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Abstract

When does society eventually learn the truth, or the correct action to take, via obser-

vational learning? In a general model of sequential learning over social networks, we

develop the interplay of preferences satisfying single-crossing differences (SCD) and a

new informational condition, directionally unbounded beliefs (DUB). For a wide class

of network structures, SCD preferences and DUB information are a minimal pair of suf-

ficient conditions for learning. Unlike “unbounded beliefs”, which is the informational

condition that characterizes learning for all preferences, DUB is broadly compatible

with the monotone likelihood ratio property. Our analysis establishes a welfare lower

bound under arbitrary preferences and information, which yields a general condition

for learning. What drives learning is that a single agent must be able to rule out any

wrong action, rather than (individually) take the correct action.
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1. Introduction

This paper concerns the classic sequential observational or social learning model initi-
ated by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). There is an un-
known payoff-relevant state (e.g., product quality). Each of many agents has homogeneous
preferences over her own action and the state (e.g., all prefer products of higher quality).
But agents act in sequence, each receiving her own private information about the state and
observing some subset—not necessarily all—of her predecessors’ actions. The central eco-
nomic question is about asymptotic learning: do Bayesian agents eventually learn to take
the correct action (e.g., will the highest quality product eventually prevail)?

Economists’ answer to this fundamental question is that (asymptotic, Bayesian) social
learning turns on whether private signals/beliefs are unbounded. More precisely, unbounded
beliefs is the informational condition that characterizes learning for all preferences, so long
as the observational network structure satisfies a mild condition referred to as “expanding
observations” (Smith and Sørensen, 2000; Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011;
Arieli and Mueller-Frank, 2021). Roughly, unbounded beliefs says that given any (full-
support) prior it should be possible for a single private signal, however unlikely it is, to
make an agent arbitrarily close to certain about the true state. The canonical example is
when there are two states, say ω ∈ Ω = {1, 2}, and there is normal information: agents’ sig-
nals are drawn independently from normal distributions with mean ω and fixed variance.
In this case very high signals make one arbitrarily convinced that ω = 2, while very low
signals make one arbitrarily convinced that ω = 1.

There are two related limitations to this received wisdom. First, the result has only
been established for two states; indeed, for Bayesian learning on general observational
networks, we are not aware of any prior work that tackles multiple—i.e., more than two—
states. This is a major shortcoming, as multiple states is the realistic case in any number
of applications of observational learning (e.g., to product choice). Second, requiring un-
bounded beliefs with multiple states is extremely restrictive. To wit, if the state space Ω ⊂ R
has more than two states, then normal information no longer satisfies unbounded beliefs:
given any full-support prior, there is an upper bound on how certain one can become about
any non-extremal state based on observing one signal.1 Is social learning doomed with
multiple states for familiar information structures like normal information?

1 So binary states is special because all states are extreme states; in general, there need not even be any
extreme states (e.g., the states are all integers). There is nothing special about normal information violating
unbounded beliefs. Under full support (i.e., no signal excludes any state), any information structure satisfy-
ing the widely-used monotone likelihood ratio property precludes unbounded beliefs with multiple states;
see Subsection 4.2.
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Our paper shows that the answer is no. It turns out that with multiple states, unbounded
beliefs is not necessary for learning with standard preferences. In general, whether there
is learning depends jointly on preferences and information. Our main substantive result is
that for a canonical class of preferences considered in economic models—those with single-
crossing differences (SCD)—learning obtains in general observational networks (satisfying
the aforementioned expanding observations) when the information structure satisfies di-
rectionally unbounded beliefs (DUB). SCD is a familiar preference property (Milgrom and
Shannon, 1994), which subsumes any supermodular utility function; we are not aware,
however, of it having been studied in social learning. By contrast, DUB appears to be a
new condition on information structures, although Milgrom (1979) is a precedent in the
context of auction theory. Like SCD, DUB is formulated for an ordered state space. It re-
quires that for any state ω and any prior that puts positive probability on ω, there exist both:
(i) signals that make one arbitrarily certain that the state is at least ω; and (ii) signals that
make one arbitrarily certain that the state is at most ω.2 Crucially, no signal need make one
arbitrarily certain about ω (unlike unbounded beliefs). For the normal information struc-
ture, requirements (i) and (ii) are met for any state by arbitrarily high and arbitrarily low
signals, respectively. More generally, this is the case for any subexponential location-shift
signal structure (Proposition 3 in Section 5); alternatively, given the monotone likelihood
property, DUB holds under the basic requirement of “pairwise unbounded beliefs” (Re-
mark 1 in Section 5).

