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This appendix contains results, definitions and proofs omitted from the main text of my job market

paper, “Corporate Debt Structure and the Macroeconomy”. Equation or figure xx from the main text is

referenced as (M-xx).

1 Data appendix

Data on aggregate financial ratios For the US, the data on the aggregate bank share is obtained from

table L.102 of the Flow of Funds, the balance sheet of the the nonfinancial corporate business sector. The

series in the left panel of figure (M-13) is the ratio of the sum of depository institution loans (line 27) and

other loans and advances (line 28) to total credit market instruments oustanding (line 23). The ratio of debt

to assets is measured as the ratio of total credit market instruments outstanding (line 23), to miscellaneous

assets (line 16), a measure of assets excluding credit market instruments and deposits or money market fund

shares. I exclude these financial assets from this ratio because the model’s firms do not hold cash and do

not lend to other firms.

For Italy, the data on the aggregate bank share is obtained from Bank of Italy (2008), table 5 (TD-

HET000). The aggregate bank share is computed as the ratio of total loans (short and long-term) to total

debt. Total debt is measured as total liabilities minus shares and other equities issued by residents.1 Simi-

larly to the US, I construct the ratio of debt to assets as the ratio of total debt to a measure of total assets

which excludes cash and cash-like securities, as well as credit market securities. I obtain this measure by

substracting deposits, short-terms securities, bonds, derivatives, short-term loans and mutual fund shares

from total liabilities of firms.

Figure (M-10) reports aggregate bank shares for a larger sample of countries, on average, between

2000 and 2007. This graph is obtained using firm-level data from the OSIRIS database. For each year

∗Email: nc2371@columbia.edu. Main paper at: www.columbia.edu/~nc2371/research.html.
1The Bank of Italy distinguishes between loans from MFI’s (monetary financial institutions, comprising the Central Bank,

banks, money-market funds, electronic money institutions and the Cassa Depositi e Prestiti), and loans from other financial
institutions. Excluding other financial institutions, the aggregate bank share for 2007Q3 is 50.3 %, closer to the aggregate bank
share which can be matched by the model.
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t between 2000 and 2007, each country c, and each firm j in that country’s set of firms Fc,t, I construct

measures of outstanding bank debt and outstanding total debt for each firm, bcj,t and dcj,t. The construction

of these measures is described below. For each country-year, the aggregate bank share is computed as

BSc,t =

∑
j∈Fc,t

bj,t∑
j∈Fc,t

dj,t
. The aggregate bank shares reported in the graph are the average of the BSc,t for

t = 2000, ..., 2007.2

Data on business-cycle changes in debt composition in the US The middle and right panels of

figure (M-13) report changes in outstanding bank and non-bank credit for small and large manufacturing

firms, in the US, from 2008 onwards. The data is from the Quarterly Financial Report of manufacturing

firms.3 This dataset contains information on firms’ balance sheets and income statements, and is reported

in semi-aggregated form (by asset size categories). The QFR has two advantages over firm-level datasets: it

includes small and private firms as well as large firms; and it has quarterly coverage. By contrast, the other

firm-level dataset I use for the US, created by Rauh and Sufi (2010), covers only public firms, is annual,

and does not extend to 2012. It is thus less adapted to documenting facts on business-cycle changes in debt

composition.

Crouzet (2013), section 2 and appendix D, discusses in detail the QFR and the variables definition used.

The ”small firm” category is defined as firms with less than 1bn$ in assets, and the ”large firm” category as

the remainder.4 For both categories, total debt is defined as total liabilities excluding non-financial liabilities

(such as trade credit) and stockholders’ equity. It includes both short and long-term debt. Bank debt bt is

reported as a specific item in the QFR; I define market credit mt as the remaining financial liabilities. The

series denoted ”bank debt” in figure (M-13) is given by: γb,small,t =
bsmall,t0

bsmall,t0+msmall,t0

(
bsmall,t
bsmall,t0

− 1
)

. The

series denotes ”market debt” is defined similarly. This preserves additivity; that is, the sum of the two lines

in figure (M-13) corresponds to the percent change in total financial liabilities around t0. I choose t0 to be

2008Q3. This is the date of the failure of Lehman Brothers, and it also marks the start in the decline of

the aggregate bank share (see left panel). The series reported in this figure are smoothed by a 2 by 4 MA

smoother to remove seasonal variation.

Data on firm-level debt composition Figure (M-8) is constructed using firm-level data from the

OSIRIS database maintained by Bureau Van Djik. This dataset contains balance sheet information for

publicly traded firms in emerging and advanced economies. I focus on the subsample of non-financial firms

2In particular, the aggregate bank shares obtained in this way for Italy and the US are not the same as those obtained
using the financial accounts of either country. I choose to use firm-level data in the construction of figure (M-10) for those
countries, rather than the financial accounts data, to maintain comparability with other countries.

3See http://www.census.gov/econ/qfr/.
4Crouzet (2013) shows that the pattern of debt substitution is robust to different definitions of size groups, in particular

that adopted by Gertler and Gilchrist (1994).
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that are active between 2000 and 2010, and keep only firms that report consolidated financial statements.

Total debt dcj,t is defined as total long-term interest bearing debt (data item number 14016), and bank

debt bcj,t as bank loans (data item number 21070). I focus on long-term debt (inclusive of the currently

due portions of it) because bank loans are a subset of this category in the OSIRIS database; currently

due debt features a ”loans” category which include potentially credit instruments other than bank loans.

Additionally, equity ecj,t is defined as shareholders funds (data item 14041). For each firm-year observation,

the bank share is defined as: sj,t,c =
bcj,t
dcj,t

. I keep only observations for which the ej,t,c ≥ 0 and sj,t,c ∈ [0, 1]

(and for which both are non-missing). The resulting sample has 51921 firm-year observations, correspondind

to 12931 distinct company names.

Observations are pooled by country-year (t, c). For each country-year cell, let ẽk,t,c denote the k − th

quantile of the empirical distribution of firms across equity levels ej,t,c. I use k ∈ {5, 15, 25, ..., 95}. Define

the average bank share within each quantile group as:

s̃ki,t,c =
1

Nki,t,c

∑
ẽki,t,c≤ej,t,c<ẽki+1,t,c

sj,t,c,

where Nki,t,c is the number of firms in (t, c) with ẽki−1,t,c ≤ ej,t,c < ẽki,t,c.
5 I then average out these shares

over time: s̃ki,c = 1
T

∑
t s̃ki,t,c. Figure (M-8) reports the pairs (ki, s̃ki,c), for the subset of 8 countries that

have the largest number of observations among advanced and emerging economies, respectively.

