Answer each of the following three (3) questions.
Please give a complete description of your method of solution since partial credit will be given.

1. A solid conducting sphere of radius r_{1} is surrounded by a concentric conducting spherical shell of inner radius r_{2} and outer radis r_{3}. The inner conducting sphere carries the charge Q while the conducting shell has no net charge.

(a) Find the electric field everywhere in space.
[14 points]
(b) Determine the charge distributions on the two conductors.
(c) Find the electrostatic potential of the inner conductor, assuming that the potential vanishes at infinity.
[6 points]
2. Consider the circuit on the right composed of two resistors R_{1} and R_{2}, an inductor L, a battery of voltage V with negligible internal resistance and a switch.

(a) For $t<0$ the switch is closed and the circuit is in a steady state. What are the currents I_{L} and I_{2} flowing in the inductor and resistor? (Label these currents as positive if flowing in the direction of the arrows in the figure.)
[5 points]
(b) The switch is opened at $t=0$ and remains open for all later time. Find the current $I_{2}(t)$ as a function of time.
[23 points]
(c) Sketch an approximate graph of your result for $I_{2}(t)$ versus t.
[5 points]
3. A circuit formed from a conducting wire bent into a rectangle of side $2 r$ and length l is fixed to an insulating rod with a crank at one end, free to rotate about its axis. The conducting rod is interrupted in two places by the insersion of a resistance R as shown in the figure.
 There is a constant, uniform magnetic field \vec{B} pointing in the vertical direction. The rectangular loop is turned at constant angular velocity ω starting at $t=0$ in the vertical position.
(a) Find the current $I(t)$ flowing through the loop.
[12 points]
(b) The moving charge (producing I) will experience a force from the magnetic field. Find the torque $\tau(t)$ that must be exerted on the crank to overcome this force and maintain the constant angular velocity ω.
[12 points]
(c) Find the instantaneous power $P(t)$ disappated in both resistors at the time t. [4 points]
(d) Calculate the mechanical power that is must be provided to turn the crank. [3 points]
(e) Is the power needed to turn the crank equal to that consumed in the resistors? [2 points]
