
Basics of Mathematica for data analysis

Angelo Esposito
Physics Department, Columbia University

January 14, 2017

Abstract

In this brief tutorial I will introduce those features of Mathematica that are
most useful to perform data analysis, namely plotting your data and performing
fits with pretty much every functional form. You can obtain a license to download
Mathematica (student edition) for free from the CUIT website. It is important to
mention that, despite the present tutorial, if you are facing some problems with
Mathematica or you do not know how to do something, the most e�cient way to
find the answer you are looking for is probably to use the Wolfram website. You
can find most of the solutions with a simple Google search.

Since this is the first attemp to make some easy notes about Mathematica for
data analysis, every comment and/or suggestion is more than welcome. You can
always email me at ae2458@columbia.edu

Contents

1 Introduction 2

2 First things to know 2

3 Main concepts 3

4 How to plot 5
4.1 Plot analytic functions . 5
4.2 Plot experimental data . 6
4.3 Plot experimental data with error bars 7

5 Fitting experimental data 8
5.1 A quick reminder . 8
5.2 Least squares fit with Mathematica . 9

5.2.1 The NonlinearModelFit function and its options 9
5.2.2 How to access the results of the fit 10
5.2.3 How to check the goodness of your fit 10

6 Short conclusions 11

1

mailto:aesposito2458@columbia.edu

1 Introduction

Wolfram Mathematica is a very powerful tool to complete a vast number of mathematical
tasks. It is mostly famous for its ability to perform symbolic calculation, but it can also
be used to perform numerical (approximate) integration and data analysis. Mathematica
is designed to embed an incredibly large number of functionalities in a single software.
It then follows that many of these tasks are not implemented in the most e�cient way
possible. However, it is extremely easy/intuitive to use and for the simple goals of our
course is more than enough.

This tutorial is organized as follows. In Section 2 I will enumerate those aspects
that are general to any Mathematica code and hence should be kept in mind through
out the whole tutorial. In Section 3 I will introduce the most common functionalities
of Mathematica. These will be fairly general and will come handy in the future, every
time that you will decide to use the software. In Section 4 I will describe how to create
a plot. This will mostly interests analytic functions of one variable and one dimensional
data (also including error bars). Lastly, Section 5 explains how to perform a fit once
data and errors are given. These last two will be likely the parts that you will need the
most during the semester.

I will try to explain many of the ideas with some practical example, so that we can
go a little beyond the “theoretical” aspects. Pictures of real Mathematica notebooks can
be found at the end of this tutorial.

2 First things to know

Here I report some of the commands and syntactic features that are at the core of any
Mathematica code. In particular:

1. Whenever you write a piece of code you can execute it by pressing enter (or shift
+ return if you do not have the enter key);

2. Mathematica allows you to divide your code in many sub-codes, each of them is
enclosed in a square bracket on the right of the Mathematica window (see Fig. 1).
Moreover, each sub-code can be executed independently from the others. It is
typically a good habit to use them to enclosed di↵erent parts of your code. This
way, it will be substantially easier to isolate bugs or mistakes whenever necessary;

3. The variables and functions defined in a certain Mathematica window are actually
defined globally, i.e. they are common to all windows (also called notebooks). If
you want to reset your variables you have to click Evaluation ! Quit Kernel !
Local, or type and run the Quit[] command on your notebook.

4. When you run a line of a Mathematica code, the software automatically plots on
screen the output of that line, whatever it is. If you want to avoid this you will
have to end the line with a semicolon;

5. Mathematica uses di↵erent colors for di↵erent kinds of codes. With time you will
learn their meaning, and this will be quite useful to check for typos or bugs in

2

Figure 1: Simple illustration of some basic concepts

your code. In particular, a variable or function that is not yet defined1 in the
code is colored in blue, while a function or variable that has already been defined
somewhere will appear in black. This can come very handy, especially to avoid
overwriting;

6. Di↵erent kinds of brackets have di↵erent, important meanings. In particular curly
brackets {...} are used in Mathematica to specify a table (see Sec. 4.2), square
brackets [...] are used to enclose the arguments of a function (see Sec. 3),
while normal brackets (...) have the usual mathematical meaning of separating
di↵erent pieces of an expression;

7. Lastly, whenever you want to write some comment (for example to remind yourself
what a certain part of the code does), you will have to enclose the text in (*...*).