I do this for all countries, except for the US. For the US, my firm-level data is drawn from the dataset

created by Rauh and Sufi (2010), arguably the highest-quality dataset on debt structure for publicly traded-

firms. This dataset draws from Compustat (for balance-sheet data) and Dealscan (for bond issuances), and

covers a larger number of firms than those available for the US wihtin the OSIRIS database, for a similar

period. This database has direct measures of total debt dj,t,US . Equity ej,t,US is defined as the difference

between the ”debt plus equity” variable and the ”debt” variable. I keep only firms-year observations for

which this measure of equity is positive. Finally, bank debt bj,t,US is defined as outstanding bank loans. All

other variable definitions are identical.6

The relationship between total assets and the bank share A natural alternative measure of firm

size are the value of its assets. In the cross-section, asset value is negatively related to the amount of bank in

a firms’ debt structure. I document this using the same cross-sectional statistics as for net worth described

above, that is, the average bank share by percentile of the asset size distribution. For all countries in the

5Clearly, for ki = 5%, ki−1 = 0 and for ki−1 = 95%, ki = 100%.
6In the US sample of the OSIRIS database, the negative relationship between bank share ˜ki, US and equity size ki also

obtains, but the average level of the bank share is higher, and in fact larger than in other advanced countries.
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(a) Total assets and bank share in OECD-countries
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(b) Total assets and bank share in non-OECD-countries
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Figure 1: Bank share and fixed assets in the cross-section. Each graph reports, for a particualr country, the median
ratio of bank loans to total firm liabilities, in each decile of the asset distribution. For the US, data from taken from
Rauh and Sufi (2010); for other countries, data from Bureau Van Djik.
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OSIRIS database, asset value is the book value of fixed assets (data item 20085) which includes property,

plant, equipment, intangibles, and other fixed assets. For the US, I use the measure of assets provided by

Rauh and Sufi (2010). Fixed assets is the more directly relevant measure of assets since firms in the model

only hold real assets; however, using total assets (inclusive of financial assets, a measure also available in the

OSIRIS database) does not change the results. The negative relationship between this measure of size and

the bank share is reported in figure 1.

2 Analytical proofs

Proof of lemma 1.

When V is continuous, the objective function in problem (M-1) is continuous. The constraint corre-

spondence in (M-1) is compact-valued and continuous. The theorem of the maximum then implies that V c

is continuous. Let
(
n1
t , n

2
t

)
∈ R2

+ such that n1
t > n2

t , and let e2
t+1 be a value for next period equity that

solves (M-1), when nt = n2
t . We have e2

t+1 ≤ n2
t < n1

t , so e2
t+1 is also feasible when nt = n1

t . Therefore,

V c(n1
t ) ≥ n1

t −e2
t+1 +(1−η)βV (e2

t+1) > n2
t −e2

t+1 +(1−η)βV (e2
t+1) = V c(n2

t ). This proves that V c is strictly

increasing. Finally, when nt = 0 the feasible set contains only divt = 0, et+1 = 0. So V c(0) = (1− η)βV (0).

Therefore when V (0) ≥ 0, V c(0) ≥ 0.

Proof of proposition 1. A useful result for the proof is that V c(nt) ≥ nt when V (0) ≥ 0. This is

established by noting that the dividend policy et+1 = 0 is always feasible at the dividend issuance stage, and

that the value of this policy is nt + (1− η)βV (0) ≥ nt.

Assume, first, that
Rm,t
1−χ ≤

Rb,t
χ . Then,

Rm,t
1−χ ≤ Rb,t + Rm,t ≤ Rb,t

χ . The proof proceeds by comparing

V Lt , V
R
t and V Pt , the values of the firm under liquidation, restructuring or repayment, for each realization of

πt. There are five possible cases:

- when πt ≥ Rb,t+Rm,t
χ , we have V Lt = χπt − Rb,t − Rm,t < πt − Rb,t − Rm,t ≤ V c(πt − Rb,t − Rm,t) =

V Pt . Moreover, since πt ≥ Rb,t+Rm,t
χ ≥ Rb,t

χ , the reservation value of the bank is Rb,t, so the best

restructuring offer for the firm is lt = Rb,t. Therefore V Pt = V Rt . I will assume the firm chooses

repayment.

- when
Rb,t+Rm,t

χ > πt ≥ Rb,t
χ , we have V Lt = 0 ≤ V c(πt − Rb,t − Rm,t) = V Pt , since πt ≥ Rb,t

χ ≥

Rb,t+Rm,t, V
c(0) ≥ 0 and V c is strictly increasing. (V Lt < V Rt so long as πt > Rb,t+Rm,t). Moreover,

V Rt = V Pt for the same reason as above. Again, the firm chooses repayment.

- when
Rb,t
χ > πt ≥ Rb,t + Rm,t, the reservation value of the bank is χπt. The restructuring offer at
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which the participation constraint of the bank binds, lt = χπt, is feasible because πt − lt − Rm,t =

(1−χ)πt−Rm,t ≥ 0. So V Rt ≥ V c ((1− χ)πt −Rm,t). This implies V Rt > V c (πt −Rb,t −Rm,t) = V Pt ,

since V c is strictly increasing and (1−χ)πt−Rm,t > πt−Rb,t−Rm,t. For the same reasons as above,

V Rt ≥ V Lt . So the firm chooses to restructure. Because V c is increasing, the optimal restructuring offer

makes the participation constraint of the bank bind: l̂t = χπt.

- when Rb,t + Rm,t ≥ πt ≥ Rm,t
1−χ , we have V Lt = 0 < V c ((1− χ)πt −Rm,t) = V Rt , where again the

properties of V c were used. Moreover, V Pt = V Lt , since the firm does not have enough funds to repay

both its creditors. So the firm chooses to restructure, again with l̂t = χπt.

- when πt <
Rm,t
1−χ , the firm is liquidated because any restructuring offer consistent with the participation

constraint of the bank will leave the firm unable to repaye market creditors. Since in that case,

0 > χπt −Rb,t −Rm,t, the liquidation value for the firm is V Lt = 0.

This shows that the repays when πt ≥ Rb,t
χ , restructures when

Rb,t
χ ≥ πt ≥ Rm,t

1−χ , and is liquidated

otherwise. Moreover, this also establishes, for this case, the two additional claims of the proposition: V Lt = 0

whenever liquidation is chosen, and the restructuring offer always makes the participation constraint of the

bank bind: l̂t = χπt. The claims of the proposition when
Rm,t
1−χ >

Rb,t
χ can similarly be established, by

focusing on the three sub-cases πt ≥ Rb,t+Rm,t
χ ,

Rb,t+Rm,t
χ > πt ≥ Rb,t +Rm,t and Rb,t +Rm,t > πt.

Proof of proposition 2. Given proposition 1, the debt settlement outcomes yield the same conditional

return functions for banks and market lenders, R̃b,t(πt, Rb,t, Rm,t) and R̃m,t(πt, Rb,t, Rm,t), as those derived

in the static model of Crouzet (2013). Therefore, all the results of section 3.4 of that paper apply. Proposition

2 is a subset of the results of that papers’ proposition 2.

Proof of proposition 3

The proof of the existence of a recursive competitive equilibrium in the economy of section 2 of the main

paper contains two broad steps. First, one needs to prove that the optimal debt structure problem of a

single firm, problem (M-8), has a unique solution. Second, one must establish the existence and unicity of

a steady-state distribution of firms across equity sizes. I start by introducing some notation.

Preliminary notation Throughout, I restate the firm’s problem in terms of the variables dt = bt+mt and

st = bt
bt+mt

. dt denotes total borrowing by the firm, and st denotes the share of borrowing that is bank debt.

