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A~trae t - - In  this paper, we present the kinematic analysis and implementation of a 6 DOF robotic wrist 
which is mounted to a general open-kinematic chain manipulator to serve as a testbed for studying 
precision robotic assembly in space. The wrist design is based on the Stewart-Platform mechanism and 
consists mainly of two platforms and six linear actuators driven by d.c. motors. Position feedback is 
achieved by linear displacement transducers mounted along the actuators and force feedback is obtained 
by a 6 DOF force sensor mounted between the gripper and the payload platform. The robot wrist inverse 
kinematics which computes the required actuator lengths corresponding to Cartesian variables has a 
closed-form solution. The forward kinematics is solved iteratively using the Newton-Raphson method 
which simultaneously provides a modified Jacobian matrix which relates length velocities to Cartesian 
translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation 
conducted to evaluate the efficiency of the forward kinematics and modified Jacobian matrix are presented 
and discussed. 

1. I N T R O D U C T I O N  

Motions robots perform during a robotic operation in space can be divided into gross motion and 
fine motion. Gross motion permits low positioning accuracy, e.g. in obstacle avoidance, while fine 
motion requires very high positioning accuracies, usually of thousands of an inch, e.g. in mating 
and demating space-rated connectors. Traditional robot manipulators are anthropomorphic 
open-kinematic chain (OKC) mechanisms whose joints and links are actuated in series. OKC 
manipulators generally have long reach, large workspace and are capable of entering small spaces 
because of their compactness. However, their cantilever-like structure causes OKC manipulators 
to have low stiffness and consequently undesirable dynamic characteristics, especially at high speed 
and large payload. In addition, they have low strength-to-weight ratios due to the fact that the 
payload is not uniformly distributed to the actuators. Finally, the fact that relatively large position 
error occurs at the last link because the joint errors are accumulated throughout the mechanism 
suggest that OKC manipulators are not suitable for high-precision tasks. As a result, it was 
proposed in [1, 2] that a robotic end-effector capable of performing high-precision motion be 
mounted to a general OKC manipulator to perform fine motion while the OKC manipulator is 
solely responsible for carrying out gross motion during a telerobotic operation. Closed-kinematic 
chain (CKC) mechanism has been selected for the design of the end-effector because even though 
it has relatively small workspace and low maneuverability, it possesses high positioning capability 
produced by its high structural rigidity and noncumulative actuator errors. CKC mechanism also 
has higher strength-to-weight ratios as compared to the OKC mechanism because the payload is 
proportionally distributed to the links. In addition, the inverse kinematic problem of the CKC 
mechanism has simple closed-form solutions. Implementations of the CKC mechanism concept first 
appeared in the Stewart Platform [3] which was originally designed as an aircraft simulator. A 
typical Stewart Platform consists of two platforms driven by a number of parallel actuators and 
is often referred as parallel mechanism or parallel manipulator. The invention of the Stewart 
Platform has attracted tremendous robot designer's attention and its mechanism was used in many 
robotic applications [4, 18]. Dieudonne et al. [4] derived an actuator extension transformation and 
presented experimental results of a Stewart Platform-based simulator built at NASA Langley 
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Research Center to train aircraft operators. A finite element program was used by Hoffman and 
McKinnon [5] to simulate the motion of the Stewart Platform whose mechanism was later applied 
by McCallion and Truong [6] to design an automatic assembly table. Hunt [7] conducted a 
systematic study of in-parallel-actuated robot arms and presented the structural kinematic problem 
of this type of manipulators [9]. Sugimoto and Duffy [8] developed a general technique to describe 
the instantaneous link motion of a single closed-loop mechanism by employing linear algebra 
elements to screw systems. In order to study autonomous robotic assembly, Premack e t  al. [10] 
employed the Stewart Platform mechanism to build a passive compliant robot end-effector whose 
control problem was investigated by Nguyen e t  al. [11]. Kinematic problems and practical 
construction of the Stewart Platform were later considered by Yang and Lee [12] and Fichter [13], 
respectively. Sugimoto [14] studied kinematics and dynamics of parallel manipulators and Lee e t  al. 

