Low Rank Tensor Completion

Ming Yuan
Department of Statistics
Columbia University ming.yuan@columbia.edu
http://www.columbia.edu/~my2550

(Joint work with Dong Xia and Cun-hui Zhang)

DATA IN THE FORM OF MULTILINEAR ARRAY

- Spatio-temporal expression data [e.g. Kang et al. (2011); Parikshak et al. (2013); Hawrylycz et al. (2015)]
- Imaging (video) data - 3D images, hyper-spectral, and etc. [e.g. Liu et al. (2009); Li and Li (2010); Gandy et al. (2011); Semerci et al. (2014)]
- Relational data, recommender system, text mining and etc. [e.g. Cohen and Collins (2012); Dunlavy et al. (2013); Barak and Moitra (2016)]
- Latent variable models - topic models, phylogenetic tree, and etc. [e.g. Anandkumar et al. (2014)]

New Challenges

- Algebraic: best low rank approximation may not exist! [e.g. de Silva and Lim (2008)]
- Computational: most computations are NP hard!
[e.g. Hillar and Lim (2013)]
- Probabilistic: different concentration behavior.
[e.g. Y. and Zhang (2016)]

This talk: implications in tensor completion

Overview

1. Problem
2. Convex Methods
3. Non-convex Methods

Summary

Overview

1. Problem

2. Convex Methods

3. Non-convex Methods

Summary

Tensor Completion

- Interested in $T \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$
- T is of high dimension $\left(d_{j}\right.$ s large $)$
- T is (approximately) low rank
- Partial observations:

$$
Y_{i}=T\left(\omega_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

To fix ideas:

- Cubic tensors $-d_{1}=\cdots=d_{k}=: d$
- ω_{i} s are independently and uniformly sampled
- Our goal:
- without noise - exact recovery
- with noise - rates of convergence

Matrix Completion $(k=2)$

- Also known as Netflix problem
- Incoherence: every observation carries similar amount of information

$$
\mu(U)=\frac{d}{r} \max _{1 \leq i \leq d}\left\|\boldsymbol{P}_{U} \boldsymbol{e}_{i}\right\|^{2}
$$

- Without measurement error - nuclear norm minimization:

$$
\min _{M}\|M\|_{*} \quad \text { subject to } M\left(\omega_{i}\right)=T\left(\omega_{i}\right) \quad \forall i
$$

Exact recovery if:

$$
n \gg r d \cdot \log (d)
$$

- With measurement error - nuclear norm regularization:

$$
\widehat{T}=\underset{M}{\arg \min }\left\{\frac{1}{n} \sum_{i=1}^{n}\left[M\left(\omega_{i}\right)-Y_{i}\right]^{2}+\lambda\|M\|_{*}\right\}
$$

Estimation error:

$$
\operatorname{MSE}(\widehat{T}):=\frac{1}{d^{2}}\|\widehat{T}-T\|_{\mathrm{F}}^{2} \lesssim r d \cdot \log (d) / n
$$

[e.g., Candes and Recht (2008); Keshavan et al. (2009); Candes and Tao (2010); Gross (2011); Negahban and Wainwright (2011); Recht (2011); Rohde and Tsybakov (2011); Koltchinskii et al.

Multilinear Ranks

- Fibers - vectors obtained by fixing two indices
i.e. mode- 1 fibers: $T\left(:, i_{2}, \ldots, i_{k}\right)$
- Linear space spanned by fibers, i.e. $\mathcal{L}_{1}(T)=1$.s. $\left\{T\left(:, i_{2}, \ldots, i_{k}\right)\right.$: $\left.i_{2}, \ldots, i_{k}\right\}$
- Multilinear ranks

$$
r_{j}=\operatorname{dim}\left(\mathcal{L}_{j}(\boldsymbol{T})\right)
$$

$r_{1} \times r_{2} \times r_{3}$

$$
T=\left(U_{1}, \ldots, U_{k}\right) \cdot C
$$

Geometry of Low Rank Tensors

$$
\mathcal{A}(r)=\left\{\boldsymbol{T} \in \mathbb{R}^{d \times \cdots \times d}: r_{j}(\boldsymbol{T}) \leq r\right\} \cong \underbrace{\mathcal{G}(d, r) \times \cdots \times \mathcal{G}(d, r)}_{k \text { times }} \times \mathbb{R}^{r \times \cdots \times r}
$$