Note that (dt, st) ∈ R+ × [0, 1]. With some abuse of notation, I will keep denoting the set of feasible debt
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structures (dt, st) by S(et), and its partition established in proposition 2 as (SK(et),SR(et)). Additionally,

define the functions G : R+ → R+, I(.; et + dt) : R+ → R+ and M(; et + dt) : R+ → R+ by:

G(x) = x(1− F (x)) +

∫ x

0

φdF (φ)

I(x; et + dt) = x(1− F (x))− F (x)(1− δ)(et + dt)
1−ζ

M(x; et + dt) = (1− χ)I(x; et + dt) + χG(x)

Following the results of Crouzet (2013), lemmas 3 to 5, G is strictly increasing in R+, while I and M have

unique maxima. Moreover, the terms of debt contracts (Rb,t, Rm,t) for given (et, dt, st) can be expressed

using the inverse mappings of these three functions, denoted by G−1, I−1(, ; et + dt) and M−1(.; et + dt).

These inverse mappings are defined, respectively, on [0,E(φ)],
[
0, Î(et + dt)

]
and

[
0, M̂(et + dt)

]
, where

Î(et + dt) is the global maximum of I and similarly M̂(et + dt) is the global maximum of M . For example,

the terms of bank contracts when (dt, st) ∈ SR(et) are given by:

Rb,t = Rb(dt, st, et) =


(1 + rb)dtst if 0 ≤ (1+rb)dtst

χ(et+dt)ζ
< (1− δ)(et + dt)

1−ζ

χ(1− δ)(et + dt) if (1− δ)(et + dt)
1−ζ ≤ (1+rb)dtst

χ(et+dt)ζ

+χ(et + dt)
ζG−1

(
(1+rb)dtst−χ(1−δ)(et+dt)

χ(et+dt)ζ

)
≤ E(φ) + (1− δ)(et + dt)

1−ζ

The expressions for Rm(dt, st, et) when (dt, st) ∈ SR(et) and for Rb(dt, st, et) and Rm(dt, st, et) when

(dt, st) ∈ SK(et) are reported in Crouzet (2013). In what follows, I use these results to express explic-

itly the thresholds for restructuring and liquidation obtained in proposition 1, namely:

φ
R

(et, dt, st) = Rm(dt,st,et)−(1−χ)(1−δ)(et+dt)
(1−χ)(et+dt)ζ

(liquidation threshold when (dt, st) ∈ SR(et))

φR(et, dt, st) = Rb(dt,st,et)−χ(1−δ)(et+dt)
χ(et+dt)ζ

(restructuring threshold when (dt, st) ∈ SR(et))

φ
K

(et, dt, st) = Rb(dt,st,et)+Rm(dt,st,et)−(1−δ)(et+dt)
(et+dt)ζ

(liquidation threshold when (dt, st) ∈ SK(et))

Proof of existence and unicity of a solution to problem (M-8). The proof has three steps:

Step 1: Reformulate the optimization problem of the firm as the combination of a discrete choice and continuous

choice problem.

Step 2: Show that the functional mapping T associated with this new formulation maps the space C(E) of

real-valued, continuous functions on [0, E], with the sup norm ‖.‖s, onto itself, where E > 0 is an

arbitrarily large upper bound for equity. Additionally, show that T (C0(E)) ⊆ C0(E), where C0(E) =

{V ∈ C(E) s.t. V (0) ≥ 0}. Since (C(E), ‖.‖s) is a complete metric space and C0(E) is a closed subset

7



of C(E) under ‖.‖s which is additionally stable through T , if T is a contraction mapping, then its fixed

point must be in C0(E).

Step 3: Check that T satisfies Blackwell’s sufficiency conditions, so that it is indeed a contraction mapping.

Note that step 2 is crucial because lemma 1 requires the continuity of V and the fact that V (0) ≥ 0 for

V c to be continuous, strictly increasing and satisfy V c(0) ≥ 0. In turn, these three conditions are necessary

for characterizing of the set of feasible debt structures, that is, for propositions 1 and 2 to hold.

Step 1: Define the mapping T on C(E) as:

∀et ∈ [0, E] , TV (et) = max
R,K

(
TRV (et), TKV (et)

)
(A1)

where the mappings TR and TK , also defined on C(E), are given by:

∀et ∈ [0, E] , TRV (et) = max
(dt,st)∈SR(et)

∫
φt≥φ

R
(et,dt,st)

V c (nR (φt; et, dt, st)) dF (φt) (A1-R)

s.t. V c(nt) = max
0≤et+1≤nt

nt − et+1 + (1− η)βV (et+1)

nR(φt, et, dt, st) =


(
φt − χφR(et, dt, st)− (1− χ)φ

R
(et, dt, st)

)
(et + dt)ζ if φR(et, dt, st) ≤ φt

(1− χ)
(
φt − φR(et, dt, st)

)
(et + dt)ζ if φ

R
(et, dt, st) ≤ φt ≤ φR(et, dt, st)

φ
R

(et, dt, st) =


0 if 0 ≤ (1 + rm)dt(1− st) < (1− χ)(1− δ)(et + dt)

I−1
(

(1+rm)dt(1−st)−(1−χ)(1−δ)(et+dt)
(1−χ)(et+dt)ζ

; et + dt
)

if (1− χ)(1− δ)(et + dt) ≤ (1 + rm)dt(1− st)

≤ (1− χ)(1− δ)(et + dt) + (1− χ)(et + dt)ζ Î(et + dt)

φR(et, dt, st) =


0 if 0 ≤ (1 + rb)dtst < χ(1− δ)(et + dt)

G−1
(

(1+rb)dtst−χ(1−δ)(et+dt)
χ(et+dt)ζ

)
if χ(1− δ)(et + dt) ≤ (1 + rb)dtst

≤ χ(1− δ)(et + dt) + χ(et + dt)ζE(φ)

and:

∀et ∈ [0, E] , TKV (et) = max
(dt,st)∈SK(et)

∫
φt≥φ

K
(et,dt,st)

V c (nK (φt; et, dt, st)) dF (φt) (A1-K)

s.t. V c(nt) = max
0≤et+1≤nt

nt − et+1 + (1− η)βV (et+1)

nK(φt, et, dt, st) =
(
φt − φK(et, dt, st)

)
(et + dt)

ζ if φt ≥ φK(et, dt, st)

φ
K

(et, dt, st) =


0 if 0 ≤ (1 + rm(1− st) + rbst)dt < (1− δ)(et + dt)

M−1
(

(1+rm(1−st)+rbst)dt−(1−δ)(et+dt)
(et+dt)ζ

; et + dt
)

if (1− δ)(et + dt) ≤ (1 + rm(1− st) + rbst)dt

≤ (1− δ)(et + dt) + (et + dt)ζM̂(et + dt)
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Consider a solution V to problem (M-8) and a particular value of et ∈ [0, E]. Since (SK(et),SR(et)) is a

partition of S(et), the optimal policies (d̂t, ŝt) (there may be several) must be in either SR(et) or SK(et).

Assume that they are in SR(et). Then the contracts Rb,t, Rm,t associated with the optimal policies satisfy

Rb,t
χ ≥ Rm,t

1−χ . Given the results of proposition 1, the constraints and objectives in problem (M-8) can be

rewritten as in (A1-R). Since V solves (M-8), this implies that V (et) = TRV (et). Moreover, in that case

TRV (et) = V (et) ≥ TKV (et), by optimality of (d̂t, ŝt). Thus, TV (et) = V (et). The same equality obtains

if (d̂t, ŝt) ∈ SK(et). Any solution to V to problem (M-8) must thus satisfy TV = V . The rest of the proof

therefore focuses on the properties of the operators T , TK and TR.