Theorem 1 in Subsection 3.2 establishes that DUB information and SCD preferences are
jointly sufficient for learning, or more precisely, adequate learning à la Aghion, Bolton,
Harris, and Jullien (1991). For some intuition on their interplay, consider normal informa-
tion again. There are preferences for which learning can fail because society may get stuck
at some belief at which agents are taking an incorrect action, but only a strong signal about
an intermediate state can change the action—alas no such signal is available. However,
under SCD preferences, if a strong signal about some intermediate state ω would change
the action, then so would either a signal that indicates the state is very likely to be at least
ω or at most ω. Such signals are guaranteed in the normal example, and more generally by
DUB information. We further establish in Section 4 that DUB information and SCD prefer-
ences are a minimal pair of sufficient conditions for adequate learning in the sense of Athey
(2002): if one property fails, then there are primitives satisfying the other property such
that inadequate learning obtains.

Our second contribution lies in developing an approach to tackle learning, and more

2 This version of the definition assumes the state space is countable. Milgrom (1979) imposes only require-
ment (i), not (ii).

2



generally, (asymptotic) social welfare with multiple states in general observational net-
works. Theorem 2 in Subsection 3.3 is a methodological contribution that is both the back-
bone for proving Theorem 1, and also of independent interest. The theorem establishes a
social welfare bound: roughly, for any preference and information (and given expanding
observations), agents eventually obtain at least their cascade utility. Cascade utility is the
minimum expected utility an agent can get from any Bayes-plausible distribution of sta-
tionary beliefs, i.e., beliefs at which it is optimal to ignore the private signal. Theorem 2
implies that adequate learning obtains when the cascade utility is the same as the utility
obtained from taking the correct action in each state. This point underlies why DUB in-
formation is sufficient for adequate learning for all SCD preferences, and also yields that
unbounded beliefs is sufficient for all preferences. More generally, Theorem 2 and its con-
sequences, Lemma 2 and Proposition 5, should be valuable for future work interested in
whether there is adequate learning for other combinations of preferences and information.
Furthermore, the result also provides a quantification of welfare even when learning fails.

Related Literature. A number of papers on sequential (Bayesian) social learning only
consider the complete observational network: each agent observes all her predecessors’
actions. For that case, and focusing on binary states, Smith and Sørensen (2000) intro-
duced the distinction between bounded and unbounded beliefs; they show that, given
any non-trivial preference, there is learning if and only if beliefs are unbounded.3 For the
complete network but with multiple states, Arieli and Mueller-Frank (2021, Theorem 1)
show that unbounded beliefs—which they call “totally unbounded beliefs”—is sufficient
for learning, and also necessary if learning must obtain no matter society’s preference.4 Im-
portantly, the approach of both Smith and Sørensen (2000) and Arieli and Mueller-Frank
(2021) rests on the fact that in the complete observational network, the public belief—the
belief held by an agent based on observing her predecessors’ actions, before observing her
private signal—is a martingale.

Gale and Kariv (2003) and Çelen and Kariv (2004) depart from the complete network,
noting that martingale arguments now fail. Both these papers also depart from the canon-
ical setting in other ways, however: in Gale and Kariv (2003) agents choose actions repeat-

3 Our literature discussion should be understood as assuming a finite action space; it is well known since
Lee (1993) that with an infinite action space, learning can obtain even with bounded beliefs. Variations on
other dimensions can also generate learning with bounded beliefs, such as endogenous prices (Avery and
Zemsky, 1998) or congestion costs (Eyster, Galeotti, Kartik, and Rabin, 2014), and heterogenous preference
types (Goeree, Palfrey, and Rogers, 2006).

