Experiment 8: Capacitance and the Oscilloscope

Nate Saffold nas2173@columbia.edu

Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216

INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699

Outline

• Capacitance:

- Capacitor as a charge storage device
- Capacitors in combination
- RC circuits: exponential growth and decay
- Oscilloscope:
 - Conversion of analog signals to digital
 - Display and signal operations
- Measurements:
 - Large *RC* charging
 - Large *RC* discharging
 - Small *RC* cycle observed with the oscilloscope

Main components of a circuit

- Even though the behavior of every element of a circuit can be explained on a microscopic electromagnetic basis, it is convenient to introduce a schematic representation of them
- All the microscopic features are embedded in few macroscopic quantities (current, resistance, capacitance, ...)
- Most common components are:
 - 1. <u>Battery</u>: it provides a constant potential difference through the circuit. Its macroscopic quantity is the e.m.f. (ϵ)
 - 2. <u>Resistor</u>: it causes a drop in the voltage due to microscopic collisions between the flowing charges and the atoms of the material or interactions with EM potential. Its macroscopic quantity is the resistance (*R*)
 - 3. <u>Capacitor</u>: it is composed by two conductors (*e.g.* plates) separated by a non-conducting material. When a battery pumps charges on the plates a potential difference between them is created. Its macroscopic quantity is the capacitance (C)

Kirchhoff laws

- The fundamental laws of circuits are the so-called Kirchhoff's laws
- <u>1st law:</u> When considering a closed loop inside a circuit, the total potential difference must be zero

$$V_1 + V_2 + V_3 + \dots = \sum_{i=1}^N V_i = 0$$

 <u>2nd law</u>: When considering a junction, the sum of the ingoing currents is equal to the sum of the outgoing ones

$$I_{1} = I_{4} = I_{4} = I_{4} = I_{4} + I_{5}; \quad \sum_{i=1}^{N} I_{in} = \sum_{i=1}^{N} I_{out}$$

$$I_{3} = I_{4} + I_{5}; \quad \sum_{i=1}^{N} I_{in} = \sum_{i=1}^{N} I_{out}$$

A simple circuit

- Battery supplies *potential difference*
- Current flows from high potential to low
- The voltage drop across a resistor is given by <u>Ohm's Law</u>:

V = IR

Capacitors

- A capacitor is a device that stores electric charge, and therefore energy.
 - Examples: camera flashes, computer chips, defibrillators, etc...
- <u>Example</u>: two conducting plates, separated by a gap, with voltage V across them.
- The total charge Q that can be stored on the plates is *proportional* to the potential generated, V.
- Constant of proportionality: a geometry-dependent quantity called <u>capacitance</u>.

Units of capacitance are Farads (F): 1F = 1C/1V

Combination of capacitors

• Capacitors in series:

Capacitors in parallel:

Combination of capacitors

Capacitors in series:

Capacitors in parallel:

(1) $\mathcal{E} = V_1 + V_2 + V_3$ (2) $Q_1 = Q_2 = Q_3 = Q$

Voltages add Charges are the same

Combination of capacitors

• Capacitors in series:

Capacitors in parallel:

(1) $\mathcal{E} = V_1 + V_2 + V_3$ (2) $Q_1 = Q_2 = Q_3 = Q$

 $\frac{Q}{C_{eq}} = \frac{Q_1}{C_1} + \frac{Q_2}{C_2} + \frac{Q_3}{C_3}$

 $\frac{1}{C_{
m eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2}$

Voltages add Charges are the same

(1) $\mathcal{E} = V_1 = V_2 = V_3$ Voltages are (2) $Q = Q_1 + Q_2 + Q_3$ Charges add

 $CV = C_1 V_1 + C_2 V_2 + C_3 V_3$ $C_{eq} = C_1 + C_2 + C_3$

Resistor-capacitor (RC) combinations

- When resistors and capacitors are used together in circuits, interesting things start to happen.
- A resistor will draw current from a battery; a capacitor will store the current's flowing charge.
- Recall: voltage expression for a resistor is given by Ohm's Law: V=IR , where I=dQ/dt
- Voltage expression for capacitor: Q = CV. Put these two together (a series *RC* circuit), and you get exponentially decreasing current flow

- Put a capacitor in series with a battery.
- Capacitor is initially uncharged. Close the switch. By <u>Kirchoff's 1st law</u>:

