into \(l\) bins, each of size \(m = d_n/l\)
- Average within each bin
 \[
 Y_j := m^{-1/2} \sum_{i=1}^{m} X_{a_n + (j-1)m + i}
 \]
- Gather evidence through
 \[
 (l^{1/2} + \log^{1/2} n)^{-1} \sum_{j=1}^{l}(Y_j^2 - 1)
 \]
- Scan over all putative intervals –
 \[
 L_n = \max_{a_n, d_n} L(a_n, b_n]
 \]
HOW MANY BINS?

- if $\alpha \geq 1/4$
 - If $d_n \leq \log n$
 $$l = d_n$$
 - If $\log n < d_n \leq (\log n)^{2\alpha+1}$
 $$l = \log n$$
 - If $d_n > (\log n)^{2\alpha+1}$
 $$l = d_n^{1/(4\alpha+1)} (\log n)^{-\frac{1}{4\alpha+1}}$$

- if $\alpha < 1/4$ – an extra change
 - If $d_n > (\log n)^{\frac{1}{1-4\alpha}}$
 $$l = d_n$$
OPTIMAL RATE OF DETECTION

With critical value $c_n = c_0 \sqrt{\log n}$, detect α times differentiable signals such that

- if $\alpha \geq 1/4$

 $$A_n^2 \gtrsim \begin{cases}
 d_n^{-1} \log n & \text{if } d_n = O((\log n)^{2\alpha+1}) \\
 d_n^{-\frac{4\alpha}{4\alpha+1}} (\log n)^{\frac{2\alpha}{4\alpha+1}} & \text{if } d_n \gg (\log n)^{2\alpha+1}
 \end{cases}$$

- if $\alpha < 1/4$

 $$A_n^2 \gtrsim \begin{cases}
 d_n^{-1} \log n & \text{if } d_n = O((\log n)^{2\alpha+1}) \\
 d_n^{-\frac{4\alpha}{4\alpha+1}} (\log n)^{\frac{2\alpha}{4\alpha+1}} & \text{if } (\log n)^{2\alpha+1} \ll d_n \ll (\log n)^{1/(1-4\alpha)} \\
 (d_n^{-1} \log n)^{1/2} & \text{if } d_n \gg (\log n)^{1/(1-4\alpha)}
 \end{cases}$$

Compared with the case when the location of signal is known in advance (Ingster)

$$A_n^2 \gtrsim d_n^{-\frac{4\alpha}{4\alpha+1}}$$
Effect of “Binning”
5. Summary

SUMMARY

- Detection of sparse signal segments is a common problem in many high dimensional problems
- Detectability of sparse segments depends on the signal strength, duration, and shape
- Rate optimal detection can be achieved with scan statistics
 - Scan with linear statistics for signal of known shape
 - Scan with quadratic statistics for signal of arbitrary shape
 - Combining linear and quadratic statistics for signals of smoothness
- Ongoing work
 - Adaptation
 - Beyond normality