Examples of these basic concepts can be found in Fig. 1.

3 Main concepts

In this section and in the following ones I will assume that you are fairly familiar with the
concept of variable and table (or array) as commonly used in any programming language.
I will therefore start directly with what is linked to Mathematica itself.

Most of the functionalities of Mathematica are delivered in the form of functions.
In this context, this term is somewhat broader than the one you might be used to. A
function is in general an object that takes some input (e.g. the value of a variable, a set
of raw data with errors, etc.) and gives back some output (e.g. a plot of the function, the

1In general, a variable is said to be defined or assigned when it is set equal to something. This
something can be many di↵erent things: a number, a function, a plot and so on.

3

value of the fitted parameters, etc.). In general, the syntax for a function in Mathematica
is of the form

NameOfFunction[{arguments}, {options}] , (1)

where both the arguments and the options are input quantities that you will have to
provide to the function itself. Note that they do not necessarily have to be numbers.
Sometimes they could be variables, strings, or even other functions. This should become
clearer in a few pages.

Many of the most useful functions are already present in the Mathematica library.
This means that you will not have to define them, you can just call them in your code
and use them right away. Two built-in functions that you will probably use very often
during the semester are

1. Table[{obj1, obj2, . . . , objN}, {i, imin, imax}] : This function creates a table
with N columns filled with the quantities obj1, ..., objN. The variable i is the
index indicating the row of the table, whose boundaries will be imin and imax. It
then follows that the table will have imax � imin + 1 rows. Clearly, the columns
can depend on the index i. If you saved your table into a variable, say mytab,
you can then access the element in the n-th column and m-th row with the syntax
mytab[[m,n]]—see Fig. 2;

2. Sin[x], Cos[x], Exp[x], . . . : These functions do exactly what you expect. They
take a single variable x and they output the value of the corresponding mathemat-
ical expression. There is an enormous number of such expressions in Mathematica.
You can find all of them in the Help ! Wolfram Documentation window. Remem-
ber that for trigonometric functions the argument must be given in radians.

Although Mathematica has an incredible number of pre-existing functions, many
times it is of utmost importance to be able to define your own. In particular, you will
use it very often to create your own function to fit experimental data. The general syntax
to define a function (any function) is

NameOfFunction[var1 , var2 , . . . , varN] := Expression(var1, var2, . . . , varN) . (2)

The symbol “:=” is telling Mathematica that you are defining a new function and that
it will have to save it somewhere. The input variables are specified right after the name
by adding an underscore after them. Since you are creating this new function, it is up
to you to decide which and how many input variables you want. Note that, during the
definition, the name of the variables (here called var1, . . . , varN) must be the same in
the left and right hand sides of Eq. (2). However, later on, you are free to call them with
di↵erent names. For example, you can use x and y in the definition but u and v in the
rest of the code. Mathematica does not care.

The right hand side of Eq. (2) instead represents the function itself, i.e. what you
want it to do. It can be, for example, an analytical expression, a plotting function, or
anything you need at the moment.

4

Let’s make a concrete example. Suppose you want to fit your data with a function
given by2

f(x) =

✓
sin(x)

x

◆2

, (3)

and you want to define it on your own. In this case the piece of code you need to write
is the following

f[x] := (Sin[x]/x)^2 . (4)

Now, in any other part of the code following the definition you can call the function
with a given argument and read the result. For example, running f[2.1] will return
0.1689 You can use your calculator to check that this is the correct result. Again,
examples of user-defined functions are reported in Fig. 2.