- Assume same multilinear ranks ($r_{1}=\cdots=r_{3}=: r$) for brevity
- Any $\boldsymbol{T} \in \mathcal{A}(r)-\operatorname{rank}(\boldsymbol{T}) \in\left[r, r^{k-1}\right]$
- Dimension of $\mathcal{A}(r)-O\left(r^{k}+r d\right)$
- Gold standard:
- Exact recovery with $\tilde{O}\left(r^{k}+r d\right)$ noiseless entries
- Estimation error of the order $\tilde{O}_{p}\left(\left(r^{k}+r d\right) / n\right)$
- For matrices: similar bounds are attainable with nuclear norm minimization/regularization

Overview

1. Problem

2. Convex Methods
3. Non-convex Methods

Summary

Matricization

- Tensor unfolding (matricization)

$$
T \in \mathbb{R}^{d \times d \times d} \mapsto \mathcal{M}_{1}(T) \in \mathbb{R}^{d \times d^{2}}
$$

- Nuclear norm minimization

$$
\min _{A \in \mathbb{R}^{d \times d \times d}} \sum_{j=1}^{3}\left\|\mathcal{M}_{j}(\boldsymbol{A})\right\|_{*} \quad \text { subject to } A\left(\omega_{i}\right)=T\left(\omega_{i}\right), \forall i
$$

- Sample size requirement

$$
|\Omega| \gg r d^{2} \text { polylog }(d)
$$

Let tensors be tensors

$$
\min _{A \in \mathbb{R}^{d \times d \times d}}\|\boldsymbol{A}\|_{*} \quad \text { subject to } A\left(\omega_{i}\right)=T\left(\omega_{i}\right), \forall i
$$

- Tensor nuclear norm
- Spectral norm

$$
\|A\|=\max _{\|u\|=\|v\|=\|w\|=1}\langle A, \boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w}\rangle
$$

- Nuclear norm

$$
\|A\|_{*}=\max _{Y \in \mathbb{R}^{d \times d \times d}:\|Y\| \leq 1}\langle\boldsymbol{Y}, \boldsymbol{A}\rangle .
$$

- Exact recovery with high probability if

$$
n \gg\left(r^{1 / 2} d^{3 / 2}+r^{2} d\right) \operatorname{polylog}(d)
$$

How to get here

Find a dual certificate:

- in the subdifferential of $\partial\|\cdot\|_{*}(T)$
- characterizing sub-differential of tensor nuclear norm
- supported on $\left\{\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right\}$
- concentration inequalities for tensor martingales

Matrix Nuclear Norm

If $M=U D V^{\top}$, then

$$
\left.\begin{array}{l}
W=P_{U}^{\perp} W P_{V}^{\perp} \\
\|W\| \leq 1
\end{array}\right\} \Longrightarrow\|X\|_{*} \geq\|M\|_{*}+\left\langle U V^{\top}+W, X-M\right\rangle
$$

$$
\begin{aligned}
& \mathcal{P}_{M}^{0}=\boldsymbol{P}_{U} \otimes \boldsymbol{P}_{V} \\
& \mathcal{P}_{M}^{1}=\boldsymbol{P}_{U} \otimes \boldsymbol{P}_{V}^{\perp} \\
& \mathcal{P}_{M}^{2}=\boldsymbol{P}_{U}^{\perp} \otimes \boldsymbol{P}_{V} \\
& \mathcal{P}_{M}^{\perp}=\boldsymbol{P}_{U}^{\perp} \otimes \boldsymbol{P}_{V}^{\perp}
\end{aligned}
$$

[Watson, 1992]

Projection

- Projection

$$
\boldsymbol{P}_{1} \otimes \boldsymbol{P}_{2} \otimes \boldsymbol{P}_{3}[A, B, C]=\left[\boldsymbol{P}_{1} A, \boldsymbol{P}_{2} B, \boldsymbol{P}_{3} C\right]
$$

