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Definition of dimension

Here we attempt to give a correct proof that if we have a vector space V
with a maximal set of Na linearly independent vectors A = {a1, a2, . . . aNa}
then a second maximal set of linearly independent vectors B = {b1, b2, . . . bNb

}
must contain the same number of vectors, i.e. Nb = Na. This implies that
the maximal number of vectors in any independent set has a single value
Na which can then be consistently identified as the dimension of V . Since a
maximal set of linearly independent vectors is called a basis, we are showing
that all sets of basis vectors have the same number of elements.

To show that Na = Nb we assume that Na > Nb and show that this is
impossible. If Na ̸> Nb, we must conclude that Na ≤ Nb. We can then
exchange the roles of the two sets A and B and conclude that also Nb ≤ Na

which implies Na = Nb the result we were trying to prove.
To show the inconsistency of the assumption Na > Nb, we add the first

vector a1 in the set A to the set B and form the set of Nb + 1 vectors
{a1, b1, bd, . . . , bNb

}. Because the set B is maximal this new set which adds
the vector a1 to B must be linearly dependent so we can find a set of Nb + 1
coefficients {c̃1, {ci}1≤i≤Nb

} with some of these coefficients non-zero which
obeys:

c̃1a1 + c1b1 + c2b2, . . . , cNb
bNb

= 0. (1)
Since the elements of B are linearly independent, c̃1 must be non-zero. This
implies that c̃1a1 is also non-zero so one or more of the coefficients {ci}1≤i≤Nb

must also be non-zero. Relabel the Nb vectors {bi}1≤i≤Nb
so that all of the

non-zero coefficients ci ̸= 0 appear for the largest values of i. For later
reference, we will call this step in which we show that one of the coefficients
of the vectors bk in Eq. (1) must be non-zero step #1.

Referring to these new labels, we then remove the vector bNb
from the set

{a1, b1, bd, . . . , bNb
}. We label the new set:

B1 = {a1, b1, bd, . . . , bNb−1}. (2)

We can show that the set of vectors B1 is also a maximal, linearly independent
set.

If B1 were linearly dependent, it is easy to see that we could express:

a1 = d1b1 + d2b2 + . . . dNb−1bNb−1. (3)

We can then substitute this equation into Eq. (1) to eliminate the vector a1.
Then using a more compact notation, Eq. (1) becomes:

c̃1

{
Nb−1∑
i=1

dibi

}
+

Nb∑
j=1

cjbj = 0. (4)
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This equation contradicts the assumption that the set B is linearly indepen-
dent since we know that the coefficient cNb

of the vector bNb
, is non-zero by

assumption. This step showing that the vectors in the new set B1 are linearly
independent will be labeled step #2.

We can also show that the set B1 is a maximal set because for any vector
w ∈ V we can use the fact that B is maximal to write:

w =

Nb∑
i=1

fibi. (5)

Next we use Eq. (1) to express the vector bNb
appearing in Eq. (5) in terms

of the elements of B1

bNb
= − 1

cNb

{c̃1a1 + c1b1 + c2b2, . . . , cNb−1bNb−1} (6)

We can then substitute this equation for bNb
into Eq. (5). With the vector

bNb
replaced, Eq. (5) will then express an arbitrary vector w in terms of the

vectors in the set B1. We will label this final step showing that B1 is maximal
step #3.

We have thus removed one vector from A and created a new set B1 of Nb

elements composed of one vector from A and Nb − 1 vectors from B. Just
as was the case for the set B the set B1 is a maximal independent set. If
we remove a1 from the set A and call this new set A1, then we can repeat
the steps performed above but now working with the new sets of vectors: A1

with Na − 1 elements and B1 with Nb elements.
Our strategy is to repeat the procedure above another Nb − 1 times until

all of the vectors in B have been removed from BNb
leaving BNb

= {ak}1≤k≤Nb

while ANb
== {ak}Nb+1≤k≤Na . At the nth step we will show that the set Bn

is a maximal, linearly independent set. We will then reach a contradiction
that the set BNb