[15] derived dynamical equations for a 3 DOF CKC manipulator. Nguyen and Pooran [16] 
developed a learning control scheme for a 2 DOF CKC manipulator performing repetitive tasks. 
Trajectory planning schemes were developed by Nguyen e t  al. [19] for Stewart Platform-based 
manipulators whose actuators are driven by stepper motors. 

Recently a robotic wrist possessing 6 DOFs was designed and built at the Goddard Space 
Flight Center (NASA) based on the mechanism of the Stewart Platform to serve as a testbed for 
studying high-precision robotic operations in space. This paper presents the development and 
implementation of kinematic transformations for the robotic wrist. This paper is organized as 
follows. The next section describes the main components of the robotic wrist. Then a kinematic 
analysis is performed to provide a closed-form solution to the inverse kinematic transform- 
ation. After that, a computationally efficient solution is derived for the forward kinematic 
transformation using the Newton-Raphson method which simultaneously provides a modified 
Jacobian matrix. Finally evaluation of the forward kinematic transformation and modified 
Jacobian matrix is done by means of a computer simulation whose results are presented and 
discussed. 

2. THE S T E W A R T - P L A T F O R M  BASED R O B O T I C  W R I S T  

Figure 1 presents a robot manipulator of the Intelligent Robotic Laboratory (IRL) at the 
Goddard Space Flight Center (NASA), which consists of a 6 DOF Cincinnati T3 robot and a 6 
DOF Stewart Platform-based robotic wrist mounted to the last link of the T3 robot. The 
manipulator has a total of 11 DOFs since 1 DOF of the wrist is identical to that of the T3 robot. 

Fig. 1. The GSFC-IRL robot manipulator. 
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Fig. 2. The Stewart Platform-based robotic wrist. 

The main function of the T3 robot is to perform gross motion, for example to bring the robotic 
wrist into its workspace and then let the wrist carry out fine motion required for high-precision 
operations such as assembly of parts, mating connectors, etc. As shown in Fig. 2, the design of 
the robotic wrist is based on the mechanism of the Stewart Platform. It mainly consists of a payload 
platform, a base platform, six linear actuators and a gripper attached to the payload platform. The 
payload platform is coupled with the base platform by the actuators each of which is composed 
of a NSK ballscrew assembly mounted axially with a PMI d.c. motor. The motors drive the 
ballscrews to extend or shorten the actuator lengths whose variations will in turn produce the 
motion of the payload platform relative to the base platform. The actuator lengths are measured 
by six BALLUFF linear displacement transducers (LDT) mounted along the actuators. 
Forces/torques exerted by the gripper are acquired through a JR 3 Universal Force-Moment Sensor 
System mounted between the gripper base and the payload platform. Each end of the acuator links 
is mounted to the platforms by 2 DOF universal joints. The LDT signals are sent to the IRL local 
area network (LAN) via an ethernet board and a data translation input board resided in a PC/386. 
An Apollo workstation will take the sensor signals off the LAN by means of another ethernet 
board, performs all necessary computations for the implementation of control schemes, coordinate 
transformations, etc., and sends the actuating signals to the PMI motor drives via a data translation 
output board. 

3. T H E  I N V E R S E  K I N E M A T I C  T R A N S F O R M A T I O N  

This section develops an inverse kinematic transformation for the robot wrist, which determines 
the required actuator lengths for a given configuration composed of Caretsian position and 
orientation of the payload platform with respect to the base platform. Frame assignment to the 
robot wrist is illustrated in Fig. 3 where two coordinate frames {P} and {B} are assigned to the 
payload and base platforms, respectively. The origin of Frame {P} is located at the centroid P of 
the payload platform, the z:axis is pointing outward and the xraxis is perpendicular to the line 
connecting the two attachment points P~ and P6. The angle between P~ and P2 is denoted by 0p. 
A symmetrical distribution of joints on the payload platform is achieved by setting the angles 
b e t w e e n  PI  and/'3 and between P3 and P5 to 120 °. Similarly, Frame {B} has its origin at the centroid 
B of the base platform. The xB-axis is perpendicular to the line connecting the two attachment 
p o i n t s  B l and B6, the angle between B 1 and B2 is denoted by 0B. Also the angles between B 1 and 
B3 and between B3 and B5 are set to 120 ° in order to symmetrically distribute the joints on the base 
platform. The Cartesian variables are chosen to be the relative position and orientation of Frame 
{P} with respect to Frame {B} where the position of Frame {P} is specified by the position of its 
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Fig. 3. Frame assignment for the robotic wrist. 
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Fig. 4. Vector diagram for the ith actuator. 

