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DATA IN THE FORM OF MULTILINEAR ARRAY

Xi

» Spatio-temporal expression data

X lj

Xijk

[e.g. Kang et al. (2011); Parikshak et al. (2013); Hawrylycz et al. (2015)]

» Imaging (video) data — 3D images, hyper-spectral, and etc.
[e.g. Liu et al. (2009); Li and Li (2010); Gandy et al. (2011); Semerci et al. (2014)]

» Relational data, recommender system, text mining and etc.
[e.g. Cohen and Collins (2012); Dunlavy et al. (2013); Barak and Moitra (2016)]

» Latent variable models — topic models, phylogenetic tree, and etc.

[e.g. Anandkumar et al. (2014)]
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New CHALLENGES

» Algebraic: best low rank approximation may not exist!
[e.g. de Silva and Lim (2008)]

» Computational: most computations are NP hard!
[e.g. Hillar and Lim (2013)]

» Probabilistic: different concentration behavior.
[e.g. Y. and Zhang (2016)]

This talk: implications in tensor completion
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OVERVIEW

1. Problem
2. Convex Methods
3. Non-convex Methods

Summary
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OVERVIEW

1. Problem
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TENSOR COMPLETION

» Interested in T € R%*xd
e T is of high dimension (d;s large)
o T is (approximately) low rank

» Partial observations:
Yi:T(wi)+5i, i=1,...,n

To fix ideas:

e Cubictensors—dy = ---=dy =:d
e w;s are independently and uniformly
sampled
» Our goal:

o without noise — exact recovery
e with noise — rates of convergence
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Matrix CoMPLETION (k = 2)

» Also known as Netflix problem
» Incoherence: every observation carries similar amount of
information

d 2
u(U) = max |[Puei|
» Without measurement error — nuclear norm minimization:
mNiIn [|M]].. subject to M(w;) = T(w;) Vi
Exact recovery if:
n > rd - log(d)
» With measurement error — nuclear norm regularization:

?:argmin{ Z[M wi) = Yi* + \|M]. }
M

Estimation error:
~ 1 ~
MSE(T) = —|IT — T||% < rd - log(d)/n

[e.g., Candes and Recht (2008); Keshavan et al. (2009); Candes and Tao (2010); Gross (2011);
Negahban and Wainwright (2011); Recht (2011); Rohde and Tsybakov (2011); Koltchinskii et al.
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MurTiLINEAR RANKS

X%

d1><d2><d3 d1><1’1

d2><1’2

Cc

=| U

U,

1 X1 X713

Fibers — vectors obtained by
fixing two indices

i.e. mode-1 fibers: T(:,ia, ..., i)
Linear space spanned by fibers,
ie. ,Cl(T) = l.S.{T(:, iz, ceey ik) :
iy ik}

Multilinear ranks

rp = dlm(C](T))
Tucker decomposition
T=(U,... U)-C
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GEOMETRY OF Low RaNnk TENSORS

A(r) = {T e R?>4 . 1(T) <1} = G(d,r) x - x G(d,r) xR

k times

» Assume same multilinear ranks (r; = - - - = r3 =: r) for brevity
» Any T € A(r) —rank(T) € [r, 7"~ 1]

» Dimension of A(r) - O(r* + rd)

» Gold standard:

e Exact recovery with O(r* + rd) noiseless entries
e Estimation error of the order O, ((r* + rd)/n)

» For matrices: similar bounds are attainable with nuclear norm
minimization/regularization
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OVERVIEW

2. Convex Methods
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MATRICIZATION

» Tensor unfolding (matricization)

T € R4y Ay (T) € RIXE

» Nuclear norm minimization

3
Aerﬂ%ixr}xd Z; [ M;(A)]]. subject to A(w;) = T(w;), Vi
j=

» Sample size requirement
Q| > rd*polylog(d)

[e.g., Signoretto et al. (2010), Tomioka et al. (2010, 2011), Gandy et al. (2011)]
11/30