which contains only the first Nb of the Na vectors ai forms
a basis while we know that it is only the larger set of Na > Nb vectors A
which is a basis. We will then have shown that Na > Nb is false or Na ≤ Nb

as we had intended.
Thus, the final step in our proof is to demonstrate that we can carry out

the nth inductive step above showing that if Bn−1 is a basis then we can add
an to this set, remove one of the remaining bk from that set and be left with
the new set Bn which remains a basis. To do this we need to review the three
steps above taken to show that starting with the basis B the new set B1 was
also a basis and show that these same steps can be repeated to show that if
Bn−1 is a basis then Bn must be as well.

Step #1 can be repeated easily in this context. Because Bn−1 is a basis,
when we add the vector an and the new set of Nb+1 vectors must be linearly
dependent so the analog of Eq. (1) must hold:

c̃1a1 + c̃2a2 . . .+ c̃nan + c1b1 + c2b2, . . . , cNb−(n−1)bNb−(n−1) = 0. (7)
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As in our earlier argument, the set {b1, b1, bNb−(n−1)} is linearly independent
so one or more of the coefficients {c̃k}1≤k≤n must be non-zero which in turn
requires one or more of the coefficients {ck}1≤k≤Nb−(n−1) to be non-zero. As
before we will relabel the vectors {bk}1≤k≤Nb−(n−1) so that those with non-
zero coefficients will have the largest values of the index k and then, using
these new labels, drop the vector bNb−(n−1) to define the set of Nb vectors:

Bn = {a1, a2, . . . an, b1, b2, . . . , bNb−n}, (8)
constructed in close analogy with Eq. (2).

Next we repeat step #2 to show that the set Bn is linearly independent.
As before we assume that the set Bn is linearly dependent and identify coef-
ficients d̃i and dj, some of which are non-zero, which satisfy:

d̃1a1 + d̃2a2 · · ·+ d̃nan + d1b1 + d1b1 . . .+ dNb−nbNb−n = 0. (9)
Since the set Bn−1 is linearly independent, the extra vector an appearing in
Eq. (9) must have a non-zero coefficient, allowing us to express an in terms
of the other vectors in Eq. (9):

an = − 1

d̃n

{
d̃1a1 + d̃2a2 · · ·+ d̃n−1an−1 + d1b1 + d1b1 . . .+ dNb−nbNb−n

}
.

(10)
Following the earlier step #2, we then substitute the expression for an into
Eq. (7) to obtain the relation:

n−1∑
i=1

c̃iai −
c̃n

d̃n

{
n−1∑
j=1

d̃jaj +

Nb−n∑
l=1

dlbl

}
+

Nb−(n−1)∑
k=1

ckbk = 0. (11)

Since the vectors in Eq. (11) all belong to the set Bn while the vector bNb−(n−1)

appears in only one term and its coefficient cNb−(n−1) is by construction non-
zero, Eq. (11) is a linear relation between the vectors in Bn−1 with non-zero
coefficients which violates the linear independence of the set Bn−1. Thus, our
hypothesis that the set Bn is linearly dependent must be false.

Our final step is the analogue of step #3 above which shows that Bn

is also maximal. As in that earlier step we begin with an arbitrary vector
w ∈ V and write in in terms of the basis Bn−1:

w =
n−1∑
i=1

f̃iai +

Nb−(n−1)∑
i=1

fibi. (12)

We then use Eq. (7) to express the vector bNb−(n−1) in terms of the vectors
in Bn.

bNb−(n−1) = − 1

cNb−(n−1)

{c̃1a1 + c̃2a2 . . .+ c̃nan + c1b1 + c2b2, . . . , cNb−nbNb−n} .

(13)
When this expression is substituted into Eq. (12), this equation then ex-
presses a general vector w in terms of the vectors in Bn showing that Bn is
indeed a basis too. This completes our inductive proof.
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