A solution to problem 7.6 without approximation

This diagram shows the coining rolling around a circle of radius R.

Since the motion of the coin has been specified, the problem can be solved in three steps:

1. Determine the angular velocity $\vec{\omega}(t)$ of the coin implied by the specified motion.
2. Use the angular velocity $\vec{\omega}(t)$ to determine the angular momentum $\vec{L}(t)$.
3. Require that $d \vec{L} / d t$ equal the torque $\vec{\tau}$ acting on the coin.

Here are these three steps:

1. The total angular velocity $\vec{\omega}$ can be viewed as a sum of the angular velocity about the axis perpendicular to the coin, $\vec{\omega}_{\perp}$, and the angular velocity $\vec{\omega}_{\|}$ along an axis parallel to the face of the coin passing through the point of contact P and the coin's center. These can be determined as follows:
(a) View the coin as rotating with angular velocity $\vec{\omega}$ about the point of contact P. Define a vector \vec{b} connecting the point of contact P to the center of mass of the coin.
(b) Since $\vec{v}=\vec{\omega} \times \vec{b}$, the component of $\vec{\omega}$ perpendicular to \vec{b} must have magnitude v / b. Thus, $\left|\vec{\omega}_{\perp}\right|=v / b$. (The parallel component, $\vec{\omega}_{\|}$does not enter this cross product.)
(c) This determines the angular velocity $\vec{\omega}$ except for the component $\vec{\omega}_{\|}$ that is parallel to \vec{b} and cannot affect $\vec{\omega} \times \vec{b}$.
(d) Since the vector $\vec{\omega}_{\perp}$ is fixed to the coin and thus must also rotate with $\vec{\omega}$:

$$
\begin{equation*}
\frac{d \vec{\omega}_{\perp}}{d t}=\vec{\omega} \times \vec{\omega}_{\perp}=\vec{\omega}_{\|} \times \vec{\omega}_{\perp} . \tag{1}
\end{equation*}
$$

This equation is tricky to interprete because the vector $\vec{\omega}_{\|}$itself also depends on time.
(e) However, $\vec{\omega}_{\perp}$ will perform a complete revolution about a vertical axis in the time $2 \pi(R-b \sin (\phi)) / v$. Thus, it precesses with a vertical angular velocity $\vec{\Omega}$:

$$
\begin{equation*}
\vec{\Omega}=\frac{v}{R-b \sin (\phi)} \hat{z}, \tag{2}
\end{equation*}
$$

where \hat{z} is an upward-pointing unit vector so

$$
\begin{equation*}
\frac{d \omega_{\perp}}{d t}=\vec{\Omega} \times \vec{\omega}_{\perp} \tag{3}
\end{equation*}
$$

Equating the right hand sides of Eqs. 1 and 3 we can determine $\omega_{\|}$:

$$
\begin{equation*}
\omega_{\|} \omega_{\perp}=\Omega \omega_{\perp} \cos (\phi) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\omega_{\|}=\Omega \cos (\phi)=\frac{v \cos (\phi)}{R-b \sin (\phi)} \tag{5}
\end{equation*}
$$

2. Since we now know the vector $\vec{\omega}$ we can compute \vec{L}.
(a) Recognizing that the moments of inertia about the perpendicular and parallel directions about the center of mass of the coin are given by $I_{\perp}=M b^{2} / 2$ and $I_{\|}=M b^{2} / 4$ we can determine \vec{L} about the center of mass of the coin:

$$
\begin{equation*}
\vec{L}_{c m}=M b^{2}\left(\frac{1}{2} \vec{\omega}_{\perp}+\frac{1}{4} \vec{\omega}_{\|}\right) . \tag{6}
\end{equation*}
$$

(b) If we plan to calculate the torque about the point of contact P, then we need the angular momontum about P which comes in the usual way from adding to $\vec{L}_{c m}$ the angular momemtum of the CM about P :

$$
\begin{equation*}
\vec{L}_{P}=M b^{2}\left(\frac{3}{2} \vec{\omega}_{\perp}+\frac{1}{4} \vec{\omega}_{\|}\right) . \tag{7}
\end{equation*}
$$

3. Finally we equate the torque exerted by gravity about P and $d \vec{L}_{P} / d t$.
(a) As a vector equation:

$$
\begin{equation*}
\vec{b} \times(-M g \hat{z})=\vec{\Omega} \times \vec{L}_{P} \tag{8}
\end{equation*}
$$

(b) Since the cross product with $\vec{\Omega}$ picks out the horizontal components of \vec{L}_{\perp} and $\vec{L}_{\|}$we can easily equate the magnitudes of both sides of Eq. 8:

$$
\begin{equation*}
M g b \sin (\phi)=\Omega M b^{2}\left(\frac{3}{2} \omega_{\perp} \cos (\phi)+\frac{1}{4} \omega_{\|} \sin (\phi)\right) \tag{9}
\end{equation*}
$$

(c) Substituting for Ω, ω_{\perp} and $\omega_{\|}$and cancelling M gives the following equation for ϕ :

$$
\begin{equation*}
\sin (\phi)=\frac{v^{2}}{g(R-b \sin (\phi))}\left(\frac{3}{2} \cos (\phi)+\frac{1}{4} \frac{b \cos (\phi) \sin (\phi)}{R-b \sin (\phi)}\right) . \tag{10}
\end{equation*}
$$

Thus, the equation $\tan (\phi)=3 v^{2} / 2 g R$ holds when $R \gg b$.