- Decomposition of space

$$
\begin{aligned}
& \mathcal{Q}_{T}^{0}=P_{T}^{1} \otimes \boldsymbol{P}_{T}^{2} \otimes P_{T}^{3} \\
& \mathcal{Q}_{T}^{1}=\boldsymbol{P}_{T^{\perp}}^{1} \otimes \boldsymbol{P}_{T}^{2} \otimes \boldsymbol{P}_{T}^{3} \\
& \mathcal{Q}_{T}^{2}=\boldsymbol{P}_{T}^{1} \otimes \boldsymbol{P}_{T^{\perp}}^{2} \otimes \boldsymbol{P}_{T}^{3} \\
& \mathcal{Q}_{T}^{3}=\boldsymbol{P}_{T}^{1} \otimes \boldsymbol{P}_{T}^{2} \otimes \boldsymbol{P}_{T^{\perp}}^{3} \\
& \\
& \mathcal{Q}_{T^{\perp}}^{0}=\boldsymbol{P}_{T^{\perp}}^{1} \otimes \boldsymbol{P}_{T^{\perp}}^{2} \otimes \boldsymbol{P}_{T^{\perp}}^{3} \\
& \mathcal{Q}_{T^{\perp}}^{1}=\boldsymbol{P}_{T}^{1} \otimes \boldsymbol{P}_{T^{\perp}}^{2} \otimes \boldsymbol{P}_{T^{\perp}}^{3} \\
& \mathcal{Q}_{T^{\perp}}^{2}=\boldsymbol{P}_{T^{\perp}}^{1} \otimes \boldsymbol{P}_{T}^{2} \otimes \boldsymbol{P}_{T^{\perp}}^{3} \\
& \mathcal{Q}_{T^{\perp}}^{3}=\boldsymbol{P}_{T^{\perp}}^{1} \otimes \boldsymbol{P}_{T^{\perp}}^{2} \otimes \boldsymbol{P}_{T}^{3}
\end{aligned}
$$

Characterization of Subdifferential

$$
\left.\begin{array}{l}
W=\mathcal{Q}_{T}^{0} W \text { and }\langle T, W\rangle=\|T\|_{*} \\
W^{\perp}=\mathcal{Q}_{T}^{\perp} W^{\perp} \text { and }\left\|W^{\perp}\right\| \leq \frac{1}{2}
\end{array}\right\} \Longrightarrow\|X\|_{*} \geq\|T\|_{*}+\left\langle W+W^{\perp}, X-T\right\rangle
$$

- More complex geometry than matrix case
- For matrices $\left\|W^{\perp}\right\| \leq 1$ is sufficient and necessary
- For tensor $\left\|W^{\perp}\right\| \leq 1 / 2$ is only sufficient, not necessary:

$$
\partial\|\cdot\|_{*}(\boldsymbol{T}) \supseteq\left\{\boldsymbol{W}+\boldsymbol{W}^{\perp}:\left\|\boldsymbol{W}^{\perp}\right\| \leq 1 / 2\right\} .
$$

* For general k th order tensors, upper bound 1 , lower bound $2 / k(k-1)$.

Concentration of Tensor Martingale

With probability at least $1-e^{-t}$,

$$
\left\|\frac{d^{3}}{n} \sum_{i=1}^{n} A\left(\omega_{i}\right) e_{i}-A\right\| \lesssim\|A\|_{\max } \cdot\left(\sqrt{\frac{d^{4} t}{n}}+\frac{d^{3} t}{n}\right) \cdot \operatorname{polylog}(d)
$$

- Contributions from variance and maximum
- in matrix or vector case - variance dominates
- for higher order tensors - maximum dominates
- If A is incoherent, then $\|A\|_{\max }=O\left(d^{-3 / 2}\right)$. Thus

$$
n \gg d^{3 / 2} \text { polylog }(d) \text { implies }\left\|\frac{d^{3}}{n} \sum_{i=1}^{n} A\left(\omega_{i}\right) e_{i}-A\right\| \leq \frac{1}{2}
$$

* For general k th order tensors, second term $d^{k} t / n$.

What happens when $k>3$?