origin with respect to Frame {B}. Now if we denote the angle between PP+ and x e by 2+, and the 
angle between BB+ and xB by Ai for i --- 1, 2 . . . . .  6, then by inspection we obtain: 

Ai=60io  0B. 2i=60i°---0e f o r i = l  3,5 (1) 
2 '  2 '  ' 

and 

A i : A+_ t + OB; )~+ = 2i_ l + Op, for i = 2, 4, 6. (2) 

Furthermore, if vector Pp+ = (pu Ply pu)r describes the position of the attachment point P+ with 
respect to Frame {P}and vector Sb~ = (b+x b~y b+z) r the position of the attachment point B+ with 
respect to Frame {B}, then they can be written as: 

epi = [re cos(2/) re sin(2~) 01 r (3) 

and 

Bbi = [rs cos(A+) r s sin(Ai) 0] r, (4) 

for i = 1, 2 . . . . .  6 where rp and rs represent the radii of the payload and base platforms, 
respectively. 

We proceed to consider the vector diagram for an ith actuator given in Fig. 4. The position 
of Frame {P} is represented by vector Sd = (x y z) r which contains the Cartesian coordinates x, y, z 
of the origin of Frame {P} with respect to Frame {B}. The length vector Sq+ = (qix q+y q+z) r, expressed 
with respect to Frame {B} can be computed by: 

where 

Bqi = 8X i +  Spi , (5) 

= s  d S x  i - B b  i (6) 

-__ -_ + + i - _ i : , i ,  (7) 
- -  b i z  z j L#/.] 
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which is a shifted vector of nd and 

Bpi= ~R /'Pi (8) 

rll r,2 rlslrP~ 1 rrp +r~P~l I~1 
r2' r22 r231lP"/= I r2'p  + r22P"l = o ,  , ( 9 )  

r31 r32 r33JLPizJ Lr31Pix+r32PiyJ LwiJ 

which is the representation of Bp~ in Frame {B} and e~R is the orientat ion m a t r i x  representing the 
orientation of Frame {P} with respect to Frame {B}. 

Thus the length l~ of vector Bq~ can be computed from its components as: 

l~ = ~/q~ + q~y + q~= ( 1 0 )  

or 

l, = x / (2 i  + u,) 2 + ~ i  + oi) 2 "Ji- (Z, -IC Wi) 2 (1 1) 

We obtain from (3-4): 

p 2 x W p 2  2 2 (12) -l-Piz = rp,  
2 ~ 2 b~ + b~ + b;~ - rs (13) 

and from the properties of orientation matrix: 

r~l+r21+r~l  r~2+r~2+r22 2 2 2 = = rl3 + r23 + r33 = 1 (14) 

and 

rllrl2 + r21 r22 + ralr32 = 0, 
rll r13 -I- r21 r23 -I- r31 r33 = 0, 
r12r13 -I- r22 r23 -Jr- r32r33 = 0. (15) 

Employing (12-15), (10) can be rewritten as: 

12 = x z + y2 + z 2 + r E + r]  + 2(rllPix + rl2Piy) (x  - b~)  

+2(r21p~ + rE2Piy)(Y - biy) + 2(r31pi x + r32piy) z - 2(xbix + y b u ) ,  (16) 

for i = l ,  2 . . . . .  6. 
Equation (16) represents the c losed- form solution to the inverse kinematic problem in the sense 

that required actuator lengths l~ for i = l, 2 . . . . .  6 can be determined using (16) to yield a given 
Cartesian configuration composed of Cartesian position and orientation of Frame {P} with respect 
to Frame {B}. 