Step 2: Let V ∈ C(E). By lemma 1, the associated continuation value V c is continuous on R+. More-

over, since I−1 and G−1 are continuous functions of et, dt and st, the functions nR, φ
R

and φR are

continuous in their (et, dt, st) arguments. Define the mapping OR : [0, E] ×
[
0, d̄(E)

]
× [0, 1] → R+ by

OR(et, dt, st) =
∫
φt≥φ

R
(et,dt,st)

V c
(
nRt (φt; et, dt, st)

)
dF (φt). Here d̄(E) denotes the upper bound on bor-

rowing for the maximum level of equity E; see Crouzet (2013), proposition 10, for a proof that such an

upper bound always exist. By continuity of V c, nRt , φR and φR, the integrand in OR is continuous on the

compact set [0, E] ×
[
0, d̄(E)

]
× [0, 1], and therefore uniformly continuous. Hence, OR is continuous on

[0, E]×
[
0, d̄(E)

]
× [0, 1]. The constraint correspondence ΓR : et → SR(et) maps [0, E] into

[
0, d̄(E)

]
× [0, 1].

The characterization of the set SR(et) in Crouzet (2013), proposition 2, moreover shows that the graph of

the correspondence ΓR is closed and convex. Theorems 3.4 and 3.5 in Stokey, Lucas, and Prescott (1989)

then indicate that ΓR is continuous. Given that OR is continuous and ΓR compact-valued and continuous,

the theorem of the maximum applies, and guarantees that TRV ∈ C(E). In analogous steps, one can prove

that TKV ∈ C(E). Therefore, TV = max(TRV, TKV ) ∈ C(E). Moreover, let V ∈ C0(E). Then V c(0) ≥ 0

and V c is increasing, by lemma 1. Moreover SR(0) 6= ∅, so one can evaluate OR at some (dt,0, st,0) ∈ SR(0).

Since nR ≥ 0, V c(0) ≥ 0 and V c is increasing, OR(0, dt,0, st,0) ≥ 0. Therefore TRV (0) ≥ 0, so TV (0) ≥ 0

and TV ∈ C0(E).

Step 3: Finally, I establish that the operator T has the monotonicity and discounting properties. First, let

(V,W ) ∈ C(E) such that ∀et ∈ C(E), V (et) ≥W (et). Pick a particular et ∈ [0, E]. By an argument similar

to the proof of lemma 1, ∀nt ≥ 0, V c(nt) ≥W c(nt), where W c denotes the solution to the dividend issuance

problem when the continuation value is W (and analogously for V). Since the functions φ
R
, φR and nR are

independent of V , this inequality implies OVR (et, dt, st) ≥ OWR (etdt, st) for any (dt, st) ∈ SR(et), where the

notation OWR designates the objective function in problem (A1-R) when the continuation value function is

W (and analogously for V ). Thus TRV (et) ≥ TRW (et). Similarly, one can show that TKV (et) ≥ TKW (et).
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Therefore, TV (et) ≥ TW (et), and T has the monotonicity property. To establish the discounting property,

it is sufficient to note that (V + a)c(nt) = V c(nt) + βa, so that for any et ∈ [0, E] and (dt, st) ∈ SR(et),

OV+a
R (et, dt, st) = OVR (et, dt, st)+

(
1− F

(
φ
R

(et, dt, st)
))

βa ≤ OVR (et, dt, st)+βa. This shows that TR(V +

a)(et) ≤ TRV (et) + βa. A similar claim can be made for TK . Therefore, the operator T has the discounting

property. The Blackwell sufficiency conditions hold, so that T is a contraction mapping.

Properties of the solution to problem (M-8).

Let V denote the unique solution to problem (M-8).

Monotonicity First, it can be shown that ∀(e1
t , e

2
t ) ∈ [0, E] s.t. e1

t < e2
t , TRV (e1

t ) < TRV (e2
t ). To show

this, let (dt, st) ∈ SR(e1
t ). I proceed in three steps:

1 : First, since e1
t < e2

t , SR(e1
t ) ⊂ SR(e2

t ) (a proof for this can be obtained using proposition 10 in Crouzet

(2013); intuitively, this result indicates that increasing net worth relaxes borrowing constraints). There-

fore, (dt, st) ∈ SR(e2
t ).

2 : Next, I show that φR(e1
t , dt, st) > φR(e2

t , dt, st). (The functions at this point are well-defined because

(dt, st) ∈ SR(e2
t )). Given the expression for φR in (A1-R), since G−1 is strictly increasing on R+, it

is sufficient to show that et → (1+rb)dtst−χ(1−δ)(et+dt)
χ(et+dt)ζ

is strictly decreasing in et. This is true because

ζ < 1. Next I prove that φ
R

(e1
t , dt, st) > φ

R
(e2
t , dt, st). To see this, note that:

∂φ
R

(et, dt, st)

∂et
=

∂yI
∂et
− I2

(
I−1 (yI(et); et + dt) ; et + dt

)
I1 (I−1 (yI(et); et + dt) ; et + dt)

,

where yI(et) ≡ (1+rm)dt(1−st)−(1−χ)(1−δ)(et+dt)
(1−χ)(et+dt)ζ

. Note that, letting x = I−1 (yI(et); et + dt):

∂yI
∂et
− I2(x; et + dt) = −ζ (1 + rm)dt(1− st)

(1− χ)(et + dt)ζ+1
− (1− ζ)(1− δ)(et + dt)

−ζ (1− F (x)) < 0

Since I1 > 0, this implies that φR is strictly decreasing in et.

3 : Given the fact that φ
R

and φR are strictly decreasing in et, the expression for nR(φt; et, dt, st) in

(A1-R) then implies that ∀φt ≥ φ
R

(e1
t , dt, st), nR(φt; e

1
t , dt, st) < nR(φt; e

2
t , dt, st). Thus, since V c is

increasing,
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OR(e1
t , dt, st) =

∫
φt≥φ

R
(e1t ,dt,st)

V c
(
nR
(
φt; e

1
t , dt, st

))
dF (φt) <

∫
φt≥φ

R
(e1t ,dt,st)

V c
(
nR
(
φt; e

2
t , dt, st

))
dF (φt)

≤
∫
φt≥φ

R
(e2t ,dt,st)

V c
(
nR
(
φt; e

2
t , dt, st

))
dF (φt)

= OR(e2
t , dt, st).

where the second line exploits the fact that φ
R

(e1
t , dt, st) > φ

R
(e2
t , dt, st) and V c ≥ 0.

Since last inequality has been established for any (dt, st) ∈ SR(e1
t ) ⊂ SR(e2

t ), it shows that the objective

function is uniformly increasing (strictly) in et, so that TRV (e1
t ) < TRV (e2

t ). A similar but simpler proof

using the expression for φ
K

in (A1-K) shows that TKV (e1
t ) < TKV (e2

t ). Therefore, TV (e1
t ) < TV (e2

t ), so

that V (e1
t ) < V (e2

t ). Therefore, the solution to problem (M-8) is strictly increasing in et.

