Midterm Examination (Practice)
Answer each of the following three (3) questions.
Please give a complete description of your method of solution since partial credit will be given.

1. Short problems:
(a) A cork is fixed to the bottom, inside an upright, freely-falling bucket filled with water. If the cork is released at $t=0$, find the distance between the cork and the bottom of the bucket as a function of time.
[9 points]
(b) At what rate is work done by a 50 Kg boy walking up a down escalator at such a rate that he stays in the same place? Assume the escalator stairs move downward with a speed of $10 \mathrm{~cm} / \mathrm{sec}$ at an inclination of 30° from the horizontal.
[9 points]
(c) Neglecting the influence of visual stimulae, what causes a person traveling in a car to become motion sick: The car's velocity? The car's acceleration? or Changes in the car's acceleration? Explain your reasoning.
[8 points]
(d) A child is riding in a school bus holding a helium-filled balloon floating above her head and tethered to a string. If the bus driver suddenly brakes, does the balloon move toward the rear or the front of the bus? Explain.
[8 points]
2. A block of mass m_{1} slides on top of a block of mass m_{2} which, in turn, slides on an inclined plane making an angle of θ with the horizontal. They are joined by a massless rope passing over a pulley as shown on the right. Each sliding surface experiences a
 frictional force with coefficient of friction μ. With what acceleration does m_{2} slide down the inclined surface? (Assume that m_{2} is sufficiently large compared to m_{1} that m_{2} does slide downward.)
[33 points]
3. Sand falls at a constant rate λ (in units of mass per unit time) from a raised hopper, located at the position $x=0$, onto railroad tracks. A flatcar of length L and mass M_{0} moves without friction on those tracks with initial velocity v_{0}. At $t=0$ the front edge of the car passes under the hopper so the sand begins to fall on the flatcar. At the time $t=T$ the flatcar passes beyond the hopper and the falling sand. Consider $0 \leq t \leq T$.
(a) What is the total mass, $M(t)$, of the moving car and sand? [4 points]
(b) Determines the car's velocity $v(t)$ at the time t. [12 points]
(c) What is the position of the front edge of the car, $x(t)$? [12 points]
(d) Find the time T in terms of L, M, v_{0}, and λ.
[5 points]