Further things to know: Analytical expressions in Mathematica can easily become
quite hard to read—see e.g. Eq. (4). Mathematica has some nice keyboard shortcuts to
help you make the formulae look nicer and your code easier to read (as I have done in
Fig. 2). You can find more about it here3;

4 How to plot

This section is dedicated to the description of the di↵erent plotting functions available
in Mathematica. These functions usually have an enormous number of di↵erent options.
I will not describe all of them since this goes way beyond the aim of this tutorial (and
probably beyond the ability of a single person...). Nevertheless I will present what I
believe are the features that are necessary to your data analysis. If you are curious
enough and want to make your plots fancier you can always read the documentation
associated with each of the following functions.

4.1 Plot analytic functions

The easiest way to plot one or more analytic functions is using

Plot[{function1[x], function2[x], . . . }, {x, xmin, xmax}, {options}] , (5)

whose name was totally unexpected. Here function1[x], function2[x], etc. are the
expressions that you want to plot. Mathematica will show all of them on the same canvas
(i.e. on the same cartesian plane). The variable x will range from xmin to xmax, and
the section option is left for you to specify all the features that will make your plot look
better. A very basic example of plot is shown in Fig. 3.

In the following I report some of the options that will probably be more useful to
you:

2Question: in which experiment will you have to use a function like that?
3If by any chance you printed the pdf and the reference does not work, here is the link:

https://reference.wolfram.com/language/tutorial/KeyboardShortcutListing.html.

5

https://reference.wolfram.com/language/tutorial/KeyboardShortcutListing.html

• Axes ! False, Frame ! True : This command will allow you to eliminate from
the plot those (quite horrible) horizontal and vertical axes and replace them with
a much nicer and more professional frame;

• ImageSize ! w : This changes the size of the plot, which now has width specified

by w (a number of your choice). It is quite useful to make your plot visible;

• FrameLabel ! {Style[“xax”, sx], Style[“yax”, sy]} : If you eliminated the axes
and replaced them with a frame, this option will allow you to label the x and y

variables. The label on the horizontal axis will be xax (some text of your choice)
with size sx (a number of your choice), while the one on the vertical axis will be
yax with size sy;

• PlotLabel ! Style[“labelname”, s] : Similarly to the previous option, this will
label the whole plot. The label will appear on top of it as labelname with size s;

• PlotStyle ! {opt1, opt2, . . . } : This will help you modify the features of the
plotted functions, e.g. color, thickness, etc. opt1, opt2 and so on will be the
options given to function1[x], function2[x], etc. respectively. The number of
possible features here is too large. You are strongly encouraged to look at the
examples presented here, and at the full Mathematica documentation.

In Fig. 3 I report some examples of plotting functions. The first is the most basic one,
where the function is simply plotted with default parameters. In the second example
you can instead appreciate some of the options that I have previously explained.

4.2 Plot experimental data

Let us now see how to plot experimental data, i.e. how to make a scatter plot of a list
of points (x

i

, y

i

). Suppose that for some reason you have a table of data saved in the
variable data. In order to be plotted, the table has to be organized as follows

data = {{x1, y1}, {x2, y2}, . . . , {xN, yN}} , (6)

where the (x
i

, y

i

) can respectively represent, e.g. an angle and a transmitted intensity,
the thickness of aluminum and the number of � rays that manage to go through it, etc.
Most of the times you will have to fill the table with the raw data obtained from the
experiment, in which case you can define it explicitly exactly as in Eq. (6). However,
other times this table might be the result of some mathematical manipulation that you
had to perform on the raw data before getting to the physical quantity of interest.

Whatever produced the table mydata, plotting it is extremely simple. You need to
use the function

ListPlot[{table1, table2, . . . }, {options}] . (7)

Beside some minor di↵erences this function works exactly like Plot[], except for the
range along the x axis which is now computed automatically starting from the data x

i

.
An example of this can be found in Fig. 4.