Speci f icat ion o f  the p a y l o a d  p la t fo rm orientation 

The orientation of Frame {P} with respect to Frame {B} can be described by the orientation 
matrix ~R as shown in (9) which requires nine variables r u for i, j = l, 2, 3 from which six are 
redundant because only three are needed to specify an orientation [21]. There exist several ways 
to specify an orientation by three variables, but the most widely used one is the roll-pitch-yaw 
angles ot, fl and 7, which represent the orientation of Frame {P}, obtained after the following 
sequence of rotations from Frame {B}: 

1. First rotate Frame {B} about the xn-axis an angle ~ ( y a w ) .  
2. Then rotate the resulting frame about the yn-axis an angle fl (p i tch) .  
3. Finally rotate the resulting frame about the zn-axis an angle ot (roll). 

The orientation represented by the above roll-pitch-yaw angles is given by*: 

[ ca c# c~ s# s~ - sot ~ cot s#  c~ + sot s? ] 

e BR = RRer = |sot cfl sot sfl s7 + ca c~ sot sfl cF -- cot sF • 

L -s3 cB s~ c~ c~ 
(17) 

*c~ --~ c o s  ~ a n d  s~  =- s in ~. 
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4. T H E  F O R W A R D  K I N E M A T I C  T R A N S F O R M A T I O N  

This section considers the development of the forward transformation which transforms the 
actuator lengths li for i = 1, 2 . . . . .  6 measured by six LDTs into the Cartesian position and 
orientation of the payload platform with respect to the base platform. The forward kinematic 
problem can be formulated as to find a Cartesian position specified by x, y, z and an orientation 
specified by roll-pitch-yaw angles ct, fl and 7 to satisfy equation (16) for a given set of actuator 
lengths le for i = 1,2 . . . . .  6. In general, there exists no closed-form solution for the above problem 
since equation (16) represents a set of six highly nonlinear simultaneous equations with six 
unknowns. Consequently iterative numerical methods must be employed to solve the above set of 
nonlinear equations. In the following we will present the implementation of Newton-Raphson 
method for solving the forward kinematic problem. 

In order to apply the Newton-Raphson method, first from (11) we define six scalar functions: 

f i ( a )  = (Xi "JI- Ui) 2 "Jl- (Ye "~- Vi) 2 "~ (Zi "Ju Wi) 2 - -  l~ = 0,  ( l  8) 

for i = 1, 2 , . . . ,  6, where the vector a is defined as: 

a = [ a l  az a3 a4 a5 a6]r=[x y z ~ fl y]r  (19) 

and then employ the following algorithm [20] to solve for a: 

Newton-Raphson Algorithm 
Step 1 Select an initial guess a. 
Step 2 Compute the elements rej of enR using (17) for i, j = 1, 2, 3. 
Step 3 Compute xe, )Te 2e using (7) and ue, ve, we using (9) for i = 1, 2 . . . . .  6. 

of, 
Step4 Compute r (a )  and A u = T o  " using (18) for i, j = 1, 2 . . . . .  6. 

6 
Step 5 Compute Be = - f ( a )  for i = 1,2 . . . . .  6. If ~ I Bjl < tolf (tolerance), stop and select 

a as the solution, j= 1 
6 

Step6 Solve ~ Aufaj=Be for 6aj for i, j = 1, 2 . . . . .  6 using LU decomposition. If 
j= l  

6 
6aj < tola (tolerance), stop and select a as the solution. 

j= l  
Step 7 Select a new = a + 6 a and repeat Steps 1 - 7. 

It is still unsolved how to select an initial guess which ensures convergence of the algorithm. 
However according to the experiences gained from computer simulation presented later, any 
nonzero initial guess within the reachable workspace of the robotic wrist will make the algorithm 
converge. Perhaps this is one of the properties of the Stewart Platform mechanism. The 
Newton-Raphson algorithm is expected to work well in a real-time tracking problem where it is 
used to compute the actual position/orientation of the payload platform with respect to the base 
platform based on the actuator lengths measured by the LVDTs because the current guess is based 
on the previous actual position/orientation which is very close to the correct solution provided that 
the wrist is tracking the desired path very closely. 