- Following a similar argument leads to sample size requirement

$$
n \gtrsim d^{k / 2} \operatorname{polylog}(d) .
$$

- It can be improved if we incorporate incoherence more explicitly:

$$
n \gtrsim\left(r^{(k-1) / 2} d^{3 / 2}+r^{k-1} d\right)(\log (d))^{2}
$$

- Depends on the order k only through the rank r
- If $r=O(1)$, then the sample size requirement becomes

$$
n \gtrsim d^{3 / 2}(\log (d))^{2}
$$

Incoherent Nuclear Norm Minimization

$$
\min _{A \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}}\|\boldsymbol{X}\|_{\star, \delta} \quad \text { subject to } A\left(\omega_{i}\right)=T\left(\omega_{i}\right) \quad i=1, \ldots, n
$$

- Incoherent rank-one tensors: $\mathscr{U}(\delta)=\cup_{1 \leq j_{1}<j_{2} \leq k} \mathscr{U}_{j_{1} j_{2}}(\boldsymbol{\delta})$ where

$$
\mathscr{U}_{j_{1} j_{2}}(\boldsymbol{\delta})=\left\{u_{1} \otimes \cdots \otimes \boldsymbol{u}_{k}:\left\|\boldsymbol{u}_{j}\right\|_{\ell_{2}} \leq 1, \forall j ;\left\|\boldsymbol{u}_{j}\right\|_{\ell_{\infty}} \leq \delta_{j}, \forall j \neq j_{1}, j_{2}\right\}
$$

- Incoherent tensor norms:

$$
\|\boldsymbol{X}\|_{\circ, \delta}=\sup _{\Upsilon \in \mathscr{\mathscr { L }}(\delta)}\langle\boldsymbol{Y}, \boldsymbol{X}\rangle, \quad\|\boldsymbol{X}\|_{\star, \delta}=\sup _{\|Y\|_{\circ}, \delta \leq 1}\langle\boldsymbol{Y}, \boldsymbol{X}\rangle
$$

- Encourages solution to be incoherent:
- In general, $\|X\|_{*} \leq\|X\|_{\star, \delta}$
- If $\delta_{j} \geq \mu_{j}(\boldsymbol{X})$, then $\|\boldsymbol{X}\|_{*}=\|\boldsymbol{X}\|_{\star, \delta}$

Overview

1. Problem

2. Convex Methods

3. Non-convex Methods

Summary

Polynomial-time Methods?

- Gold standard is $\tilde{O}\left(r^{3}+r d\right)$
- Matricization requires $\tilde{O}\left(r d^{2}\right)$
- Nuclear norm minimization needs $\tilde{O}\left(r^{1 / 2} d^{3 / 2}+r^{2} d\right)$
- But tensor nuclear norm is NP hard to compute in the worst case
- Relaxation - theta norm, sum of squares relaxation
- Feasible in principle but do not scale well
- General performance guarantee unclear
- What about nonconvex methods?
- Success in some practical examples
- General performance guarantee unclear

Do they work?

$$
\min _{A \in \mathcal{A}(r)} \frac{1}{n} \sum_{i=1}^{n}\left[T\left(\omega_{i}\right)-A\left(\omega_{i}\right)\right]^{2}
$$

- Recall that we can write

$$
A=\left(W_{1}, W_{2}, W_{3}\right) \cdot G
$$

If $n \gg r^{3}$ polylog (d), the above minimization can be equivalently expressed as

$$
\min _{W_{1}, W_{2}, W_{3} \in \mathcal{G}(d, r)} f\left(W_{1}, W_{2}, W_{3}\right)
$$

- Smooth optimization techniques to minimize f - practical successes [see, e.g., Vervliet et al., 2014; Kressner et al., 2014]
- But why?

If

$$
n \gg\left(r^{5 / 2} d^{3 / 2}+r^{4} d\right) \cdot \operatorname{polylog}(d)
$$

then f is well-behaved in an incoherent neighborhood around truth

What exactly is the problem?

Suppose we want to compute the spectral norm

- of a random matrix - at most d local optima
- of a random tensor $-\exp (\Omega(d))$ local optima [Auffinger and Ben Arous (2013)]

- Polynomial optimization
- Very smooth but highly nonconvex
- If we can get close to global optimum,...

Pay a hefty price to get close, pay a little more to get exact!