LET TENSORS BE TENSORS

Aerﬁbif}xd |All.  subject to A(w;) = T(w;), Vi

» Tensor nuclear norm
e Spectral norm

1Al =

= (A, u®@v® w)
llul|=llo]|=]lwl|=1
e Nuclear norm

Al = (Y, 4).

max
YERDxd:|Y]|<1
» Exact recovery with high probability if

n > (r'2d%? 1 r*d)polylog(d)
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How TO GET HERE

Find a dual certificate:
» in the subdifferential of 9| - ||..(T)
e characterizing sub-differential of tensor nuclear norm
» supported on {X1,...,X,}
e concentration inequalities for tensor martingales
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MaTtrix NucLEAR NORM

If M = UDVT, then

W = P WP
wi<1 } = X[l > M|l + (UVT + W, X — M)
P
P, Py =Py ® Py
P}/I ZPu®P‘J}
P]%/I ZPﬁ®PV

P = Pj; @ Py

[Watson, 1992]
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ProjecTioN

» Projection
PioP,® P3[A, B, C] = [PlA,PzB,PQ,C]

» Decomposition of space

Q% = P} ® P ® P5.

P Pi Qf =P}, ® P ® P}
Q2 :P%"®P%u ®P%~
L P Q} =Pr@PI®Pj.

1
_/ Pé‘ Q(I)"L:PTL®P§~J_®P;~J_

Q%m :P%"®P%‘L ®P;L
P3L Q%L:P;L®P%®P;L
Q%m :P%"J. ®P%"J_ ®P%~
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CHARACTERIZATION OF SUBDIFFERENTIAL

W = QiW and (T, W) = ||T|.

= |X|l. > |T|l« + W+ W-X-T
e a2 = 1 2+ )

» More complex geometry than matrix case
» For matrices || W | < 1 is sufficient and necessary
» For tensor |[W|| < 1/2 is only sufficient, not necessary:

O - [1(T) 2 {W + W™ - [W| <1/2}.

« For general kth order tensors, upper bound 1, lower bound 2/k(k — 1).
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CONCENTRATION OF TENSOR M ARTINGALE

With probability at least 1 — e,

[d4t d3t
5 HAHmax . ( 7 + 7) -pOlleg(d).

» Contributions from variance and maximum

P&
n

Z A(wi)e,- —A
i=1

e in matrix or vector case — variance dominates
e for higher order tensors — maximum dominates

» If A is incoherent, then ||A||max = O(d~%/?). Thus

1
< =
2

n > d*?polylog(d) implies

P&
7 ;A(wi)ei —A

* For general kth order tensors, second term d¥t /n.
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WHAT HAPPENS WHEN k > 37

» Following a similar argument leads to sample size requirement
n > d*/*polylog(d).
» It can be improved if we incorporate incoherence more explicitly:
n Z (V2P 441 d) (log(d))

e Depends on the order k only through the rank r
e If r = O(1), then the sample size requirement becomes

n 2 4 (log(d))?
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INcoHERENT NUCLEAR NORM MINIMIZATION

AER%QQ-W 11X ]«.0 subject to A(w;) = T(w;) i=1,....n

» Incoherent rank-one tensors: % (8) = Ui<j, <j,<k%,j,(d) where
%p(0) = {m @ @ue: lujlle, <1, Vi e, < 6.9 # a2}
» Incoherent tensor norms:

[Xl[o,s = sup (Y,X), 1Xl«.6 = sup (¥,X)
YEX (8) [1Ylo,6<1

» Encourages solution to be incoherent:

e In general, | X ||, < || X5
o If §; > 1j(X), then || X, = [ X||+.5
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OVERVIEW

3. Non-convex Methods
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PorLyNoMIAL-TIME METHODS?

» Gold standard is O(r® + rd)

» Matricization requires O(rd?)

» Nuclear norm minimization needs O(r'/2d%?2 + r2d)

» But tensor nuclear norm is NP hard to compute in the worst case
e Relaxation — theta norm, sum of squares relaxation
e Feasible in principle but do not scale well
e General performance guarantee unclear

» What about nonconvex methods?

e Success in some practical examples
e General performance guarantee unclear
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Do THEY WORK?

