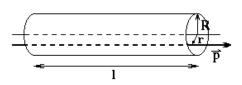
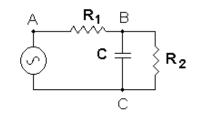
Answer each of the following **four (4)** questions. Please give a complete description of your method of solution since *partial credit* will be given.

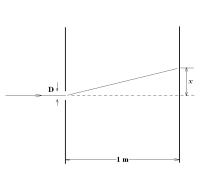
- 1. A cylinder of length l and radius R carries a uniform current density j.
 - (a) Find the magnetic field for both the regions r > R and r < R. [10 points]



- (b) A particle with momentum \vec{p} and charge q moves parallel to and within the cylinder, displaced a distance r from the cylinder's axis. Calculate the additional momentum $\vec{\Delta p}$ given the particle as it passes through the length l of the cylinder. (You should assume that $\Delta p/p \ll 1$ so that the particle's spatial deflection by the magnetic forces can be neglected.) [10 points]
- (c) Including the effects of this $\overline{\Delta}p$ on the subsequent motion of the particle, show that such particles for all values of $r, 0 \le r \le R$, will cross the axis of the cylinder at the same distance D from the cylinder. Find this focal length D. [5 points]
- 2. Consider the combination of two resistors, R_1 and R_2 and a capacitor C driven by an applied voltage $V(t) = V_0 \cos(\omega t)$ configured as shown at the right.

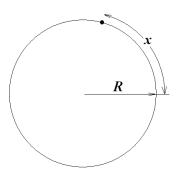


- (a) Find the complex impedance Z seen between the points A and C. [9 points]
- (b) What is the actual current flowing through R_1 in both amplitude and phase? [8 points]
- (c) What is the average power dissipated in the resistor R_2 ? [8 points]
- 3. (a) A mono-energetic, horizontal beam of electrons, each with an energy of 1 electron Volt, is incident on a vertical screen with a horizontal slit of width $D = 10^{-5}$ cm. Make a rough numerical estimate of the vertical width of the pattern of electrons that strike a vertical screen a distance of 1 meter from the screen. Recall that an electron has mass $m = 0.911 \ 10^{-27} \text{ gram}, \hbar = 1.05 \ 10^{-27} \text{ erg sec}$ and $1 \text{ eV} = 1.602 \ 10^{-12} \text{ erg}.$ [9 points]



- (b) Use the uncertainty principle, $\Delta r \ \Delta p \ge \hbar/2$ to show that the orbit of an electron bound to a proton must have a minimum size, recognizing that the orbiting electron will have energy equal to $p^2/2m e^2/r$. Estimate the size of the hydrogen atom in terms of the electron's mass (m), charge (e) and Planck's constant \hbar [8 points]
- (c) A particle of mass m and charge q is constrained to move in a circle of radius R. The particle is located by giving its position x measured along the circumference. If a uniform magnetic field B is imposed perpendicular to the plane of the circle, the energy operator can be written:

$$H_{\rm op} = \frac{(p_{\rm op} - eRB/c)^2}{2m}.$$



Find the allowed energies and the wave functions of the corresponding energy eigenstates for this system. [8 points]

4. A particle of mass m moves within a very deep square well V(x) given by

$$V(x) = \begin{cases} V_0 & x \le 0 \text{ or } L \le x \\ 0 & 0 \le x \le L \end{cases}$$
(1)

where V_0 is a very large positive constant.

- (a) Write down the energy operator (Hamiltonian) for this system and determine those allowed energies which are much smaller than V_0 and the corresponding eigenstates. [8 points]
- (b) Consider a state which at t = 0 has the wave function

$$\psi(x,0) = N\sin(\frac{2\pi}{L}x)\cos(\frac{\pi}{L}x).$$
(2)

If the energy of this state is measured, what results are possible? With what probabilities will those results be found? [6 points]

- (c) Find the normalization constant N needed so that the state $\psi(x, 0)$ has unit probability. [4 points]
- (d) Find the state $\psi(x,t)$ into which the state above evolves at the time t. [4 points]
- (e) Determine the smallest non-zero value of t for which $\psi(x, t)$ is physically equivalent to $\psi(x, 0)$. [3 points]