4 The early work of Bikhchandani, Hirshleifer, and Welch (1992) allowed for multiple states, but they only
identified failures of learning because they implicitly restricted attention to bounded beliefs; more precisely,
they assumed finite signals with full-support distributions.
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edly, while in Çelen and Kariv (2004) private signals are not conditionally independent
given the true state. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) provide a general
treatment of observational networks in an otherwise classical setting. They only allow for
binary states and binary actions, however. They introduce the condition of expanding ob-
servations on the observational network structure, showing that it is necessary for learning.
Their Theorem 2 establishes that it is also sufficient for learning with unbounded beliefs. A
key contribution of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) is to use an improvement
principle to deduce learning (under unbounded beliefs and expanding observations); this
approach works even though martingale arguments fail. Lobel and Sadler (2015) introduce
a notion of “information diffusion” and use the improvement principle to establish infor-
mation diffusion even when learning fails; they also consider more general networks than
Acemoglu, Dahleh, Lobel, and Ozdaglar (2011).

The analysis in both Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and Lobel and
Sadler (2015) relies on their binary-state binary-action structure.5 Ours is the first paper to
consider the canonical sequential social learning problem with general observational net-
works and general state and action spaces. At a methodological level, we develop a novel
analysis based on continuity and compactness—rather than monotonicity or other proper-
ties that are specific to binary states or actions—that uncovers the fundamental logic under-
lying a general improvement principle. We use that to establish the cascade-utility welfare
bound in any network satisfying expanding observations. As explained in Subsection 3.3,
our cascade-utility bound coincides with Lobel and Sadler’s (2015) information-diffusion
bound in a binary-state binary-action model, but in general it is higher.

More importantly, our focus on multiple states and actions allows us to shed light on
how preferences and information jointly determine whether there is social learning; in
particular, we deduce that SCD preferences and DUB information are a minimal pair of
sufficient conditions for learning. The interaction of preferences and information for learn-
ing has not received attention in the prior literature because of its focus on two states. An
exception is Arieli and Mueller-Frank (2021, Theorem 3), but their result assumes a special
utility function and is only for the complete network.

We leave to future research the speed of learning/welfare convergence, both under the
SCD-DUB combination and beyond. For binary states and the complete network, Rosen-
berg and Vieille (2019) deduce the condition on the likelihood of extreme posteriors that
determines whether learning is, in certain senses, efficient; they point out that their condi-
tion is violated by normal information. See Hann-Caruthers, Martynov, and Tamuz (2018)

5 Banerjee and Fudenberg (2004) and Smith and Sørensen (2020) consider “unordered” random sampling
models that also only allow for binary states and actions.
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as well.

Lastly, we note that there is a large literature on non-Bayesian social learning, surveyed
by Golub and Sadler (2016). There has also been recent interest in (mis)learning among
misspecified Bayesian agents; see, for example, Frick, Iijima, and Ishii (2020, 2021) and
Bohren and Hauser (2021).

2. Model

In the main text of the paper, we focus on a model that simplifies some technical issues.
See Appendix A for a more general setting.

There is a countable (finite or infinite) set of states Ω ⊂ R, and standard Borel spaces
of actions A and signals S. An information or signal structure is given by a collection of
probability measures over S, one for each state, denoted by F (·|ω). Assume that for any ω

and ω′, F (·|ω) and F (·|ω′) are mutually absolutely continuous. It follows that each F (·|ω)
has a density f(·|ω); more precisely, this is the Radon-Nikodym derivative of F (·|ω) with
respect some reference measure that is mutually absolutely continuous with every F (·|ω′).
Without further loss of generality we assume f(s|ω) > 0, so that no signal excludes any
state.

