Low Rank Tensor Methods in High Dimensional Data Analysis

Ming Yuan

Department of Statistics
Columbia University
ming.yuan@columbia.edu
http://www.columbia.edu/~my2550

Tensor Everywhere

- Computational biology [Cartwright et al. 2009]
- Computer graphics [Vasilescu and Terzopoulos 2004]
- Computer vision [Shashua and Hazan 2005]
- Neuroimaging [Schultz and Seidel 2008]
- Pattern recognition [Vasilescu 2002]
- Phylogenetics [Allman and Rhodes 2008]
- Quantum computing [Miyake and Wadati2002]
- Scientific computing [Beylkin and Mohlenkamp 1997]
- Signal processing [Comon 1994; 2004]
- Spectroscopy [Smilde et al. 2004]
- Wireless communication [Sidiropoulos et al. 2000]
-

Matrix

Higher order tensor
High dimensional data analysis

New Challenges

- Conceptual
- Computational
-

Ranks, eigenvalues, singular value decomposition

"Most tensor problems are NP hard" [Hillar and Lim, 2013]

Outline

My focus - effect of randomness and high dimensionality

- How they change the nature of the problem
- How they may influence our approach to the problem

More specifically,

- Tensor PCA [Based on joint work with Tianqi Liu and Hongyu Zhao]
- Tensor Completion
- Tensor Sparsification
- Tensor Regression
-

Spatio-Temporal Transcriptome of the Brain

Period	Description	Age
1	Embryonic	$4 \mathrm{PCW} \leq$ Age $<8 \mathrm{PCW}$
2	Early fetal	$8 \mathrm{PCW} \leq$ Age $<10 \mathrm{PCW}$
3	Early fetal	$10 \mathrm{PCW} \leq$ Age $<13 \mathrm{PCW}$
4	Early mid-fetal	$13 \mathrm{PCW} \leq$ Age $<16 \mathrm{PCW}$
5	Early mid-fetal	$16 \mathrm{PCW} \leq$ Age $<19 \mathrm{PCW}$
6	Late mid-fetal	$19 \mathrm{PCW} \leq$ Age $<24 \mathrm{PCW}$
7	Late fetal	$24 \mathrm{PCW} \leq$ Age $<38 \mathrm{PCW}$
8	Neonatal and early infancy	$0 \mathrm{M}($ birth $) \leq$ Age $<6 \mathrm{M}$
9	Late infancy	$6 \mathrm{M} \leq$ Age $<12 \mathrm{M}$
10	Early childhood	$1 \mathrm{Y} \leq$ Age $<6 \mathrm{Y}$
11	Middle and late childhood	$6 \mathrm{Y} \leq$ Age $<12 \mathrm{Y}$
12	Adolescence	$12 \mathrm{Y} \leq$ Age $<20 \mathrm{Y}$
13	Young adulthood	$20 \mathrm{Y} \leq$ Age $<40 \mathrm{Y}$
14	Middle adulthood	$40 \mathrm{Y} \leq$ Age $<60 \mathrm{Y}$
15	Late adulthood	$60 \mathrm{Y} \leq$ Age

[Kang et al., 2011]

Low Rank Tensor Approximation

- Alternating least squares [e.g., Kolda and Bader, 2009]
- Smooth optimization methods - Newton methods [e.g., Zhang and Golub, 2011]
- Semidefinite relaxation - sum of squares hierarchy [e.g., Nie and Wang, 2014]
- Spectral - Higher order SVD [De Lathauwer, De Moor and Vandewalle, 2000]

Tensor PCA

Unexpected difficulties

- Different methods yield different results
- It is ill posed for a nontrivial set of tensors [de Silva and Lim, 2008]
- It is NP hard in general [Hillar and Lim, 2013]

What do we do?

- Interpretability - Is it really worth the while?
- Estimability - Is it possible to extract the signal?
- Feasibility - Is it computable for large-scale data?

Just Another PCA?

Tensor PCA:

Classical PCA:

Interpretability, Interpretability, Interpretability!

- Identifiability - up to permutation and scaling
- Kruskal rank - largest k such that any k column vectors are linear independent

The $P C s \boldsymbol{a}_{j} \mathrm{~s}, \boldsymbol{b}_{j} \mathrm{~s}$, and \boldsymbol{c}_{j} s are identifiable if

$$
\kappa_{a}+\kappa_{b}+\kappa_{c} \geq 2 R+2
$$

[Kruskal, 1977]

Estimability?

