Definition of dimension

Here we attempt to give a correct proof that if we have a vector space V with a maximal set of N_{a} linearly independent vectors $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots a_{N_{a}}\right\}$ then a second maximal set of linearly independent vectors $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots b_{N_{b}}\right\}$ must contain the same number of vectors, i.e. $N_{b}=N_{a}$. This implies that the maximal number of vectors in any independent set has a single value N_{a} which can then be consistently identified as the dimension of V. Since a maximal set of linearly independent vectors is called a basis, we are showing that all sets of basis vectors have the same number of elements.

To show that $N_{a}=N_{b}$ we assume that $N_{a}>N_{b}$ and show that this is impossible. If $N_{a} \ngtr N_{b}$, we must conclude that $N_{a} \leq N_{b}$. We can then exchange the roles of the two sets \mathcal{A} and \mathcal{B} and conclude that also $N_{b} \leq N_{a}$ which implies $N_{a}=N_{b}$ the result we were trying to prove.

To show the inconsistency of the assumption $N_{a}>N_{b}$, we add the first vector a_{1} in the set \mathcal{A} to the set \mathcal{B} and form the set of $N_{b}+1$ vectors $\left\{a_{1}, b_{1}, b_{d}, \ldots, b_{N_{b}}\right\}$. Because the set \mathcal{B} is maximal this new set which adds the vector a_{1} to \mathcal{B} must be linearly dependent so we can find a set of $N_{b}+1$ coefficients $\left\{\widetilde{c}_{1},\left\{c_{i}\right\}_{1 \leq i \leq N_{b}}\right\}$ with some of these coefficients non-zero which obeys:

$$
\begin{equation*}
\widetilde{c}_{1} a_{1}+c_{1} b_{1}+c_{2} b_{2}, \ldots, c_{N_{b}} b_{N_{b}}=0 . \tag{1}
\end{equation*}
$$

Since the elements of \mathcal{B} are linearly independent, \widetilde{c}_{1} must be non-zero. This implies that $\widetilde{c}_{1} a_{1}$ is also non-zero so one or more of the coefficients $\left\{c_{i}\right\}_{1 \leq i \leq N_{b}}$ must also be non-zero. Relabel the N_{b} vectors $\left\{b_{i}\right\}_{1 \leq i \leq N_{b}}$ so that all of the non-zero coefficients $c_{i} \neq 0$ appear for the largest values of i. For later reference, we will call this step in which we show that one of the coefficients of the vectors b_{k} in Eq. (1) must be non-zero step \#1.

Referring to these new labels, we then remove the vector $b_{N_{b}}$ from the set $\left\{a_{1}, b_{1}, b_{d}, \ldots, b_{N_{b}}\right\}$. We label the new set:

$$
\begin{equation*}
\mathcal{B}_{1}=\left\{a_{1}, b_{1}, b_{d}, \ldots, b_{N_{b}-1}\right\} . \tag{2}
\end{equation*}
$$

We can show that the set of vectors \mathcal{B}_{1} is also a maximal, linearly independent set.

If \mathcal{B}_{1} were linearly dependent, it is easy to see that we could express:

$$
\begin{equation*}
a_{1}=d_{1} b_{1}+d_{2} b_{2}+\ldots d_{N_{b}-1} b_{N_{b}-1} . \tag{3}
\end{equation*}
$$

We can then substitute this equation into Eq. (1) to eliminate the vector a_{1}. Then using a more compact notation, Eq. (1) becomes:

$$
\begin{equation*}
\widetilde{c}_{1}\left\{\sum_{i=1}^{N_{b}-1} d_{i} b_{i}\right\}+\sum_{j=1}^{N_{b}} c_{j} b_{j}=0 . \tag{4}
\end{equation*}
$$

This equation contradicts the assumption that the set \mathcal{B} is linearly independent since we know that the coefficient $c_{N_{b}}$ of the vector $b_{N_{b}}$, is non-zero by assumption. This step showing that the vectors in the new set \mathcal{B}_{1} are linearly independent will be labeled step $\# 2$.