The game. At the outset, date 0, a state ω is drawn from a common prior probability mass
function µ0 ∈ ∆Ω.6 An infinite sequence of agents, indexed by n = 1, 2, . . ., then sequen-
tially select actions. An agent n observes both a private signal sn drawn independently
from f(·|ω) and the actions of some subset of her predecessors Bn ⊆ {1, 2, . . . , n − 1}, and
then chooses her action an ∈ A. No agent observes either the state or any of her predeces-
sors’ signals. Each observational neighborhood Bn is stochastically generated according to
a probability distribution Qn over all subsets of {1, 2, . . . , n−1}, assumed to be independent
across n, independent of the state ω, and independent of any private signals. The distribu-
tions (Qn)n∈N constitute the observational network structure and are common knowledge,
but the realization of each neighborhood Bn is the private information of agent n.

Agent n’s information set thus consists of her signal sn, neighborhood Bn, and the ac-
tions chosen by the neighbors (ak)k∈Bn . Let In denote the set of all possible information
sets for agent n. A strategy for agent n is a (measurable) function σn : In → ∆A.

All agents are expected utility maximizers and share the same preferences over their
actions: every agent n’s state-dependent preferences are represented by the von-Neumann-

6 For any measurable space X , ∆X denotes the set of probability measures over X .
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Morgenstern utility function u : A×Ω → R. To ensure expected utility is well defined for all
probability distributions, we assume utility is bounded: there is u ≥ 0 such that |u(·, ·)| ≤ u.

We study the Bayes Nash equilibria—hereafter simply equilibria—of this game. An
equilibrium exists if for every belief there is an optimal action, which we will implicitly
assume to be the case.7

Adequate learning. The full-information expected utility given a belief µ is the expected
utility under that belief if the state will be revealed before an action is chosen:

u∗(µ) :=
∑
ω∈Ω

max
a∈A

u(a, ω)µ(ω).

Given a prior µ0 and a strategy profile σ, agent n’s utility un is a random variable. Let
Eσ,µ0 [un] be agent n’s ex-ante expected utility. We say there is adequate learning if for every
prior µ0 and every equilibrium strategy profile σ, Eσ,µ0 [un] → u∗(µ0). In words, adequate
learning requires that given any prior and equilibrium, no matter which state is realized,
eventually agents take actions that are arbitrarily close to optimal in that state. We say
there is inadequate learning if adequate learning fails.8

Expanding observations. As observed by Acemoglu, Dahleh, Lobel, and Ozdaglar (2011),
a necessary condition for adequate learning is that the network structure have expanding
observations:

∀K ∈ N : lim
n→∞

Qn (Bn ⊆ {1, . . . , K}) = 0.

A failure of expanding observations means that for some K ∈ N, there is an infinite num-
ber of agents each of whom, with probability uniformly bounded away from 0, observes
the actions of only at most the first K agents. Plainly, that would preclude adequate learn-
ing because it would imply that an infinite number of agents, with probability uniformly
bounded away from 0, cannot do better than choosing their action based on only K + 1

signals.

7 Existence of optimal actions is assured under standard assumptions, e.g., A is finite, or more generally,
A is compact and u(·, ·) is suitably continuous. We also note that as there are no direct payoff externalities,
strategic interaction is minimal: any σn affects other agents only insofar as affecting how n’s successors
update about signal sn from the observation of action an. We could just as well adopt (weak) Perfect Bayesian
equilibrium or refinements.

8 That we deem learning to be inadequate if there is some equilibrium in which learning fails, rather than
in every equilibrium, is not essential, given that there is no strategic interaction (cf. fn. 7). On the other
hand, whether learning fails at every prior rather than only at some priors is important, and addressed in
Subsection 5.2 by Proposition 4.
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Accordingly, we assume expanding observations. Here are a few leading examples of
network structures with expanding observations: (i) the classic complete network in which
each agent’s neighborhood is all her predecessors (formally, Qn(Bn = {1, . . . , n− 1}) = 1);
(ii) each agent only observes her immediate predecessor (Qn(Bn = {n − 1}) = 1); and
(iii) each agent observes a random predecessor (Qn(Bn = {k}) = 1/(n − 1) for all k ∈
{1, . . . , n− 1}).9

3. Main Results

3.1. SCD & DUB

We now introduce the two conditions that are central to our main result, Theorem 1
below.