Computation of partial derivatives 
In order to minimize the computational time of the Newton-Raphson algorithm, the expressions 

for computing the partial derivatives in Step 4 of the algorithm should be simplified. First using 
(9) and (17), the partial derivatives of ue, v~ and w~ with respect to angles ~, fl and y can be computed 
as follows: 

Oui due due 
O-'--~ = - - re ;  ~ = CO{ Wi; - -~  = Piy r,3,  (20) 

Ov~ = Ove Ovi 
O~ ue; ~=s~we;  07=P, rz3, (21) 

Owi Owi Owe 
0 ~ - 0 ;  Off- (cflp,x+sfls?p¢);-~-r =p~yr33. (22) 
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From (7), we note that: 

0~i_ ~07i _ Ofi _ 1. 
O~ Oy Oz 

Employing (20-23), we obtain after intensive simplification: 

of/ of/ 
0a~ 0x 

of/ of, 
Oa~ Oy 

~f/ of, 
63a 3 aa 

(23) 

_ Of  = 2 (~ ,  + u i ) ,  (24)  

af,. 
- = 2(37~ + v~), (25)  ay, 

_ Ofi = 2(~ i "+- Wi), (26) 

O f  = Of = 2(~i + v, + .9,u,), (27) 
Oa4 & 

. . . .  2[(-£ic~ + .9i s~ ) w i - (Pi~ c~ + p ,  sfl s2) zi]. 
Oa5 03 

Of _ ~A 
Oa6 OT 

- 2piy(2irl3 + ~ir23 + zir33). 

(28) 

(29) 

or  

i=(i,i l;i4l' io) (31) 

~i = JM[, (32) 

1 = J ~  ~i. (33) 
Oli 

where J u  is the modified Jacobian matrix. Calling k o = Oajaj' the/j-element of j~ t ,  from (33) we 

have: 

ii ko4 - - - @  (34) 
j=l j=l Oaj 

Now solving for l~ in (18) yields: 

l,.2 = (2~ + u~) 2 + 07~ + vi) 2 + (~i + w~) 2 =f , ,  (35) 

for i = 1, 2 . . . . .  6. Recognizing that f~ is a function of ff~, .9~, ~, e, /~ and ~,, and using (23) we 
differentiate both sides of (34) with respect to time to obtain: 

2l, = _---- aj, (36) 
j=l  Oaj 

we obtain 

and 

Modified Jacobian matrix 

Conventionally the manipulator Jacobian matrix is defined as a matrix relating joint velocities 
to Cartesian velocities composed of translational velocities and rotational velocities. For the robot 
wrist, since actuator lengths are selected as joint variables, the time rates of change of actuator 
lengths ]~, [a . . . .  , [6 are joint velocities. However in order to utilize the partial derivatives computed 
for the forward kinematic transformation, we define here the velocities of Cartesian positions of 
the payload platform with Frame {B}, namely 2, )~ and ~ as the translational velocities and the 
velocities of the roll-pitch-yaw angles a, fl and ~ as the rotational velocities. The matrix J which 
relates the length velocities to translation velocities and roll-pitch-yaw angle velocities is therefore 
called The modified Jacobian matrix. Denoting: 

= (al a2/~3/~4 a5 a6) T = ( 2 )  ~ ~ ~ ~ ~ )T, (30) 
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from which solving for ~ yields 

_ ~  1 ~ .  
[i - - -  aj. (37) 

Now comparing (34) and (37) and noting from (35) and (18) that a~ df~ ~3aj daj we arrive at: 

k~j - 2li c~aj (38) 

where Of~/c~aj can be obtained from Step 4 of the Newton-Raphson algorithm using (24-29). In 
other words, we just showed that the inverse of the modified Jacobian matrix can be computed 
using the results of the forward kinematic transformation. 