We can also show that the set \mathcal{B}_{1} is a maximal set because for any vector $w \in V$ we can use the fact that \mathcal{B} is maximal to write:

$$
\begin{equation*}
w=\sum_{i=1}^{N_{b}} f_{i} b_{i} \tag{5}
\end{equation*}
$$

Next we use Eq. (1) to express the vector $b_{N_{b}}$ appearing in Eq. (5) in terms of the elements of \mathcal{B}_{1}

$$
\begin{equation*}
b_{N_{b}}=-\frac{1}{c_{N_{b}}}\left\{\widetilde{c}_{1} a_{1}+c_{1} b_{1}+c_{2} b_{2}, \ldots, c_{N_{b}-1} b_{N_{b}-1}\right\} \tag{6}
\end{equation*}
$$

We can then substitute this equation for $b_{N_{b}}$ into Eq. (5). With the vector $b_{N_{b}}$ replaced, Eq. (5) will then express an arbitrary vector w in terms of the vectors in the set \mathcal{B}_{1}. We will label this final step showing that \mathcal{B}_{1} is maximal step $\# 3$.

We have thus removed one vector from \mathcal{A} and created a new set \mathcal{B}_{1} of N_{b} elements composed of one vector from \mathcal{A} and $N_{b}-1$ vectors from \mathcal{B}. Just as was the case for the set \mathcal{B} the set \mathcal{B}_{1} is a maximal independent set. If we remove a_{1} from the set \mathcal{A} and call this new set \mathcal{A}_{1}, then we can repeat the steps performed above but now working with the new sets of vectors: \mathcal{A}_{1} with $N_{a}-1$ elements and \mathcal{B}_{1} with N_{b} elements.

Our strategy is to repeat the procedure above another $N_{b}-1$ times until all of the vectors in \mathcal{B} have been removed from $\mathcal{B}_{N_{b}}$ leaving $\mathcal{B}_{N_{b}}=\left\{a_{k}\right\}_{1 \leq k \leq N_{b}}$ while $\mathcal{A}_{N_{b}}=\left\{a_{k}\right\}_{N_{b}+1 \leq k \leq N_{a}}$. At the $n^{\text {th }}$ step we will show that the set \mathcal{B}_{n} is a maximal, linearly independent set. We will then reach a contradiction that the set $\mathcal{B}_{N_{b}}$ which contains only the first N_{b} of the N_{a} vectors a_{i} forms a basis while we know that it is only the larger set of $N_{a}>N_{b}$ vectors \mathcal{A} which is a basis. We will then have shown that $N_{a}>N_{b}$ is false or $N_{a} \leq N_{b}$ as we had intended.

Thus, the final step in our proof is to demonstrate that we can carry out the $n^{\text {th }}$ inductive step above showing that if \mathcal{B}_{n-1} is a basis then we can add a_{n} to this set, remove one of the remaining b_{k} from that set and be left with the new set \mathcal{B}_{n} which remains a basis. To do this we need to review the three steps above taken to show that starting with the basis \mathcal{B} the new set \mathcal{B}_{1} was also a basis and show that these same steps can be repeated to show that if \mathcal{B}_{n-1} is a basis then \mathcal{B}_{n} must be as well.

Step \#1 can be repeated easily in this context. Because \mathcal{B}_{n-1} is a basis, when we add the vector a_{n} and the new set of $N_{b}+1$ vectors must be linearly dependent so the analog of Eq. (1) must hold:

$$
\begin{equation*}
\widetilde{c}_{1} a_{1}+\widetilde{c}_{2} a_{2} \ldots+\widetilde{c}_{n} a_{n}+c_{1} b_{1}+c_{2} b_{2}, \ldots, c_{N_{b}-(n-1)} b_{N_{b}-(n-1)}=0 \tag{7}
\end{equation*}
$$