Existence and unicity of an invariant measure of firms across equity levels.

I next prove that, given a solution to problem (M-8), an measure of firms across levels of et exists and

is unique. I start by introducing some preliminary notation.

Preliminary notation ē denotes the level of net worth above which firms start issuing dividends. Ē =

[0, ē] denotes the state-space of the firm problem (M-8).
(
Ē, Ē

)
is the measurable space composed of Ē and

the family of Borel subsets of Ē. For any value et ∈ Ē, d̂(et) and ŝ(et) denote the policy functions of the

firms. The fact that these policy functions are such that (d̂(et), ŝ(et)) ∈ SR(et) will be denoted by et ∈ ĒR,

and et ∈ ĒK for the other case. φ̂
R

(et) and φ̂R(et) denote the liquidation threshold implied by the firm’s

policy functions when et ∈ ĒR, while φ̂
K

(et) denotes the liquidation threshold when et ∈ ĒK . I use the

notation: r̂(et) = rm(1− ŝ(et)) + rbŝ(et). Finally, recall that F (.) denotes the CDF of φt, the idiosyncratic

productivity shock, and η denotes the exogenous exit probability.

Transition function To define the transition function Q implied by firms’ policy functions, one can

proceed by constructing the probability of a firm having an equity level smaller than or equal to et+1 next

period, given that its current period equity is et. Additionally, one must take into account the fact that the

fraction η of firms that exit exogenously, plus those that are liquidated endogenously, will be replaced by

firms operating at the entry scale ee. Insofar as the evolution of the measure of firms is concerned, this is

equivalent to assuming that firms these firms transition to the level ee.7 The resulting probability of having

7However, one cannot assume this in the expression of the value function of the firm; this would indeed change firms’
incentive to default, restructure and renegotiate.
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an equity level smaller than or equal to et+1, given that current period equity is et is denoted by N(et, et+1),

and is given by the following expressions.

• For et ∈ ĒK :

- If (1− δ)(et + d̂(et)) > (1 + r̂(et))d̂(et) + ē, the firm never liquidates and always has a net worth of at

least ē after the debt settlement stage, so:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)

 0 if et+1 ≤ ē

1 if ē ≤ et+1

- If (1 + r̂(et))d̂(et) + ē ≥ (1− δ)(et + d̂(et)) > (1 + r̂(et))d̂(et), the firm is never liquidated but may have

a net worth below ē after the debt settlement stage, so:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)


0 if et+1 < e(et)

F
(
et+1−e(et)
(et+d̂(et))ζ

)
if e(et) ≤ et+1 < ē

1 if ē ≤ et+1

where e(et) = (1− δ)(et + d̂(et))− (1 + r̃(et))d̂(et) is the lower bound on these firms’ net worth (that

is, their net net worth when φt = 0).

- If (1 + r̂(et))d̂(et) ≥ (1− δ)(et + d̂(et)), the firm may be liquidated at the debt settlement stage (when

φt ≤ φ̂K(et)), so:

N(et, et+1) =
(
η + (1− η)F

(
φ̂
K

(et)
))

1{ee ≤ et+1}

+(1− η)


0 if et+1 < 0

F
(
φ̂
K

(et) + et+1

(et+d̂(et))ζ

)
− F

(
φ̂
K

(et)
)

if 0 ≤ et+1 < ē

1− F
(
φ̂
K

(et)
)

if ē ≤ et+1

• For et ∈ ĒR: There are two subcases, depending on whether φ̂
R

(et) ≷ φ̂R(et)− ē
(1−χ)(et+d̂(et))ζ

.

- If φ̂
R

(et) > φ̂R(et)− ē
(1−χ)(et+d̂(et))ζ

:

- If (1− δ)(et + d̂(et)) ≥ (1 + r̂(et))d̂(et) + ē, the firm never liquidates or restructures, and always has a

net worth of at least ē after the debt settlement stage, so:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)

 0 if et+1 ≤ ē

1 if ē ≤ et+1
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- If (1 + r̂(et))d̂(et) + ē > (1− δ)(et + d̂(et)) ≥ (1+rb)ŝ(et)d̂(et)
χ , the firm may sometimes have a net worth

below ē after the debt settlement stage, but still never liquidates or restructures, so:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)


0 if et+1 < e(et)

F
(
et+1−e(et)
(et+d̂(et))ζ

)
if e(et) ≤ et+1 < ē

1 if ē ≤ et+1

where again, e(et) = (1− δ)(et + d̂(et))− (1 + r̂(et))d̂(et).

- If (1+rb)ŝ(et)d̂(et)
χ > (1− δ)(et+ d̂(et)) ≥ (1+rm)(1−ŝ(et))

1−χ , then the firm will sometimes restructure at the

debt settlement stage, but never liquidate, so:

N(et, et+1) = η1{ee ≤ et+1}+(1−η)



0 if et+1 < e(et)

F
(

et+1−e(et)
(1−χ)(et+d̂(et))ζ

)
if e(et) ≤ et+1 < e(et) + (1− χ)(et + d̂(et))

ζ φ̂R(et)

F
(
et+1−e(et)
(et+d̂(et))ζ

+ χφ̂R(et)
)

if e(et) + (1− χ)(et + d̂(et))
ζ φ̂R ≤ et+1 < ē

1 if ē ≤ et+1

where now, e(et) = (1− χ)(1− δ)(et + d̂(et))− (1 + rm)(1− ŝ(et))d̂(et).

- Finally, if (1+rm)(1−ŝ(et))d̂(et)
(1−χ) > (1−δ)(et+d̂(et)), then the firm will sometimes be liquidated, sometimes

restructure and sometimes repay, so:

N(et, et+1) =
(
η + (1− η)F

(
φ̂
R

(et)
))

1{ee ≤ et+1}

+(1− η)



0 if et+1 < 0

F
(
φ̂
R

(et) +
et+1

(1−χ)(et+d̂(et))ζ

)
− F

(
φ̂
R

(et)
)

if 0 ≤ et+1 < (1− χ)(et + d̂(et))ζ
(
φ̂R(et)− φ̂R(et)

)
F
(

et+1

(et+d̂(et))ζ
+ χφ̂R(et) + (1− χ)φ̂

R
(et)

)
− F

(
φ̂
R

(et)
)

if (1− χ)(et + d̂(et))ζ
(
φ̂R(et)− φ̂R(et)

)
≤ et+1 < ē

1− F
(
φ̂
R

(et)
)

if ē ≤ et+1

- If φ̂
R

(et) ≤ φ̂R(et)− ē
(1−χ)(et+d̂(et))ζ

:

- If (1 − δ)(et + d̂(et)) ≥ (1+rm)(1−ŝ(et))d̂(et)+ē
1−χ , then even when the firm restructures, it will still have

enough net worth to have an equity level ē tomorrow, so that:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)

 0 if et+1 ≤ ē

1 if ē ≤ et+1

- If (1+rm)(1−ŝ(et))d̂(et)+ē
1−χ > (1− δ)(et + d̂(et)) ≥ (1+rm)(1−ŝ(et))d̂(et)

1−χ , then the firm may restructure and
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not have sufficient equity to reach the level ē tomorrow, so that:

N(et, et+1) = η1{ee ≤ et+1}+ (1− η)


0 if et+1 < e(et)

F
(

et+1−e(et)
(1−χ)(et+d̂(et))ζ

)
if e(et) ≤ et+1 < ē

1 if ē ≤ et+1

where again e(et) = (1 − χ)(1 − δ)(et + d̂(et)) − (1 + rm)(1 − ŝ(et))d̂(et) is the lower bound on these

firms’ net worth (that is, their net net worth when φt = 0).