- Consider a simple signal+noise models

$$
\boldsymbol{X}=\boldsymbol{T}+\boldsymbol{E}, \quad e_{i j k} \sim_{\mathrm{iid}} N(0,1)
$$

- MLE - best low rank approximation:

$$
\widehat{T}^{\mathrm{MLE}}=\underset{\operatorname{rank}(A) \leq R}{\arg \min }\|X-A\|_{\mathrm{F}}^{2}
$$

- How well does it work - Best low rank approximation may not exist

$$
\begin{array}{r}
n\left(\boldsymbol{u}+\frac{1}{n} \boldsymbol{v}\right) \otimes\left(\boldsymbol{u}+\frac{1}{n} \boldsymbol{v}\right) \otimes\left(\boldsymbol{u}+\frac{1}{n} \boldsymbol{v}\right) \\
-n \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{u} \\
\rightarrow \boldsymbol{u} \otimes \boldsymbol{u} \otimes \boldsymbol{v}+\boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{u}+\boldsymbol{v} \otimes \boldsymbol{u} \otimes \boldsymbol{u}
\end{array}
$$

[Kolda and Bader, 2009]

Universal Unestimability

- Signal: $T \in \mathbb{R}^{2 \times 2 \times 2}$ such that $\operatorname{rank}(T)=2$. For any such T

$$
\pi=\mathbb{P}\left\{\widehat{T}^{\mathrm{MLE}} \text { is not well defined }\right\}>0
$$

- An example - It is about signal to noise ratio, but

$$
\begin{gathered}
\boldsymbol{X}=\underbrace{\lambda\left(\boldsymbol{e}_{1}^{\otimes 3}+e_{2}^{\otimes 3}\right)}_{T: \text { signal }}+\boldsymbol{E} \\
\pi \rightarrow 0 \quad \text { if and only if } \quad \lambda \rightarrow \infty
\end{gathered}
$$

- Dead end?

Tensor PCA

- Impose orthogonality

$$
\mathrm{ODT}=\left\{\sum_{j} \lambda_{j} a_{j} \otimes \boldsymbol{b}_{j} \otimes c_{j}: a_{j}^{\top} \boldsymbol{a}_{j^{\prime}}=\boldsymbol{b}_{j}^{\top} \boldsymbol{b}_{j^{\prime}}=\boldsymbol{c}_{j}^{\top} c_{j^{\prime}}=\delta_{j j^{\prime}}\right\}
$$

- MLE

$$
\widehat{\boldsymbol{T}}^{\mathrm{MLE}}=\underset{A \in \operatorname{ODT}, \operatorname{rank}(A) \leq R}{\arg \min }\|\boldsymbol{X}-\boldsymbol{A}\|_{\mathrm{F}}^{2}
$$

Well-defined but NP hard to compute!

Statistical/Computational Tradeoff

$$
\boldsymbol{X}=\lambda \boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}+\boldsymbol{E}, \quad e_{i j k} \sim_{\mathrm{iid}} N(0,1)
$$

- Dimension $-d$, signal strength $-\lambda=d^{\xi}$
- Minimax optimal estimator: best rank-one approximation

$$
\|\widehat{\boldsymbol{u}} \otimes \widehat{\boldsymbol{v}} \otimes \widehat{\boldsymbol{w}}-\boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}\|_{\mathrm{F}}^{2} \sim d^{1-2 \xi}
$$

- Feasible estimator: polynomial time computability

Why is it difficult?

$$
\langle\boldsymbol{X}, \boldsymbol{x} \otimes \boldsymbol{y} \otimes \boldsymbol{z}\rangle \rightarrow \max
$$

- Polynomial optimization
- Very smooth but highly nonconvex
- If we can get close to global optimum,...

Spectral initialization

Higher order SVD

With noise

Consistent but suboptimal if $\lambda \gg d^{3 / 4}$

Power Iteration

- Let $\boldsymbol{a}^{[m]}=\boldsymbol{a} /\|\boldsymbol{a}\|$ where

$$
\boldsymbol{a}=\boldsymbol{X} \times_{2} \boldsymbol{b}^{[m-1]} \times{ }_{3} \boldsymbol{c}^{[m-1]}-\boldsymbol{a}^{[m-1]} ;
$$

- Let $\boldsymbol{b}^{[m]}=\boldsymbol{b} /\|\boldsymbol{b}\|$ where

$$
\boldsymbol{b}=\boldsymbol{X} \times_{1} \boldsymbol{a}^{[m]} \times{ }_{3} \boldsymbol{c}^{[m-1]}-\boldsymbol{b}^{[m-1]} ;
$$

- Let $\boldsymbol{c}^{[m]}=\boldsymbol{c} /\|\boldsymbol{c}\|$ where

$$
\boldsymbol{c}=\boldsymbol{X} \times_{1} \boldsymbol{a}^{[m]} \times{ }_{2} \boldsymbol{b}^{[m-1]}-\boldsymbol{c}^{[m-1]} .
$$

Spatio-Temporal Transcriptome of the Brain

More General Treatment

-

- Effective Tensor Sketching via Sparsification (with D. Xia), 2017
- Characterizing Spatiotemporal Transcriptome of Human Brain via Low Rank Tensor Decomposition (with T. Liu and H. Zhao), 2017.
http://www.columbia.edu/~my2550/project.html\#tensor

Real applications are more complex but the message remains:

- Do not always rely on intuition from matrices
- Identify "easier" cases so that we can develop more efficient methods