5. C O M P U T E R  S I M U L A T I O N  S T U D Y  

In this section we will report results obtained from the computer simulation conducted to study 
the efficiency of the developed inverse and forward kinematic transformations as well as the 
modified Jacobian matrix. The simulation scheme employed in the study is illustrated in Fig. 5. 
In the upper loop, a set of Cartesian test trajectories comprised by vector a are converted to the 
corresponding actuator length trajectories comprised by vector 1 via the inverse kinematic 
transformation. The Newton-Raphson algorithm implementing the forward kinematic transform- 
ation is then applied to convert ! to ac, a vector composed of computed Cartesian trajectories 
corresponding to !. The computed Cartesian trajectories are then compared with the Cartesian test 
trajectories and the resulting errors are recorded. In addition, the test length velocities contained 
by i are obtained by differentiating 1 with respect to time. In the lower loop, the Cartesian test 
velocities comprised by vector i are obtained by differentiating a with respect to time. The Cartesian 
test velocities i are then converted to the corresponding length velocities ic using the inverse 
modified Jacobian matrix jill. Errors in length velocities are then obtained by comparing the 
computed length velocities with the test length velocities. The developed transformations are 
implemented in C and the graphical facility is provided by MATLAB. Computer simulation results 
for two test cases are presented and discussed below, and English units will be used. The average 
number of iterations used in the Newton-Raphson algorithm is 2. The wrist parameters used in 
the simulations are re = 10.441 in., rB = 13.838 in., 0e = 99.20 °, 0B = 16 °. 

Test Case 1. Straight line motion 

Figures 6-8 present the computer simulation results of the case in which the Cartesian test 
trajectories specify a straight line in the x - y  plane of the base frame. The straight line motion is 
described by: 

x ( t )=Xo+ 6.311+3 e x p ( - ~ t ) - 4  e x p ( - - ~  t ) l  (39) 

~_~Inverse t  t IForwardl 
Kinematic ~ Kinematic ] 
~ransform~l l I Tra~sformt~ I 

Crc 

Fig. 5. Computer simulation scheme. 

d ~ Compamon Error 

t 

"lc ~ Error 
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time in second 
Fig. 6. Straight line motion, errors in x, y, z coordinates; x ( ), y ( - - - )  and z ( . . . .  ). 

and 

y(t)=yo+9.45II+ 3exp(  ' ~ t ) -  4 e x p ( - ~  t ) l ,  (40) 

where the initial position is denoted by x0 = - 3 . 5  in., Y0 = - 5  in. The computer simulation was 
conducted with a sampling time of 0.05 s on a SUN workstation for 5 s. According to Fig. 6 which 
presents the errors in Cartesian positions x, y, z, a maximum error of  -2 .146  pin. occurs in the 
y-position and a maximum root mean square (RMS) error of 0.7615/~in. occurs in the x-position. 
The errors in roll-pitch-yaw (RPY) angles are shown in Fig. 7 where a maximum error of 
0.156 #rad and a maximum RMS error of 0.623 grad occur in the roll angle. According to Fig. 8 
which presents the errors in length velocities, relatively large errors exist at the beginning of  the 
simulation and settle down almost to zero after about 1 s. A maximum error of  0.1619 in./s and 
a maximum RMS error of 0.0361 in./s occur in the second actuator length. 

.3  

x10-7 
2 

1.5 

o., !i :i :i , 

o 'i, ' , S ! ] i " ~:"i:  

~d l V 
-0.5 ;'~ ~ V i~ 

-1 

-1.5; 0.5 J 115 2 2~5 3 315 4 415 5 

time in second 

Fig. 7. Straight line motion, errors in RPY angles: ct ( ), fl ( - - - )  and ? ( . . . .  ). 
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Fig. 8. Straight line motion, errors in length velocities: ,/i ( 
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Test  Case 2. Circular mot ion 

C o m p u t e r  s imula t ion  results  o f  the case in which  the Car t e s i an  test t ra jec tor ies  specify a c i rcular  
m o t i o n  are  p resen ted  in Figs 9-11.  T h e  c i rcular  m o t i o n  consists  o f  three  segments  descr ibed  by: 

x ( t )  = R cos 4~i; y ( t )  = R sin ~i fo r  t~_ l ~< t -  < ti for  i = 1 , 2 ,  3, (41) 

where  the c i rcular  pa th  radius  R = 5 in., and:  

qb~ (t)  = q90 + ~ t 2, (42) 

• 2 ( t ) =  ~b~ + co(t - t t ) ,  (43) 

qb 3 (t)  = ~b0 - ~ (t3 - 0 2 (44) 
Z 

xl0 * 
2 

1.5 

1 

0.5 
o 
.~ 0 

-0.5 

-1 

-1.5 

q 

2L v j 
2"50 i ~ 3 ~ ~ 6 ~ 8 9 10 

time in second 
Fig. 9. Circular motion, errors in x, y, z coordinates: x ( ), y ( ) and z ( . . . .  ). 
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Fig. 10. Circular motion, errors in RPY angles: ~t ( 
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), fl ( - - - )  and ~, ( . . . .  ). 