Provides potential difference of current lose energy when getting close to positive charges on plate

Positive charges

Resistors always cause a loss of potential

 $+\mathcal{E} - \frac{Q}{C} - IR = 0$

$$\mathcal{E} = R\frac{dQ}{dt} + \frac{Q}{C}$$

$$\frac{dQ}{dt} = -\frac{Q}{RC} + \frac{\mathcal{E}}{R}$$

 $\frac{dQ}{dt} = \frac{A}{\tau}e^{-t/\tau}$

$$\mathcal{E} = R \frac{dQ}{dt} + \frac{Q}{C}$$

$$\frac{dQ}{dt} = -\frac{Q}{RC} + \frac{\mathcal{E}}{R}$$

Note the extra constant, so lets try:

$$Q(t) = A\left(1 - e^{-t/\tau}\right)$$

$$\mathcal{E} = R \frac{dQ}{dt} + \frac{Q}{C}$$

Need dQ/dt proportional to

 $Q \longrightarrow$ exponential function

$$\frac{dQ}{dt} = \frac{A}{\tau}e^{-t/\tau}$$

Substitute into differential equation:

$$\frac{A}{\tau}e^{-t/\tau} = -\frac{A}{RC}\left(1 - e^{-t/\tau}\right) + \frac{\mathcal{E}}{R}$$

$$\frac{A}{\tau}e^{-t/\tau} = \frac{A}{RC}e^{-t/\tau} + \left(\frac{\mathcal{E}}{R} - \frac{A}{RC}\right)$$

Compare left and right sides to determine A and τ:

$$\left(\frac{\mathcal{E}}{R} - \frac{A}{RC}\right) = 0 \quad \Longrightarrow \quad A = \mathcal{E}C = Q_0$$
$$\frac{A}{\tau} = \frac{A}{RC} \quad \Longrightarrow \quad [\tau = RC]$$
citance and the oscilloscope

Note the extra constant, so lets try:

$$Q(t) = A\left(1 - e^{-t/\tau}\right)$$

So, as we derived, the charge stored on the capacitor as a function of time is:

$$Q(t) = Q_0 \left(1 - e^{-t/RC} \right)$$

The current flowing through the circuit is instead:

$$I(t) = \frac{dQ}{dt} = -\frac{\mathcal{E}}{R}e^{-t/\tau}$$

- Current decreases exponentially because capacitor is fully charged
- The constant *t* is the typical time scale for charging/discharging the system

Discharging a charged capacitor

- Put a charged capacitor in series with a resistor.
- Close switch; charge will dissipate through the resistor. Again, by Kirchhoff's loop rule

$$0 = \frac{Q}{C} + IR$$
$$= \frac{Q}{C} + R\frac{dQ}{dt}$$

Discharging a charged capacitor

- In this case, the current *I(t)* decreases exponentially, just like the previous charging case. However, in this case, is because the system is "running out" of charges
- Sign of current is *negative*, indicating that flow is in the opposite direction

A better plot for current

- On a standard plot of I vs. t, I(t) approaches zero exponentially. This is <u>hard to visualize or quantify</u>
- Better solution: plot log(l) vs. t. In this semi-log plot the current will look like a straight line

Horrible plots...

PHYS 1493/1494/2699: Exp. 8 – Capacitance and the oscilloscope

Linearization of the exponential function

 Why does the exponential function look like a straight line on a semi-log plot?

> $I(t) = I_0 e^{-t/RC}$ $\ln I(t) = \ln \left(I_0 e^{-t/RC} \right)$ $= \ln I_0 + \ln e^{-t/RC}$ $= \ln I_0 - \left(\frac{1}{RC} t \right)$ $\equiv b - at$

 Taking the (natural) logarithm converts the exponential function to a linear function in time t. The Experiment

- In this experiment you will study different RC circuits and observe their properties
- Main goals are:
 - Use a timer to measure RC from the charge and discharge curve of a circuit with larger RC (slow)
 - Familiarize with an oscilloscope
 - Use the oscilloscope to study a circuit with small RC (fast)

Measurement of large $\tau = RC$

- In the first part of the lab, you will observe the time dependence of the current in two circuits with large RC values (*i.e.* long charge/discharge typical time).
- Idea: charge the capacitor bank (C = 10 μF, 20 μF, 30 μF).
 Pass the current through the ammeter so we can measure it.
- Ammeter has large unknown internal resistance R that determines the time constant $\tau = RC$.