InitiAlization

- f is minimized at the linear subspace of $\mathcal{L}_{1}(T), \mathcal{L}_{2}(T)$ and $\mathcal{L}_{3}(T)$
- A first attempt: random initialization - exponentially many tries
- A second attempt: spectral method
- $\mathcal{L}_{1}(\boldsymbol{T})$ is the column space of $\mathcal{M}_{1}(\boldsymbol{T}) \in \mathbb{R}^{d \times d^{2}}$
- An unbiased estimate of $\mathcal{M}_{1}(T)$ is

$$
\mathcal{M}_{1}(\widehat{\boldsymbol{T}}):=\mathcal{M}_{1}\left(\frac{d^{3}}{n} \sum_{i=1}^{n} T\left(\omega_{i}\right) \boldsymbol{e}_{\omega_{i}}\right)
$$

- Estimate $\mathcal{L}_{1}(\boldsymbol{T})$ by applying SVD to the above estimate
- $n \gg d^{2}$ to ensure closeness
- A third attempt: "second order" spectral method

Second order spectral method

- $\mathcal{L}_{1}(T)$ is also the eigen-space of $S:=\mathcal{M}_{1}(T) \mathcal{M}_{1}(T)^{\top} \in \mathbb{R}^{d \times d}$
- $\mathcal{M}_{1}(\widehat{T}) \mathcal{M}_{1}(\widehat{T})^{\top}$ is a biased estimate
- Unbiased estimate - U-statistic

$$
\widehat{\boldsymbol{s}}:=\frac{d^{6}}{n(n-1)} \sum_{i \neq j} T\left(\omega_{i}\right) T\left(\omega_{j}\right) \mathcal{M}_{1}\left(\boldsymbol{e}_{\omega_{i}}\right) \mathcal{M}_{1}\left(\boldsymbol{e}_{\omega_{j}}\right)^{\top}
$$

- with probability at least $1-e^{-t}$,

$$
\|\widehat{S}-S\| \lesssim\|T\|_{\max }^{2} \cdot\left(\frac{d^{6} t^{2}}{n^{2}}+\frac{d^{9 / 2} t}{n}\right) \cdot \operatorname{polylog}(d)
$$

- For incoherent $\boldsymbol{T},\|\widehat{\boldsymbol{S}}-\boldsymbol{S}\|=o_{p}(1)$ if $n \gg d^{3 / 2} \operatorname{polylog}(\mathrm{~d})$
- Sharper concentration around S than $\mathcal{M}_{1}(\widehat{T})$ around $\mathcal{M}_{1}(\boldsymbol{T})$
- Consistent estimates iff

$$
n \gg\left(r d^{3 / 2}+r^{2} d\right) \log d
$$

Effect of Noise

$$
Y_{i}=T\left(\omega_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

- More difficult - control the effect of noise
- But easier - suffices to get close to the target
- And subtlety - scaling

$$
\inf \sup _{\widehat{T}}\left(\frac{1}{d^{3}}\|\widehat{T}-T\|_{\left.\ell_{0}, \beta_{0}\right)}^{p}\right)^{1 / p} \asymp\left(\|T\|_{\ell_{\infty}}+\sigma_{\varepsilon}\right) \sqrt{\frac{r d \log (d)}{n}}
$$

provided that

$$
n \gg\left(r d^{3 / 2}+r^{2} d\right) \log d
$$

Effect of Initialization and Power Iteration

Tensor Recovery: U and U+Power projections

A Data* Example

20\% Sample with Noise level: 0.4

20\% Sample with Noise level:
35% Sample with Noise level: 0.8

50% Sample with Noise level: 0.8

 Output: RE=0.14

Output: RE=0.18

Output: RE=0.11

Output: RE=0.08

MRI datasets: Relative Error by Sample Ratio and Noise Level

* Taken from BrainWeb [Cocosco et al., 1997; $217 \times 181 \times 181$].

Overview

1. Problem
 2. Convex Methods
 3. Non-convex Methods

Summary

Concluding Remarks

Methods	Tractable?	Sample size requirement
Matricization	Yes	$\tilde{O}\left(r d^{2}\right)$
Nuclear Norm minimization	No	$\tilde{O}\left(r^{1 / 2} d^{3 / 2}+r^{2} d\right)$
Nonconvex	Yes	$\tilde{O}\left(r d^{3 / 2}+r^{2} d\right)$

- Polynomial-time methods with better dependence on d ? Possibly no.
- "Equivalence" to random k-SAT problem [Barak and Moitra (2016)]
- Polynomial-time methods with better dependence on r ? I don't know.
- Is it worth the while? Definitely yes!
- Regression [Chen, Raskutti and Y. $(2015,2016)]$
- PCA [Liu, Y. and Zhao (2017)]