As in our earlier argument, the set $\left\{b_{1}, b_{1}, b_{N_{b}-(n-1)}\right\}$ is linearly independent so one or more of the coefficients $\left\{\widetilde{c}_{k}\right\}_{1 \leq k \leq n}$ must be non-zero which in turn requires one or more of the coefficients $\left\{c_{k}\right\}_{1 \leq k \leq N_{b}-(n-1)}$ to be non-zero. As before we will relabel the vectors $\left\{b_{k}\right\}_{1 \leq k \leq N_{b}-(n-1)}$ so that those with nonzero coefficients will have the largest values of the index k and then, using these new labels, drop the vector $b_{N_{b}-(n-1)}$ to define the set of N_{b} vectors:

$$
\begin{equation*}
\mathcal{B}_{n}=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots, b_{N_{b}-n}\right\}, \tag{8}
\end{equation*}
$$

constructed in close analogy with Eq. (2).
Next we repeat step $\# 2$ to show that the set \mathcal{B}_{n} is linearly independent. As before we assume that the set \mathcal{B}_{n} is linearly dependent and identify coefficients \widetilde{d}_{i} and d_{j}, some of which are non-zero, which satisfy:

$$
\begin{equation*}
\widetilde{d}_{1} a_{1}+\widetilde{d}_{2} a_{2} \cdots+\widetilde{d}_{n} a_{n}+d_{1} b_{1}+d_{1} b_{1} \ldots+d_{N_{b}-n} b_{N_{b}-n}=0 . \tag{9}
\end{equation*}
$$

Since the set B_{n-1} is linearly independent, the extra vector a_{n} appearing in Eq. (9) must have a non-zero coefficient, allowing us to express a_{n} in terms of the other vectors in Eq. (9):

$$
\begin{equation*}
a_{n}=-\frac{1}{\widetilde{d}_{n}}\left\{\widetilde{d}_{1} a_{1}+\widetilde{d}_{2} a_{2} \cdots+\widetilde{d}_{n-1} a_{n-1}+d_{1} b_{1}+d_{1} b_{1} \ldots+d_{N_{b}-n} b_{N_{b}-n}\right\} \tag{10}
\end{equation*}
$$

Following the earlier step $\# 2$, we then substitute the expression for a_{n} into Eq. (7) to obtain the relation:

$$
\begin{equation*}
\sum_{i=1}^{n-1} \widetilde{c}_{i} a_{i}-\frac{\widetilde{c}_{n}}{\widetilde{d}_{n}}\left\{\sum_{j=1}^{n-1} \widetilde{d}_{j} a_{j}+\sum_{l=1}^{N_{b}-n} d_{l} b_{l}\right\}+\sum_{k=1}^{N_{b}-(n-1)} c_{k} b_{k}=0 \tag{11}
\end{equation*}
$$

Since the vectors in Eq. (11) all belong to the set \mathcal{B}_{n} while the vector $b_{N_{b}-(n-1)}$ appears in only one term and its coefficient $c_{N_{b}-(n-1)}$ is by construction nonzero, Eq. (11) is a linear relation between the vectors in \mathcal{B}_{n-1} with non-zero coefficients which violates the linear independence of the set \mathcal{B}_{n-1}. Thus, our hypothesis that the set \mathcal{B}_{n} is linearly dependent must be false.

Our final step is the analogue of step $\# 3$ above which shows that \mathcal{B}_{n} is also maximal. As in that earlier step we begin with an arbitrary vector $w \in V$ and write in in terms of the basis \mathcal{B}_{n-1} :

$$
\begin{equation*}
w=\sum_{i=1}^{n-1} \widetilde{f}_{i} a_{i}+\sum_{i=1}^{N_{b}-(n-1)} f_{i} b_{i} . \tag{12}
\end{equation*}
$$

We then use Eq. (7) to express the vector $b_{N_{b}-(n-1)}$ in terms of the vectors in \mathcal{B}_{n}.
$b_{N_{b}-(n-1)}=-\frac{1}{c_{N_{b}-(n-1)}}\left\{\widetilde{c}_{1} a_{1}+\widetilde{c}_{2} a_{2} \ldots+\widetilde{c}_{n} a_{n}+c_{1} b_{1}+c_{2} b_{2}, \ldots, c_{N_{b}-n} b_{N_{b}-n}\right\}$.
When this expression is substituted into Eq. (12), this equation then expresses a general vector w in terms of the vectors in \mathcal{B}_{n} showing that \mathcal{B}_{n} is indeed a basis too. This completes our inductive proof.