- Finally, if (1+rm)(1−ŝ(et))d̂(et)
1−χ ≥ (1− δ)(et + d̂(et)), then the firm will sometimes liquidate, so that:

N(et, et+1) =
(
η + (1− η)F

(
φ̂
R

(et)
))

1{ee ≤ et+1}

+(1− η)


0 if et+1 < 0

F
(
φ̂
R

(et) + et+1

(1−χ)(et+d̂(et))ζ

)
− F

(
φ̂
R

(et)
)

if 0 ≤ et+1 < ē

1− F
(
φ̂
R

(et)
)

if ē ≤ et+1

It is straightforward to check that given et, N(et, .) is weakly increasing, has limits 0 and 1 at −∞ and

+∞ and is everywhere continuous from above, using the expressions given above. Following theorem 12.7

of Stokey, Lucas, and Prescott (1989), there is therefore a unique probability measure Q̂(et, .) on (R,B(R))

such that Q̂(et, ]−∞, e]) = N(et, e) ∀e ∈ R. This measure is 0 for e < 0 and 1 for e > ē, and so the restriction

of Q̂ to Ē is also a probability measure on
(
Ē, Ē

)
, which can be denoted Q(et, .). Moreover, fixing e ∈ Ē, the

function Q(., ]−∞, e]) : Ē → [0, 1] is measurable with respect to Ē . Indeed, given z ∈ [0, 1], the definition of

N(et, e) indicates that the set H(z, e) =
{
et ∈ Ē s.t. Q(et, [0, e]) ≤ z

}
=
{
et ∈ Ē s.t. Q̂(et, ]−∞, e]) ≤ z

}
={

et ∈ Ē s.t. N(et, e) ≤ z
}

is an element of Ē .8 This in turn implies that the function Q(.,E) is Ē-measurable

for any E ∈ Ē . The function Q : Ē × Ē → [0, 1] is such that Q(et, .) is therefore a probability measure for

any et ∈ Ē, and Q(.,E) is Ē-measurable ∀E ∈ Ē ; hence, Q is a transition function.

8For example, if z ≤ η and 0 < e < ē, the intersection of the set H(z, e) with ĒK is given by:

H(z, e) ∩ ĒK =
{
et ∈ ĒK s.t. (1− δ)(et + d̂(et)) ≥ (1 + r̂(et))d̂(et) + ē

}
∪{

et s.t. (1 + r̂(et))d̂(et) + ē > (1− δ)(et + d̂(et)) ≥ (1 + r̂(et))d̂(et) and e(et) > e
}

=
{
et ∈ ĒK s.t. (1− δ)(et + d̂(et)) > (1 + r̃(et))d̂(et) + e

}
This set is the inverse image of ]0,+∞[ by the function g : ĒK → R, x → (1 − δ)(x + d̂(x)) − (1 + r̃(x))d̂(x) − e. Since the
policy functions are continuous, g is continuous. Since the inverse image of an open set by a continuous function is an open
set, H(z, e) ∩ ĒK is an open set, and hence a Borel set. The intersection H(x, e) ∩ ĒR has a more complicated expression, but
also boils down to a finite union of sets that are open because of the continuity of policy functions. Given that ĒK and ĒR are
intervals that form a partition of Ē, this implies that H(z, e) = (H(z, e) ∩ ĒR) ∪ (H(z, e) ∪ ĒK) is a finite union of Borel sets,
and therefore a Borel set. This line of reasoning applies for all 0 ≤ z ≤ 1 and 0 ≤ e ≤ ē.

14



Feller property To establish that the transition function Q has the Feller property, one must show that

∀et ∈ Ē and ∀ (en,t)n ∈ ĒN such that en,t → et, Q(en,t, .) ⇒ Q(et, .), where ⇒ denotes weak convergence.

To establish this, given the definition of Q it is sufficient to show that N(en,t, et+1)→ N(et, et+1) pointwise,

at all values of et+1 and et where N(., et+1) and N(et, .) are continuous. This excludes, in particular, the

cases et+1 = ē or et = ē. I outline the proof for the case et ∈ ĒK ; the proof for the other case is similar.

First consider a simple case, when et satisfies:

(1 + r̂(et))d̂(et) > (1− δ)(et + d̂(et)) (1)

Because et 7→ η + (1 − η)F
(
φ̂
K

(et) + et+1

(et+d̂(et))ζ

)
is continuous on ĒK , e 7→ N(e, et+1) is continuous in

a neighborhood of et. Additionally, since r̂ and d̂ is continuous, the inequality (1) holds for en,t, when n

is sufficiently large. Combining these two observations implies that N(en,t, et+1) → N(et, et+1). The case

when the inequality above holds in the reverse direction is handled similarly.

Now consider a knife-edge case:

(1 + r̂(et))d̂(et) = (1− δ)(et + d̂(et)) (2)

The proglem is that the sequence (en,t)n can have elements that satisfy either (1 + r̂(en,t))d̂(en,t ≷ (1 −

δ)(en,t + d̂(en,t), which correspond to different expressions for N(en,t, et+1); one must check therefore check

that N(., et+1) is continuous at et such that (2) holds. At such a point, e(et) = 0, so that:

lim
e↑et

N(et, et+1) = lim
e↑et

η + (1− η)F

(
et+1 − ē(et)
(et + d̂(et))ζ

)
= η + (1− η)F

(
et+1

(et + d̂(et))ζ

)
.

Moreover, φ̂
K

(et) = 0, so that:

lim
e↓et

N(et, et+1) = lim
e↓et

η + (1− η)F

(
φ̂
K

(et) +
et+1

(et + d̂(et))ζ

)
= η + (1− η)F

(
et+1

(et + d̂(et))ζ

)
.

This establishes the continuity of N(., et+1) at points et such that equation (2) holds; thus, ∀et+1 ∈ Ē,

ēt+1 6= ē, N(., et+1) is continuous on ĒK .

3 Computational procedures

Computation of a solution to the firm’s problem (M-8) The algorithm is a straightforward iteration

in two fixed points, V (.) and ē, except for the important insight that the feasible sets SK(et) and SR(et)
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can be computed outside of iterations used to compute fixed point of the mapping T (value functions V (.)).

This is again because the feasible sets are independent of the value function V (.), but only depend on firms’

equity et.
9

1. Guess a value for ē and choose a discrete grid with Ne points on [0, ē], {ei,t}Nei=1.10

2. For i = 1, ..., Ne, compute and store the frontiers of the sets SK(ei,t) and SR(ei,t) depicted in figure

(M-4). This computation is done using the results in Crouzet (2013). For example, the frontiers of

the set SR(ei,t) are given by
{(
s, d̄R(s)

)
∈ [0, 1]× R+ s.t. s ∈ [sR,min, 1]

}
, where sR,min = 1

1+ 1−χ
χ

1+rb
1+rm

and d̄R(.) is a function of s, the expression of which is reported in Crouzet (2013). The frontiers are

computed by discretizing the interval [sR,min, 1] on a grid of size Ns, evaluating the function d̄R(.)

at each of these points, and storing the resulting points {sj , d̄(sj)}Nsj=1.11 The frontier of SK(ei,t) is

similarly approximated on a discrete grid covering [0, sR,max(ei,t)].