6

4.3 Plot experimental data with error bars

As you will learn during the course, a set of data without a properly assigned set of
errors is meaningless4. For the same reason, plotting a set of data without error bars is
a mistake.

Mathematica produces fairly nice plots with error bars, but the procedure to obtain
them is a little more involved than what we have seen so far. As a first thing you will
need to load a particular package called ErrorBarPlots. This is done with the following
command:

Needs[00ErrorBarPlots‘00] . (8)

This procedure will add some additional functions to your code.
In order to plot the error bars, the structure of the table containing data and errors

has to be di↵erent from the one presented in Eq. (6). In particular, if your data are
(x

i

, y

i

), and the errors on the y variable are s

i

, the table should be organized as

list = { {{x1, y1}, ErrorBar[s1]}, {{x2, y2}, ErrorBar[s2]} , . . . } . (9)

Beside being used to plot error bars, I am not aware of any other instance where the
function ErrorBar[] is useful.

In general, you are free to create the list by hand, by explicitly writing down the
syntax in Eq. (9) for every data point. However, I do not recommend that. It is generally
good to keep data and errors separated in two di↵erent tables, since this is what you will
need to make a fit. You can alway create a separate table whose only goal is to be used
for plotting.

A useful piece of code that does that is the following. Suppose that you saved your
data in the variable data={{x1,y1},...,{xN,yN}}, and your error in err={s1,...,sN}.
Clearly the two lists need to have the same number of elements. You can then combine
them together to create a new table in the form of Eq. (9), with the following code:

list = Table[{data[[i]], ErrorBar[err[[i]]]}, {i, 1, Length[data]}] , (10)

Once the list with the correct format has been created, you can obtain your nice plot
with error bars by using the function

ErrorListPlot[{list1, list2, . . . }, {options}] . (11)

The options available here are exactly the same as for Plot[] and ListPlot[] and hence
I will not repeat them. As usual, an example is reported in Fig. 5.

Further things to know:

1. To make your plots easier to read when you have multiple functions or datasets
represented on the same canvas, it is useful to create a legend. So far, I have

4This does not necessarily mean that every quantity you measure comes with an error. However, it
is crucial to understand that the error is never zero. When it is omitted it actually means that it is
negligible with respect to the other uncertainties in play.

7

found a fair number of di↵erent ways of doing that. My favorite one to use the
(quite complicated) PlotLegends ! Placed[SwatchLegend[]] option. If you are
interested in making legends, you should probably spend a few minutes navigating
Google to find the option that you prefer. The example in Fig. 5 reports my
personal choice;

2. When you have performed a fit, it is a good habit to superimpose to the data with
error bars a plot of the fitted function. To do that one can use the function Show[].
In this case, for example, you have to use Show[ErrorListPlot[. . .], Plot[. . .]] .

This will produce a single canvas with both the data points (produced by the func-
tion ErrorListPlot[]) and the fitting function (plotted using Plot[]). Note that
the options given to the first argument will override those of the second argument;

3. Once you have created a plot (of a function or a set of data), you can simply save
it as a pdf by right-clicking on it.

5 Fitting experimental data

Now that you know how to make a table, use Mathematica functions and plot di↵erent
kinds of objects, there is only one item left from your data analysis list: how to perform
a least squares fit.

5.1 A quick reminder

You can find more details about how a least squares fit works in the last section of the lab
manual, or in any book of statistical analysis. Nevertheless, for the sake of completeness,
I will quickly review here the main ideas.

Suppose you have a set of N data points, (x
i

, y

i

), with errors s
i

, and that for some
reason (e.g. theoretical predictions) you know that they should be described by some
function f(a, b; x). While x is a variable, a and b are parameters5. You could for example
have

f(a, b; x) = ax+ b or f(a, b; x) = a

sin(bx)

bx

or f(a, b; x) = ae

bx etc. (12)

The idea is to find the value of a and b such that your function f(a, b; x)—now intended
as a function of x—is the best possible description of the data.