» Recall that we can write
A=Wy, Wy, W;) -G

If n > r¥polylog(d), the above minimization can be equivalently
expressed as

i Wy, Wy, W
Wl,Wzl,-rT/}/lsI;g(d,r)f( ! 2 3>

» Smooth optimization techniques to minimize f — practical
SUCCESSES [see, e.g., Vervliet et al., 2014; Kressner et al., 2014]

» But why?

If
n> (1’5/2d3/2 + r4d> - polylog(d)

then f is well-behaved in an incoherent neighborhood around truth
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WHAT EXACTLY IS THE PROBLEM?

Suppose we want to compute the spectral norm

» of a random matrix — at most d local optima

» of a random tensor — exp(£2(d)) local optima [Auffinger and Ben Arous
(2013)]

» Polynomial optimization

» Very smooth but highly
nonconvex

» If we can get close to global
optimum, ...

Pay a hefty price to get close, pay a little more to get exact!

23/30




INITIALIZATION

» f is minimized at the linear subspace of £1(T'), £,(T) and £3(T)
» A first attempt: random initialization — exponentially many tries
» A second attempt: spectral method

e L1(T) is the column space of My(T) € RAx#
e An unbiased estimate of M;(T) is

. 3
My(T) : < ZT wj ew,>

e Estimate £1(T) by applying SVD to the above estimate
e 1 >> d” to ensure closeness

» A third attempt: “second order” spectral method
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SECOND ORDER SPECTRAL METHOD

» L£(T) is also the eigen-space of S := M;(T)M;(T)" € R¥*?
» M (T)M:(T)T is a biased estimate
» Unbiased estimate — U-statistic

- s

S oy 2 T)T(@)Mi(ea) Mi(ey)”

i
» with probability at least 1 — e/,

N A2 92
2
”S - S” S HTHmax : ( n2 + n

> - polylog(d)

e Forincoherent T, ||S — §|| = 0,(1) if 1 >> d*/*polylog(d)
e Sharper concentration around S than M, (T) around M; (T)
» Consistent estimates iff

n> (rd2 4 1d) log d.
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ErrecTt oF NOISE

Yi:T(wi)—l-Ei, i=1,...,n
» More difficult — control the effect of noise

» But easier — suffices to get close to the target
» And subtlety — scaling

' 1~ R rdlog(d
i sp (GIT-TIL ) = (Tl + 00y "B,
T TE@(VU,B(J) n

provided that
n> (rd? +1d) log d.
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ErrecT OF INITIALIZATION AND POWER ITERATION

——U:d=50

=~ Naive:d=50 —o— U+Power:d=50

—T|s,
2
o
5

-2 [ | =9—U+Power:d=50

I

— —¥— U:d=80

-4 | =¥~ Naive:d=80
| | 8- U+Power:d=80

02| |[-Ud=100
01} —¥— U+Power:d=100

0.3+ | =8~ U+Power:d=80
0.2} | =6~ Naive:d=100
0.1} | —%—U+Power:d=100

0 . . 3 0 . . 3
1 1.5 2 25 1 1.5 2 25

a such that n = rd* a such that n = rd*
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A Data* ExamMpPLE

Origin: Output: RE=0.13
ori

MRI datasets: Relative Error by Sample Ratio and Noise Level

Original

Original

Original

0.5
0.6

0.4
o 1 Sample Ratio

Noise Level

* Taken from BrainWeb [Cocosco et al., 1997; 217 x 181 x 181].
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OVERVIEW

Summary
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CoNcLUDING REMARKS

Methods Tractable? | Sample size requirement
Matricization Yes O(rd?)
Nuclear Norm minimization No O(r'/2d%/2 + 12d)

» Polynomial-time methods with better dependence on d? Possibly
no.

e “Equivalence” to random k-SAT problem [Barak and Moitra (2016)]

» Polynomial-time methods with better dependence on r? I don'’t
know.

» Is it worth the while? Definitely yes!

° Regression [Chen, Raskutti and Y. (2015, 2016)]
e PCA [Liy, Y. and Zhao (2017)]
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