Answer three (3) of the following four (4) questions. Please give a complete description of your method of solution since *partial credit* will be given.

- 1. A long straight wire of radius R carries a total current I. Assume that the current I is distributed uniformly over the crossection of the wire.
 - (a) What is the current density \vec{j} within the wire?
 - (b) Find the magnetic field \vec{B} outside the wire, $r \ge R$.
 - (c) Find the magnetic field \vec{B} inside the wire, $r \leq R$.
- 2. Two identical capacitors and a resistor are connected together as shown at the right. Assume that at t = 0 the left capacitor has a charge Q_0 and the right capacitor is uncharged. Find the charge Q(t) on the left capacitor as a function of time. [25 points]

[5 points] [10 points] [10 points]

- 3. Consider a proton with rest energy $mc^2 = 939MeV$ and charge $e = 4.8 \ 10^{-10} esu$.
 - (a) A proton with energy $20 TeV (20 \times 10^{12} eV)$ moves in a region of uniform magnetic field \vec{B} of magnitude 50 KGauss. If the proton's velocity is perpendicular to \vec{B} , show that it moves in a circle and find that circle's radius. [15 points]
 - (b) A proton with initial velocity \vec{v}_0 enters a region with a uniform electric and magnetic field \vec{E} and \vec{B} . If the vectors \vec{E} and \vec{B} are orthogonal, what condition must \vec{v} satisfy if the proton is to move through the region without being deflected? [10 points]
- 4. A fixed, horizontal, conducting loop of radius R carries a constant current I. A uniformly charged, non-conducting disk, also horizontal and of radius R, is a distance z(t) directly above the first. You may assume that $z(t) \gg R$. The disk carries charge density σ .
 - (a) Find the magnetic field due to the current in the fixed loop at the height z(t). [10 points]
 - (b) Find the torque $\vec{\tau}$ exerted on the charged disk if it is moving upward with velocity $v = \dot{z}(t)$. [15 points]