3.1.1. Single-Crossing Differences

A function h : R → R is single crossing if either: (i) for all x < x′, h(x) > 0 =⇒ h(x′) ≥ 0;
or (ii) for all x < x′, h(x) < 0 =⇒ h(x′) ≤ 0. That is, a single-crossing function switches
sign between strictly positive and strictly negative at most once. We are interested in the
following class of preferences.

Definition 1. Preferences represented by u : A × Ω → R have single-crossing differences
(SCD) if for all a and a′, the difference u(a, ·)− u(a′, ·) is single crossing.

SCD is an ordinal property closely related to a notion in Milgrom and Shannon (1994),
but, following Kartik, Lee, and Rappoport (2019), the formulation is without an order on
A. Ignoring indifferences, SCD requires that the preference over any pair of actions can
only flip once as the state changes monotonically. If A is ordered, then SCD is implied by
Milgrom and Shannon’s (1994) notion or even a weaker one in Athey (2001).10 SCD is thus
a property widely satisfied by economic models; in particular, it is assured by supermodu-
larity of u.

9 In our model, for every action that an agent observes, she knows the identity of the predecessor who
took that action. So in the random-predecessor case, even though it is random which predecessor an agent
observes, the predecessor’s identity is known. Our methods extend to cover some forms of random sampling
in which an agent does not know which predecessors’ actions she observes.

10 Our treatment of indifferences is more permissive than Milgrom and Shannon (1994) and Kartik, Lee,
and Rappoport (2019). A function h : {1, 2, 3} → R given by h(1) = 0, h(2) = 1, and h(3) = 0 is single
crossing per our definition but not according to the notions employed by Milgrom and Shannon (1994) and
Kartik, Lee, and Rappoport (2019). SCD is, in fact, equivalent to saying that there exists some order on A with
respect to which Athey’s (2001) notion of “weak single-crossing property of incremental returns” is satisfied.
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3.1.2. Directionally Unbounded Beliefs

Given any state ω and belief µ, let µ(ω|s) be the posterior after signal s, and µ(ω|·) the
corresponding random variable. We say that ω is distinguishable from Ω′ ⊆ Ω\{ω} if for
every µ ∈ ∆(Ω′ ∪ ω) with µ(ω) > 0, Suppµ(ω|·) ∋ 1. That is, starting from any belief that
puts positive probability on ω, there are signals that make ω arbitrarily more likely relative
to Ω′.

Distinguishability of each state from all other states is the condition of unbounded beliefs;
this is termed “totally unbounded beliefs” by Arieli and Mueller-Frank (2021) and is the
multi-state extension of the two-state notion introduced by Smith and Sørensen (2000). But
unbounded beliefs is highly restrictive with more than two states; specifically, any signal
structure satisfying a ubiquitous property in information economics—the monotone like-
lihood ratio property (MLRP)—violates unbounded beliefs (see Subsection 4.2 below).11

Accordingly, we introduce the following weaker condition.

Definition 2. There is directionally unbounded beliefs (DUB) if every ω is distinguishable from
{ω′ : ω′ < ω} and also from {ω′ : ω′ > ω}.

Crucially, DUB does not require or assure that any state ω is distinguishable from all
other states—not even any subset of states containing both some higher and some lower
state than ω. What DUB does assure, and will be crucial in our analysis, is that for any
ω and prior µ with µ(ω) > 0, there are signals that make the posterior on the lower set
{ω′ : ω′ < ω} arbitrarily small, and analogously for the upper set {ω′ : ω′ > ω}.

Lemma 1. DUB holds if for every ω and ε > 0, there exist positive probability sets of signals S, S
such that:

1. ∀ω′ < ω,∀s ∈ S: f(s|ω′)
f(s|ω) < ε;

2. ∀ω′ > ω, ∀s ∈ S: f(s|ω′)
f(s|ω) < ε.

Conversely, this condition is implied by DUB when Ω is finite.