with ~b0 = 0 rad;  ~bl ( h ) =  ¢ l ( t l )  rad,  angu la r  velocity co = fltl rad  s - l  and  the angu la r  acce lera t ion  
fl = 2n / [ t l  (/3 - tl)] r ad  s -~ . The  c o m p u t e r  s imula t ion  was conduc ted  on a S U N  works t a t i on  with  
a sampl ing  t ime o f  0.05 s for  I0 s and  with l 1 = 1 s, t2 = 9 s and  t 3 = 10 s. 

The  errors  in Car tes ian  pos i t ions  x, y, z are  shown in Fig. 9 where there exists a m a x i m u m  er ror  
o f  - 2 . 3 8 4  # in  and  a m a x i m u m  R M S  error  o f  0.8737 #in .  in the x -pos i t ion .  Accord ing  to Fig.  10 
which presents  the er rors  in R P Y  angles,  a m a x i m u m  er ror  o f  0.154 # r a d  and  a m a x i m u m  R M S  

er ror  o f  0.0607 # rad  occur  in the roll  angle. The  errors  in length velocities are r epor t ed  in Fig. 11 
where a m a x i m u m  error  o f  - 0 . 0 4 9  in./s occurs  in the fifth ac tua to r  length and  a m a x i m u m  R M S  
er ror  o f  0.025 in./s occurs  in bo th  the first and  the sixth ac tua to r  lengths. The comple te  s imula t ion  
results  are t abu la t ed  in Table  1. 
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Fig. I I. Circular motion, errors in length velocities:/'l ( ),/'2 (---) ,  i3 ( .. . . . .  ), ]4 (+ + +),/5 (OOO) 
and [6 ( . . . .  ). 
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Table 1. Computer simulation results 

Straight line motion Circular motion 

Max error RMS error Max error RMS error 

x (#in.) - 1.907 0.7615 -2.384 0.8737 
y (#in.) -2.146 0.7313 - 1.9374 0.7367 
z (#in.) - 1.907 0.2684 - 1.907 0.2691 
ct (#rad) 0.156 0.0623 0.154 0.0607 
fl (/~ rad) 0.103 0.0407 - 0.113 0.0461 
~. (prad) 0.106 0.0445 0.111 0.0473 
/t (in./s) 0.1546 0.0343 0.0419 0.0250 
12 (in./s) 0.1619 0.0361 -0.0486 0.0196 
lz (in./s) -0.0433 -0.0177 0.0473 0.0215 
/.4 (in./s) 0.0955 0.0212 0.0478 0.0216 
1~ (in./s) 0.1084 0.0239 -0.0494 0.0197 
16 (in./s) -0.0369 -0.0166 0.4919 0.0250 

6. C O N C L U S I O N  

This paper presented a 6 DOF robotic wrist built at the Goddard Space Flight Center (NASA) 
to investigate the feasibility of autonomous robotic operations in space. Designed based on the 
mechanism of the Stewart Platform, the wrist mainly consists of two platforms, six linear actuators 
and a sensor system and is mounted to a Cincinnati T3 robot to study high-precision robotic 
assembly. Using vector analysis and coordinate frame assignment, a closed-form solution was 
obtained for the inverse kinematic transformation to convert Cartesian variables into required 
actuator lengths. The inverse kinematic equations were then extensively simplified and then applied 
to develop an iterative solution for the forward kinematic transformation converting actuator 
lengths to Cartesian variables using the Newton-Raphson method. It was proved that a modified 
Jacobian matrix relating length velocities to translational velocities and velocities of RPY angles 
can be obtained as part of the forward kinematic transformation. Results of computer simulation 
conducted to evaluate the developed transformations and modified Jacobian matrix showed that 
the conversion accuracies were excellent with very negligible errors. Current research activities 
focus on implementing the developed transformations for use in real-time control of the robot wrist 
motion. Control schemes such as a fixed-gain PID controller and an adaptive controller are also 
currently developed in the IRL to control the motion of the wrist during a high-precision assembly 
of NASA hardware. 
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