A quantity that somehow gives a measure of “how close your function is to the data”
is the so-called chi squared

�

2 =
NX

i=1

(y
i

� f(a, b; x
i

))2

s

2
i

. (13)

Its interpretation is easy. The numerator is simply the distance between the function
computed at x

i

and the actual value of the data. The presence of the square tells you
that we are interested in the “absolute closeness”, regardless if the function is above or

5I am using only two parameters for a matter of concreteness. The whole idea easily generalizes to
an arbitrary number of them.

8

below the data point. Lastly, the denominator is used to weight the di↵erent y
i

. Data
points with a smaller error s

i

are more reliable and hence contribute more to the sum.
You now want to find the values of a and b that make your function the closest

possible to the data, i.e. you want to minimize the �

2. This means that you will have
to solve

@�

2

@a

= 0 and
@�

2

@b

= 0. (14)

Solving the previous equations will give you the best fit value of the parameters, let us
call them â and b̂, which will now be dependent on the data points and their errors:

â ⌘ a(x
i

, y

i

, s

i

) and b̂ ⌘ b(x
i

, y

i

, s

i

). (15)

The previous equation gives the actual value of the best fit parameters. Their errors
can be found as usual. If every point y

i

has an associate error s

i

then the propagated
uncertainty on the parameters is simply

s

â

=

vuut
NX

i=1

✓
@â

@y

i

s

i

◆2

and s

b̂

=

vuut
NX

i=1

@b̂

@y

i

s

i

!2

. (16)

Do not worry if you did not understand everything and/or if it looks terribly tedious
(it is...). Mathematica will do all of it for you behind close doors.

5.2 Least squares fit with Mathematica

5.2.1 The NonlinearModelFit function and its options

Let us suppose again that you saved your data in a table, data={{x1,y1},...,{xN,yN}},
and the errors in another, err={s1,...,sN}. There are at least three di↵erent functions
in the Mathematica library that perform fits. However, I will only focus on one of them
since I believe it is the most complete one and can be used with every functional form
for the fitting function. This function is

NonlinearModelFit[data, fitfunc[x], {parameters}, {variables}, {options}] .
(17)

The syntax is fairly simple to understand. The first argument is simply your data table,
while the second one is the functional form of the fitting function. This has to depend
both on x and on the parameters (a, b, c, . . .). In the third argument you have to specify
what the parameters to be fitted are. You will have to provide them as a table as well,
i.e. {a,b,c,...}. The fourth argument specifies what quantities are you considering as
variables. Although you can have more general situations, in every case of interest for
you this will just be {x}.

Now we have to provide the options, which in this case are essential. We have to
firstly tell Mathematica that we want our fit to be weighted with the squared errors as in

Eq. (13). To do that, we must specify the option Weights ! 1/err2 . However, it turns
out that this is not enough to tell Mathematica to perform a least squares analysis as
the one outlined in Sec. 5.1. If we do not give any other option, the NonlinearModelFit

9

function will find the right value of the fitted parameters but underestimate their er-
rors. To find the right uncertainties as in Eq. (16) we also have to give the option

VarianceEstimatorFunction ! (1&) . The reasons why this is the right option to
provide are rather obscure and I personally learned it empirically. You can however find
some kind of explanation here6.

An example of how to perform a fit is reported in Figs. 6 and 7.

5.2.2 How to access the results of the fit

Suppose that you saved the result of your fit in the variable myfit by typing

myfit = NonlinearModelFit[. . .]. (18)

You are now able to access pretty much all the information you want about your fit. In
the following I report the quantities that you will use more often during the semester
and how to access them. See again Figs. 6 and 7 for concrete examples.