Back in my days, this was high tech...

Large charge setup

Timer

Power Supply

How to use the oldest switch in the world

Closing the switch

on the right

connects **B** with (

and E with F

Closing the switch on the left connects A with B and D with

F

Measurement of large $\tau = RC$

- For three settings of the capacitor bank C = 10μF, 20μF, 30μF, observe *I*(*t*).
 - There is a timer you can use to read off *e.g.* 1s intervals
- Calculate In(*I(t)*) and perform a linear fit of the logarithm vs. time.
- Get three values for the time constant τ, then get three values for internal resistance *R*.
- Calculate mean R and the standard error on the mean. Compare your results obtained with charging/ discharging.

Watch out! Horrible plot...

What your plot of log current vs. time might look like

Oscilloscope

- The oscilloscope allows us to visualize signals that vary rapidly with time. Very handy!
- Idea: scope converts voltage waveforms from analog to digital, then displays the signal on an LCD screen.
- What you need to do:
 - Learn how to display voltage signals from function generator on the scope.
 - Learn how to use the scope's measurement tools.

A digital oscilloscope samples input voltage signal at regular intervals using an analog-to-digital converter (ADC)

Oscilloscope

- The oscilloscope allows us to visualize signals that vary rapidly with time. Very handy!
- Idea: scope converts voltage waveforms from analog to digital, then displays the signal on an LCD screen.
- What you need to do:
 - Learn how to display voltage signals from function generator on the scope.
 - Learn how to use the scope's measurement tools.

A digital oscilloscope samples input voltage signal at regular intervals using an analog-to-digital converter (ADC)

Question for you: why is this plot worth <u>several points less on</u> <u>the report</u>?

Using the oscilloscope

- This part of the lab is mostly playing around and getting familiar with the oscilloscope.
- You need to know the following:
 - Display different signal types (square, sine, triangle waves) from function generator.
 - Make sure you know how to scale axes.
 - Using a sine wave input, use the scope's MEASURE tool to display the period and amplitude of the signal.
 - Learn how to use the cursors to read a time period or an amplitude directly off the screen.

Using the oscilloscope

 The channel 1,2 menu position buttons double as cursors controls. You can position the cursors by hand and find the time difference between them.

- Once you are comfortable with the oscilloscope, set up the circuit below.
- Drive the function generator with a square wave, and then analyze the wave on the scope as it moves through the RC circuit.

Oscilloscope and generator setup tips

- Function generator
 - Amplitude: 10V peakpeak
 - Frequency: 150Hz
- Oscilloscope
 - Ch.1 coupling: DC
 - BW limit: ON
 - Volts/Div: coarse
 - Probe: 1X
- R and C used are $10k\Omega$ and 82nF.

Signal generator

Oscilloscope

R,C in series

- When the square wave is "high", the capacitor will charge up.
- When the square wave is "low", the capacitor will discharge.

Input to RC circuit from function generator:

- Oscilloscope connected across resistor will show exponential decay to zero for both charging and discharging a cycles.
- You can view the rapid charge/discharge cycle on the scope. Use it to measure τ = RC.

 $V = IR = I_0 Re^{-t/RC}$

- Measurement: zoom in on a single part of the charge/ discharge cycle.
- Using the cursors, observe the time it takes for the voltage to drop to 37% of its initial value.
 This is the time constant. See if it matches the prediction τ = RC
- Try this for several driving frequencies on the scope.
 <u>Note:</u> do not use frequencies much larger or smaller than *f* = 1 / τ

Qualitatively: what happens when the *frequency* is much smaller than 1/τ? When is it much larger? Can you explain what you see?

Tips

- This experiment is one of the easiest and therefore there are just a few tips:
- 1. The apparati are not dangerous. However, please always be careful when handling the electric components. In particular, when changing set up, always turn the instruments off.
- 2. The most essential part of this experiment is the set up itself, *i.e.* connecting all the right components to the right spots. Try to follow the pictures on the lab manual as close as possible. Ask your TA to check your links.
- 3. If you have troubles showing the signals on the oscilloscope, remember that the AUTOSET button is often the solution to everything