Answer each of the following four (4) questions. Please give a complete description of your method of solution since partial credit will be given.

1. A cylinder of length l and radius R carries a uniform current density j.
(a) Find the magnetic field for both the regions $r>R$ and $r<R$.
[10 points]

(b) A particle with momentum \vec{p} and charge q moves parallel to and within the cylinder, displaced a distance r from the cylinder's axis. Calculate the additional momentum $\vec{\Delta} p$ given the particle as it passes through the length l of the cylinder. (You should assume that $\Delta p / p \ll 1$ so that the particle's spatial deflection by the magnetic forces can be neglected.) [10 points]
(c) Including the effects of this $\vec{\Delta} p$ on the subsequent motion of the particle, show that such particles for all values of $r, 0 \leq r \leq R$, will cross the axis of the cylinder at the same distance D from the cylinder. Find this focal length D.
[5 points]
2. Consider the combination of two resistors, R_{1} and R_{2} and a capacitor C driven by an applied voltage $V(t)=V_{0} \cos (\omega t)$ configured as shown at the right.

(a) Find the complex impedance Z seen between the points A and C. [9 points]
(b) What is the actual current flowing through R_{1} in both amplitude and phase?
(c) What is the average power dissipated in the resistor R_{2} ? [8 points]
3. (a) A mono-energetic, horizontal beam of electrons, each with an energy of 1 electron Volt, is incident on a vertical screen with a horizontal slit of width $D=10^{-5} \mathrm{~cm}$. Make a rough numerical estimate of the vertical width of the pattern of electrons that strike a vertical screen a distance of 1 meter from the screen. Recall that an electron has mass $m=0.91110^{-27}$ gram, $\hbar=1.0510^{-27} \mathrm{erg} \mathrm{sec}$ and $1 \mathrm{eV}=1.60210^{-12} \mathrm{erg}$.
[9 points]

(b) Use the uncertainty principle, $\Delta r \Delta p \geq \hbar / 2$ to show that the orbit of an electron bound to a proton must have a minimum size, recognizing that the orbiting electron will have energy equal to $p^{2} / 2 m-e^{2} / r$. Estimate the size of the hydrogen atom in terms of the electron's mass (m), charge (e) and Planck's constant \hbar
[8 points]
(c) A particle of mass m and charge q is constrained to move in a circle of radius R. The particle is located by giving its position x measured along the circumference. If a uniform magnetic field B is imposed perpendicular to the plane of the circle, the energy operator can be written:

$$
H_{\mathrm{op}}=\frac{\left(p_{\mathrm{op}}-e R B / c\right)^{2}}{2 m}
$$

Find the allowed energies and the wave functions of the corresponding energy eigenstates for this system.
4. A particle of mass m moves within a very deep square well $V(x)$ given by

$$
V(x)= \begin{cases}V_{0} & x \leq 0 \text { or } L \leq x \tag{1}\\ 0 & 0 \leq x \leq L\end{cases}
$$

where V_{0} is a very large positive constant.
(a) Write down the energy operator (Hamiltonian) for this system and determine those allowed energies which are much smaller than V_{0} and the corresponding eigenstates.
(b) Consider a state which at $t=0$ has the wave function

$$
\begin{equation*}
\psi(x, 0)=N \sin \left(\frac{2 \pi}{L} x\right) \cos \left(\frac{\pi}{L} x\right) \tag{2}
\end{equation*}
$$

If the energy of this state is measured, what results are possible? With what probabilities will those results be found?
[6 points]
(c) Find the normalization constant N needed so that the state $\psi(x, 0)$ has unit probability.
[4 points]
(d) Find the state $\psi(x, t)$ into which the state above evolves at the time t. [4 points]
(e) Determine the smallest non-zero value of t for which $\psi(x, t)$ is physically equivalent to $\psi(x, 0)$.
[3 points]