• Fitted function: The functional form of the best fit function is straightforwardly
obtained as myfit[x] ;

• Overview of the results: By giving the command myfit[“ParameterTable”] , Math-
ematica will plot a nice and elegant table containing all the values of the best fit
parameters together with their errors and other quantities (whose meaning is not
interesting to us);

• Best fit parameters: The complete values of the parameters are stored in myfit

under myfit[“BestFitParameters”] . For some obscure reason, Mathematica

presents them in the form of replacement rules7. To actually access the numer-
ical value of the parameter, you will have to type its name followed by “/.”, e.g.
a /. myfit[‘‘BestFitParameters’’];

• Errors on the parameters: The errors resulting from the best fit are instead saved
in myfit[“ParameterErrors”] . In this case, this will be a table and hence you
can obtain the value of a certain element as for any other table. For example,
myfit[‘‘ParameterErrors’’][[1]] will give the error on the first parameter and
so on;

• Residuals: The residuals are defined as the di↵erence between y

i

and the fitted
function computed at x

i

, i.e. res
i

= y

i

� f(a, b; x
i

). The list of the residuals

corresponding to each data point is stored in myfit[“FitResiduals”] . Again,
you can access the i-th residual with myfit[‘‘FitResiduals’’][[i]].

5.2.3 How to check the goodness of your fit

Once you have performed a fit, it is always a good habit to check whether or not it is
good. This will typically help you understand if you are using the right fitting function,

6https://reference.wolfram.com/language/howto/FitModelsWithMeasurementErrors.html.
7In general, something is a Mathamatica’s replacement rule if it appears in the form variable !

value.

10

https://reference.wolfram.com/language/howto/FitModelsWithMeasurementErrors.html

if you are estimating the errors correctly, and so on. There are two things that you can
do to make sure that your fit worked correctly: plot the residuals and check the value of
the �

2.
If your fit is properly done then the residuals will be more or less randomly distributed

around zero—see Fig. 7. This is because if the fitting function is the right one the data
points will end up some times above the function and some times below it. If you observe
a clear pattern in the residuals this is a bad sign. It can mean, for example, that your
function is not the right one or that you did not estimate the errors correctly.

Computing the �

2 is also a very good habit. You can see from Eq. (13) that it can
be related to the residuals by

�

2 =
NX

i=1

✓
res

i

s

i

◆2

. (19)

In particular, this means that it can be computed in Mathematica using the function
Sum[] as in the following8:

Sum

"✓
myfit[“FitResiduals”][[i]]

err[[i]]

◆2

, {i, 1, Length[err]}
#

. (20)

It is clear that the smaller the �

2 the closer your fitted function is to the actual data
points. If a fit is reasonable one would like to have �

2
/DOF . 1, where DOF are the

so-called degrees of freedom, which are defined as

DOF = number of data points� number of fitting parameters. (21)

You should learn to look at your value for �2
/DOF carefully. In particular, if it is too

much bigger than unity this might be typically due to two reasons:

1. Your fitting function is the wrong one and hence it is very far from the experimen-
tal points. Make sure that you are using the right function. If that is the case, it
means that there is little you can do about it. You do not have a good fit, but this
is not a major problem.

2. The errors you assigned are too small. Sometimes, even if the fitting function is
correct, the �2

/DOF might still be quite large because the error bars are underes-
timated. This means that you are not properly taking into account all the sources
of errors. Try to correct that.

6 Short conclusions

I have presented here the most important aspects that you need to know about Math-
ematica and its functions in order to perform the basic data analysis required by this
course. Even though Mathematica is typically very user-friendly and intuitive, you might
at first have to struggle with it a little bit, as it often happens with new programming
languages. I personally believe that there is no better way to learn a new software than
to get your hands dirty, produce mistake and understand how to solve them. Typically,
no tutorial or textbook can help you with that. However, if you succeed in the task, as I
am sure you will, it will be another useful information to add to your personal toolbox.

8The syntax of the function Sum[] is very straightforward and I will not explain it in detail.