Lemma 1 provides an intuitive sufficient condition for DUB that is also necessary when
Ω is finite.12 To interpret the condition, fix any state ω. Condition 1 of the lemma requires

11 A signal density f(s|ω) satisfies the MLRP if the signal space is S ⊂ R and ∀s′ > s and ∀ω′ > ω,
f(s|ω′)
f(s|ω) ≤ f(s′|ω′)

f(s′|ω) .
12 Milgrom (1979, Theorem 2) makes essentially the same observation, albeit when each state has only a

finite number of lower states; in the context of auctions, he is only concerned with distinguishing each state
from its lower set (not also its upper set). As he mentions, it is possible that any/all states are distinguishable
from their lower sets but not their upper sets, or vice-versa, or they can be distinguishable from both or
neither.
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signals that are arbitrarily more likely in ω relative to every ω′ < ω. We stress that while
the set S can depend on ω, it cannot depend on the lower state ω′ < ω. This ensures that
starting from any prior with support {ω′ : ω′ ≤ ω}, there are signals that lead to posteriors
arbitrarily near certainty on ω; that is, ω is distinguishable from all lower states. Condition
2 of the lemma analogously implies distinguishability of ω from all higher states.

A leading example of DUB information is when signals are normally distributed on R
with mean ω and fixed variance; we hereafter refer to this specification as the normal signal
structure or just normal information. For Ω ⊂ Z, one can see that DUB is satisfied here by
noting that condition 1 of Lemma 1 is met because f(s|ω−1)

f(s|ω) → 0 as s → ∞ and for any

ω′ < ω, f(s|ω′)
f(s|ω) ≤ f(s|ω−1)

f(s|ω) ; analogously, taking s → −∞ verifies condition 2 of the lemma.13

Notably, however, no state can be simultaneously distinguished from both some lower
one and some higher one. Figure 1a provides a graphical depiction. The solid blue curve
therein is the set of posteriors obtained under normal information when Ω = {1, 2, 3} and
the prior is µ. Posteriors are bounded away from certainty on state 2. Yet they can become
arbitrarily certain about the relative probability of state 2 to 1 (as the curve approaches state
3) and, separately, about the relative probability of state 2 to 3 (as the curve approaches state
1): this is seen by projecting both the prior and the set of posteriors onto the relevant edges;
for example, when the prior is µ′ (the projection of µ onto the 2–3 edge) the set of posteriors
is the entire 2–3 edge (the projection of the blue curve onto the 2–3 edge).

1 2

3

µ′

µ′′

µ

(a) DUB

1 2

3

µ

(b) Not DUB

1 2

3

µ′

µ

(c) Not DUB

Figure 1: Illustration of DUB. For each belief, posteriors are shown in the corresponding color.

Figure 1b and Figure 1c depict failures of DUB.14 The information structure correspond-
ing to the triangular set of posteriors in Figure 1b has the property that no signal can distin-

13 This argument applies with only notational changes if Ω ̸⊂ Z, so long as every state has a maximum
strictly lower state (if there are any strictly lower states) and a minimum strictly higher state (if there are
any strictly higher states). Even absent this property (e.g., Ω = Q), normal information satisfies DUB by
Proposition 3 in Subsection 5.1.

14 As is well known (e.g., Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011), a set of posteriors
can be induced by some information structure if the prior is in the (relative) interior of the set’s convex hull.
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guish state 3 from states 2 and 1 simultaneously, even though a signal leading to a posterior
close to the 1–3 edge (resp., the 2–3 edge) distinguishes state 3 from 2 (resp., from 1). By
contrast, in Figure 1c states 1 and 3 are distinguishable from their complements, as the pos-
teriors under the full-support prior µ, given by the solid blue curve, approach the relevant
vertices. However, state 2 is not distinguishable from state 3: the posteriors for the prior
µ′ (the projection of µ onto the 2–3 edge), given by the solid red line (the projection of the
blue curve onto the 2–3 edge), do not approach state 2’s vertex. The reason is that unlike
the case of normal information in Figure 1a, the blue curve in Figure 1c is not tangent to
the 1–2 edge at the vertex 1.