3. Choose an initial guess for the value function V0(.) at the points {ei,t}. A useful initial guess is to

first compute the value VS(.) of the firm in the static version of the model, and then use V0(ei,t) =

VS(ei,t) + 1
1−(1−η)β

(
E(φ)(ē+ d̂S(ē))ζ + (1− δ)(ē+ d̂S(ē))− (1 + rm)d̂S(ē)− ē

)
, where d̂S(ē) denotes

total borrowing when e = ē in the solution to the static model. The term in parenthesis represents

dividend issuance by an infinitely-lived firm with equity ē, market borrowing d̂S(ē) and no bank loans,

assuming that this borrowing amount is riskless.

4. Apply the mapping T defined in equation (A1) until convergence. This step takes into account the

fact that the firm chooses market-only borrowing for some et ≥ e∗. It proceeds as follows:

(a) Guess a value for e∗, the switching threshold, and for
{
d̂(ei,t), ŝ(ei,t)

}
, the firm’s policy functions,

and an initial guess for the value function V (0).

(b) Given a guess for V (n)(.), compute the implied values TV
(n)
R (ei,t) for ei,t ≤ e∗ and TV

(n)
K (ei,t)

for ei,t ≥ e∗, assuming that the policy of the firm is given by
{
d̂(ei,t), ŝ(ei,t)

}
. Let V (n+1)(ei,t) =

TV
(n)
R (ei,t) for ei,t ≥ e∗ and V (n+1)(ei,t) = TV

(n)
K (ei,t) for ei,t > e∗. Repeat this Howard im-

provement step for 0 ≤ n ≤ NH .

(c) Given V (NH)(.), compute policy functions, value functions, and the implied value of the switching

threshold e∗,(NH).

9The computation of the solution to the problem (M-8) would otherwise be considerably more expensive.
10The grid used is log-spaced and concentrates points close to 0.
11Ns is taken to be sufficiently large to ensure that space between two gridpoints is at most 0.0005, which corresponds to

0.05% in terms of the share of bank credit as a fraction of total loans.
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Steps (a)-(c) are started with the guess V (0) = V0. They are repeated until V (NH) and V (0) are

sufficiently close, and e∗,(0) and e∗,(NH) are sufficiently close. At each repetition of (a)− (c) after the

initial one, the initial guesses used in (a) are the policy functions along with TV (NH) and e∗,(NH) from

the previous step. In steps (a)-(c), one needs to compute integrals of the form
∫
φ
V c(n(φ, d, s, e))dF (φ),

given the discrete approximation to the value function (which take into account the dividend issuance

policy of the firm). I detail the method used below. The maximization over (d, s) in step (c) is

carried out using a numerical constrained maximization procedure, rather than a discretized grid; the

constraints are the frontiers computed in step 1.

5. Given the final value function V (NH)(.), approximate numerically the derivative ∂V (NH )

∂e (ē) and check

whether it is sufficiently close to 1
(1−η)β . If not, adjust the guess for ē (upwards if (1−η)β ∂V

(NH )

∂e (ē) > 1,

downwards otherwise) and repeat steps 1-4. To accelerate convergence, interpolate the value function

V (NH)(.) on the new grid [0, ē] and use the interpolated value as new starting guess in step 3.

Computation of the value function A problem in steps (b) and (c) is the computation of the iterate

TV , given a guess for V and values for the debt structure (dt, st). Here, I give an example of the computation

of this value function when (dt, st) ∈ SR(et) and: (1+rm)(1−st)dt
1−χ > (1− δ)(et+dt). This is the most involved

case, since in that region, the firm is sometimes liquidated, sometimes manages to restructure its bank loans,

and sometimes repays its creditors in full.

Taking into account the dividend issuance policy of the firm, as well as the liquidation/restructuring

choice, the objective function of the firm (A1-R) is given by:

∫
φt≥φ

R
(et,dt,st)

V c (nR (φt; et, dt, st)) dF (φt) = (1− η)β

∫ φR(et,dt,st)

φ
R

(et,dt,st)

V
(

(φ− φ
R

(et, dt, st))(1− χ)(et + dt)
ζ
)
dF (φ)

(INT-1)

+ (1− η)β

∫ φM (et,dt,st,ē)

φR(et,dt,st)

V
(

(φ− χφR(et, dt, st))− (1− χ)φ
R

(et, dt, st))(et + dt)
ζ
)
dF (φ)

(INT-2)

+
(
1− F (φM (et, dt, st, ē))

) (
(1− η)βV (ē)− φM (et, dt, st, ē)(et + dt)

ζ
)

+

(∫ +∞

φM (et,dt,st,ē)

φdF (φ)

)
(et + dt)

ζ

where φM (et, dt, st, ē) = χφR(et, dt, st))+(1−χ)φ
R

(et, dt, st)+ ē
(et+dt)ζ

is the threshold for the idiosyncratic

shock φ above which the firm starts issuing dividends. The intervals (INT −1) and (INT −2) are computed

using the linear interpolation of V (.) on two different sub-intervals. Namely, first find the index 1 ≤ k0 ≤ n−1
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such that (1 − χ)(et + dt)
ζ(φR(et, dt, st) − φ

R
(et, dt, st)) ∈ ]et,k0 ; et,k0+1]. Define {φk}Nek=1, {Ak}Nek=1 and

{Bk}Nek=1 by, for 1 ≤ k ≤ k0:

φk = (1− χ)φ
R

(et, d, st) +
ek

(1− χ)(et + dt)ζ

Ak = V (ek,t)−
(

(1− χ)φ
R

(et, dt, st)(et + dt)
ζ + ek,t

) V (ek+1,t)− V (ek,t)

ek+1,t − ek,t

Bk =
V (ek+1,t)− V (ek,t)

ek+1,t − ek,t
(1− χ)φ

R
(et, d, st)(et + dt)

ζ

and, for k0 + 1 ≤ k ≤ Ne − 1:

φk = χφR(et, dt, st) + (1− χ)φ
R

(et, d, st) +
ek

(et + dt)ζ

Ak = V (ek,t)−
(
χφR(et, dt, st) + (1− χ)φ

R
(et, d, st) + ek,t

) V (ek+1,t)− V (ek,t)

ek+1,t − ek,t

Bk =
V (ek+1,t)− V (ek,t)

ek+1,t − ek,t

(
χφR(et, dt, st) + (1− χ)φ

R
(et, d, st)

)
(et + dt)

ζ

The two integrals are then approximated as:

(INT − 1) + (INT − 2) =

k0∑
k=1

∫ φk+1

φk

(Ak +Bkφ)dF (φ)

+

∫ φR(et,dt,st)

φk0

(Ak0 +Bk0φ)dF (φ) +

∫ φk0+1

φR(et,dt,st)

(Ak0+1 +Bk0+1φ)dF (φ)

+

Ne−1∑
k=k0+1

∫ φk+1

φk

(Ak +Bkφ)dF (φ).