11

������

� ������ �����
Create a table of zeros with 3 columns and 10 rows. Let us assign it to the variable `mytab’:

������� ����� = �����[{�� �� �}� {�� �� ��}]�

Show the table by simply writing its name and running the code:

������� �����

������� {{�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}� {�� �� �}}

The number of elements of the table can be found using the function `Length[]’:

������� ������[�����]

������� ��

� ���� ����������� �����
Create a table of two columns where we save the values of the index and of its square:

������� ������ = ��������� ���� {�� �� ��}��
������

������� {{�� �}� {�� �}� {�� �}� {�� ��}� {�� ��}� {�� ��}� {�� ��}� {�� ��}� {�� ��}� {��� ���}}

You can access the element in the n-th column and m-th row with the syntax `mytab2[[m,n]]’:

������� ������〚�� �〛

������� �

������� ������〚�� �〛

������� ��

������������ ���������

Mathematical functions are easy to play with. Just choose one and feed it with some argument. Run the code to obtain the value of the function:

������� ���[� π]

������� �

������� ���[����]

������� �������

�������� ���[�]

�������� -∞

������������ ���������

Define a function of one variable:

�������� ������[�_] �= ���[�] + ���[�]� ⅇ��

From now on, I can call the variable with whatever name I prefer:

�������� ������[������]

�������� ���[������] + ⅇ������ ���[������]�

Read the value of the function for whatever argument you want:

�������� ������[��]

�������� �������

�������� ������[����]

�������� �������

A similar syntax can be used for a multi-dimensional function. For example:

�������� ��������[�_� �_] �= 	�� + ��
 ���[� - �] ���[� + �]�

Read the value for different points (x,y):

�������� ��������[��� ��]

�������� ��

�������� ��������[π� ���]

�������� -������

Figure 2: Example of the use of simple functions. This is a real Mathematica screenshot.

12

��� ���� ����� ���� �� ����

Let’s define a function:

�������� �����[�_] �= -� �� + ���

And now let’s just plot the function without any fancy option:

�������� ����[�����[�]� {�� -���� ���}]

��������

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

� ����� ���� �� ���� ���������

Define the functions we want to plot together:

�������� ��[�_] �= � ���[�]�
��[�_] �= � ���[�]�

Now plot them together. The options I am adding here will kill the axes and create the frame,
produce the labels, change the size of the image, change the color of the lines:

�������� ����[{��[�]� ��[�]}� {�� �� � π}� ���� → ������ ����� → ����� ��������� → ����
���������� → {�����[���� ��]� �����[�����(�)�� ��]}� ��������� → {���� �����}]

��������

0 2 4 6 8 10 12

-10

-5

0

5

10

x

f 1
,2
(x
)

Figure 3: Example of how to plot one or more mathematical expressions, without and
with customized features.

13

���� �� ����

Define explicitly the table containing the data.
Each (xi, yi) pair has to appear in between curly brackets `{xi,yi}’:

�������� ������ = {{�� ���}� {���� ���}� {���� ���}� {���� ���}� {�� ���}� {���� ���}� {���� ���}}�

�������� ��������[������]

��������

1 2 3 4 5

0.5

1.0

1.5

2.0

Let us specify some options to make the previous plot less ugly:

�������� ��������[������� ���� → ������ ����� → ����� ��������� → ����
��������� → �����[��������� ��� ���������� → �����]�
���������� → {�����[���� ��]� �����[���� ��]}� ��������� → {����� ���������[�����]}]

��������

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

x

y

������

Figure 4: Example of functions to plot a list of (x
i

, y

i

) data.