This method works for 2 ≤ k0 ≤ Ne−2; the extensions to the cases k0 = 1 and k0 = Ne−1 are straightforward.

There are a number of other cases to be covered, depending on whether (dt, st) ∈ SR(et) or (dt, st) ∈

SK(et), whether the implied contracts are riskless or not, and on the threshold at which the firm has

sufficient cash on hand to issue dividends after the debt settlement stage. However, in all these cases the

value function can be approximated using linear interpolation, as described above. The exact expressions

for the value function, in each case, are available on request.

Computation of the invariant distribution The invariant distribution of firms over the set [0, ē] is

approximated using a discrete set of weights {wi}Nei=1, which represent the mass of firms with equity in the

interval
]

1
2 (ei−1 + ei);

1
2 (ei + ei+1)

]
for 2 ≤ i ≤ Ne − 1, and the mass of firms in the interval

[
0, 1

2e2

]
for

i = 1 and
]

1
2 (eNe−1 + eNe), eNe

]
for i = Ne. The invariant distribution is the solution to the matrix equation

wP = w, where w = (w1, ..., wNe) and M is a (Ne × Ne) matrix representing the transition kernel Q.

Specifically, the entry mi,j is given by mi,1 = N(ei,
1
2e2), mi,j = N(ei,

1
2 (ej + ej+1))−N(ei,

1
2 (ej + ej−1)) for
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2 ≤ j ≤ Ne − 1, and mi,j = 1−N(ei,
1
2eNe−1)) for j = Ne. Note that computing the invariant distribution

requires the entry scale ee, which can be obtained using the solution to the firms’ problem (M-8) along with

the entry condition (M-9).

Computation of the perfect foresight response of the economy Computing the perfect foresight

response of the economy to aggregate shocks is straightforward, because there are no endogenous aggregate

price paths to solve for, since the cost of funds of financial intermediaries, r, always equals 1
β − 1. In a

perfect foresight equilibrium, one must however ensure that firms’ current decisions take into account future

variation in the path of aggregate shocks; that is, the decision problem of each firm must be solved through

backward iteration. I describe the algorithm used to compute the perfect foresight response when the

aggregate shock affects the intermediation wedge γ. Let {γ(t)}+∞t=0 denote the path of the aggregate shock,

and γ(+∞) ≡ limt→+∞ γ(t). γ−1 denotes the value of the intermediation wedge before the shock occurs.

1. Compute the long-run steady-state of the economy, that is, the steady-state of the economy when

γ = γ(+∞). Denote by ē(+∞), V (+∞), (d̂(+∞), ŝ(+∞)) and w(+∞) =
{
w

(+∞)
i

}Ne
i=1

the upper bound

on equity, the value function, policy functions and the discrete approximation to the steady-state

distribution of firms in the long-run steady-state. Furthermore, let ē(0) and w(0) denote the upper

bound on equity and the discrete weights approximating the invariant measure of firms when γ = γ−1.

2. Fix T > 0. Let ē(T ) ≡ ē(+∞), V (T ) ≡ V (+∞), (d̂(T ), ŝ(T )) ≡ (d̂(+∞), ŝ(+∞)). For t = T − 1, ..., 1:

(a) Start with the guess ē(t) = ē(t+1).

(b) Compute the frontiers of the feasible sets S(t)
K (.; γ(t)) and S(t)

R (.; γ(t)) for values of et on a discretized

grid over
[
0, ē(t)

]
.

(c) Compute the value function V (t) = T (t)V (t+1) and the associated policy functions (d̂(t), ŝ(t)) on

the discretized grid over
[
0, ē(t)

]
. The index (t) indicates that the aggregate shock takes the value

γ(t) in the formulation of the firm problem.

(d) Check whether (1− η)β ∂V
(t)

∂e (ē(t)) = 1 to a sufficient degree of precision. If not, restart (a)− (c)

with a new guess for ē(t).

(e) Compute the entry scale ee,(t) implied by V (t).

3. For t = 0, compute the policy functions
{
d̂(t), ŝ(t)

}T
t=0

on
[
0, ē(0)

]
that solve the maximization problem

V (0) = T (0)V (1).

4. Next, given the sequence of upper bounds {ēt}T=0
t=1 , policy functions

{
d̂(t), ŝ(t)

}T
t=0

and entry scales

{ee,(t)} implied by the value functions, compute transition matrices Mt,t+1 for 0 ≤ t ≤ T−1. As above,
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the transition matrix is defined using the transition kernel N (t)(et, et+1). This transition kernel takes

the same expression as described above, and only depends on policy functions of the firm at time t, the

equity bounds ē(t) and ē(t+1) and the entry scale ee,(t+1), as well as the current value of the aggregate

shock γ(t).

5. The transition matrices Mt,t+1 map discrete weights w(t) on
[
0, ē(t)

]
to discrete weights on w(t+1) on[

0, ē(t+1)
]

through w(t+1) = w(t)Mt,t+1. Use this to compute the evolution of the approximate firm

measure for t = 0, ..., T , starting with w(0).

6. Check whether the implied w(T ) is sufficiently close to w(+∞). If not, increase T and repeat steps 1-5.

4 Additional results

4.1 Optimal debt structure in the static model
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Figure 2: Optimal composition of debt in the static and dynamic models.

The main text mentions the fact that one of the drivers of firms’ debt choice, in the model, is the

concavity of their value function V (et). Figure 2 illustrates this. It depicts the optimal debt structure

of firms in the dynamic model (black line) and a static version of the model (grey line) with an identical

calibration.12 The static model can be thought of as the limiting case of the model studied in the main text,

when β = 0 (provided that the cost of funds of financial intermediaries, r, is exogenously given). In that

case, the firm has linear utility over final cash flows (after debt settlement). The resulting debt structure has

12This version of the model is identical to the static model I study in Crouzet (2013).
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two differences with respect to the dynamic case: firms with mixed debt structures borrow less from banks;

and the internal finance threshold at which firms switch to the market-only financing regime is smaller. Both

of these differences indicate that the concavity of the valuation of cash flows, in the dynamic model, induces

firms to increase their reliance on bank lending.

4.2 The relationship between asset size and debt composition
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Figure 3: Asset size and debt structure in the steady-state of the model.

The left panel of figure 3 depicts the steady-state distribution of firms by asset size. Total assets of firms

are given by k̂(et) = (et + ˆd(et)). The implied distribution depicted on the left panel is obtained by by

drawing large sample from the approximate distribution of firms {wi}Nei=1, and computing the value of k̂(ed,t)

for each draw indexed by d. This distribution is positively skewed, reflecting the fact that the invariant

measure of firms across internal finance levels et is also positively skewed, and additionally that total assets

are a piecewise increasing function of internal finance. The ”spikes” on the distribution occur because of

the drop in total assets as firms switch from the mixed-finance to the market-finance regime. They coincide

with asset levels that are optimal for both market-finance firms and mixed-financed firms. The right-hand

side depicts the average bank share among firms within the successive quantiles of the asset distribution.13

The bank share falls as one moves to the right of the invariant asset distribution, as is the case in the data

reported in appendix.

13The first dot, for example, is the average bank share of firms in the bottom 5% of the asset size distributions.
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