14

���� �������

As a first thing we need to load the additonal functions:

������� �����[����������������]

������ ���� ��� ������

Define two variables containing the tables for data and errors. For example:

������� ���� = {{�� ����}� {�� ����}� {�� ����}� {�� ����}� {�� ����}� {�� ����}}�
��� = {����� ����� ����� ����� ����� ����}�

It is essential for the two tables to have the same number of elements. This is true, in fact:

������� ������[����]
������[���]

������� �

������� �

Now join the two tables together to create a ‘plottable’ list:

������� ���� = �����[{����〚�〛� ��������[���〚�〛]}� {�� �� ������[����]}]

������� {{{�� ����}� ��������[����]}� {{�� ����}� ��������[����]}� {{�� ��}� ��������[����]}�
{{�� ����}� ��������[����]}� {{�� ����}� ��������[����]}� {{�� ����}� ��������[����]}}

����

Finally make the error bar plot. Also, create a legend (this is my favore method but it might not be the only one):

������� �������������[����� ���� → ������ ����� → ����� ��������� → ����
��������� → {����� ���������[�����]}�
���������� → {�����[���� ��]� �����[���� ��]}�
����������� → ������[������������[{����}� {��� ������������ �������}]� {���� ����}]]

�������

My experimental points

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Figure 5: How to plot data and error bars together.

15

����� ������� ���

������� �����[����������������]

Suppose my data and errors are:

������� ���� = {{-�� ����}� {-�� ����}� {-�� ����}� {-�� -����}� {�� ����}� {�� ����}� {�� ����}}�
��� = {����� ����� ����� ����� ����� ����� ����}�

From theoretical expectations I know that these data should be described by a parabola of the kind:
a x2 + b x + c
I will therefore perform the fit in the following way and save the result in the variable `myfit’:

�������� ����� = ����������������������� � �� + � � + �� {�� �� �}� {�}� ������� →
�

����
� ������������������������� → (� �)��

I can take a look at the parameters and their errors in an elegant form by doing:

�������� �����[����������������]

��������

�������� �������� ����� ����������� �������

� ������� ��������� ������� �������×��-�

� ������� ��������� ������� �������×��-�
� �������� ��������� ������� �����������

If I want to access the actual value of the parameters I will do:

�������� �������� = � /� �����[�������������������]
�������� = � /� �����[�������������������]
�������� = � /� �����[�������������������]

�������� �������

�������� �������

�������� ��������

While I can read the errors on the parameters as:

�������� �� = �����[�����������������]〚�〛
�� = �����[�����������������]〚�〛
�� = �����[�����������������]〚�〛

�������� ���������

�������� ���������

�������� ���������

To plot the fitted function together with the data and error bars first make the `plottable’ list:

�������� ���� = �����[{����〚�〛� ��������[���〚�〛]}� {�� �� ������[����]}]�

Then use Show[] to plot function and data together:

�������� ����[
�������������[����� ���� → ������ ����� → ����� ��������� → ���� ��������� → {����� ���������[�����]}�
���������� → {�����[���� ��]� �����[���� ��]}� ��������� → �����[����� ��� + ������ ��]]�

����[�����[�]� {�� -�� �}� ��������� → {���� ���������[�����]}]
]

��������

-4 -3 -2 -1 0 1 2

0

2

4

6

8

x

y

Best fit + data

Figure 6: Least square fit with Mathematica and plot of the fitting function + data.

16

The residuals can be found with:

�������� �����[��������������]

�������� {���������� -��������� ���������� -���������� -����������� ���������� -���������}

and therefore can be plotted with (it is a good habit to also show a dashed line corresponding to zero for reference):

�������� ����[
��������[�����[��������������]� ���� → ������ ����� → ����� ��������� → ���� ��������� → {����}�
��������� → �����[������������ ��]]�

����[�� {�� �� �}� ��������� → {����� ������}]
]

��������

0 1 2 3 4 5 6 7

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

Residuals

Lastly, given the residuals compute the χ2 :

�������� χ� = ����
�����[��������������]〚�〛

���〚�〛
�
� {�� �� ������[���]}�

�������� ��������

Figure 7: Fig. 6 continued.

17

	Introduction
	First things to know
	Main concepts
	How to plot
	Plot analytic functions
	Plot experimental data
	Plot experimental data with error bars

	Fitting experimental data
	A quick reminder
	Least squares fit with Mathematica
	The NonlinearModelFit function and its options
	How to access the results of the fit
	How to check the goodness of your fit

	Short conclusions