3.2. Sufficient Conditions for Learning

Our main result is:

Theorem 1. If preferences have SCD and the information structure has DUB, then there is adequate
learning.

Theorem 1 decouples conditions on preferences and information that are sufficient—
indeed, minimally sufficient, as we will see in Section 4—for adequate learning. The theo-
rem follows from a general characterization of learning that is jointly over preferences and
information. To state that characterization, we require two concepts concerning the value
of information.

Let c : ∆Ω ⇒ A be given by c(µ) := argmaxa∈A Eµ[u(a, ω)]. So c(µ) is the set of optimal
actions under belief µ. Abusing notation, for a degenerate belief on state ω we write c(ω).
Denoting the posterior after signal s when starting from belief µ by µ(·|s), we say that belief
µ is stationary if there is a ∈ c(µ) such that a ∈ c(µ(·|s)) for µ-a.e. signals s. We say that belief
µ has adequate knowledge if there is a ∈ c(µ) such that a ∈ c(ω) for all ω ∈ Suppµ. In words,
a belief is stationary if an agent holding that belief does not benefit from observing a signal
from the given information structure; for, there is some action that is optimal across all
signal realizations (except perhaps for a set of measure zero) from the given information
structure. On the other hand, a belief has adequate knowledge if the agent would not
benefit from observing a signal from any information structure; for, there is some action
that is optimal across all states she ascribes positive probability to.

Lemma 2. There is adequate learning if and only if all stationary beliefs have adequate knowledge.

The “only if” direction of this result is straightforward because our notion of learning
considers all priors: if an inadequate-knowledge belief is stationary, then when that belief
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is the prior, society is stuck with all agents taking the prior-optimal action even though that
is not optimal in some states. More important and subtle is the lemma’s “if” direction. Al-
though it has precedents in the literature for specific environments, the logic in the current
setting of general observational networks is fundamentally new. We elaborate on Lemma 2
in the next subsection, focusing instead now on how it leads to Theorem 1.

Lemma 2 reduces the question of learning to whether the set of stationary beliefs coin-
cides with the set of adequate-knowledge beliefs. In general, stationary beliefs can have
inadequate knowledge because of a mismatch between preferences and information: so-
ciety’s information structure may not provide enough information about the states that
agents would benefit from learning about.

However, SCD and DUB together preclude such a mismatch. Here is why, with Figure 2
illustrating. Suppose Ω = Z and a belief µ has inadequate knowledge, so that c(µ) ̸= c(ω∗)

for some state ω∗ ∈ Suppµ. (For simplicity, suppose c(µ) and c(ω∗) are singletons.) In the
figure, ω∗ = 0 and belief µ is shown by the blue bars. SCD implies that not only is c(ω∗)

strictly preferred to c(µ) at ω∗, but c(ω∗) is also weakly preferred either at all higher states or
at all lower states. Suppose the former case, as in the figure. DUB ensures that the posterior
likelihood ratio of ω∗ to its lower set {ω′ : ω′ < ω∗} can be arbitrarily high with positive
probability. This implies that with positive probability, the posterior on {ω′ : ω′ ≥ ω∗} is
arbitrarily close to one; the figure depicts such a posterior using the red bars. Hence, with
positive probability, an agent’s signal will lead her to strictly prefer c(ω∗) to c(µ), which
means µ is not stationary. It follows that under SCD and DUB, all stationary beliefs have
adequate knowledge.

· · · −2 −1 0 = ω∗ 1 2 · · ·

u(c(ω∗), ω)

u(a′, ω)

u(c(µ), ω)

Prior
Posterior

Figure 2: Illustration of Theorem 1. Blue bars represent the belief µ; red bars represent the posterior
after observing a signal that provides near-certainty about ω∗ relative to {ω : ω < ω∗}. Black curves
represent the utilities from action a′ and c(ω∗). The utility of action c(µ) is normalized to 0.

Let us highlight that our argument in the previous paragraph—and more generally, the
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logic underlying Lemma 2—only requires that every wrong action (i.e., one that is subopti-
mal at the true state) can always be ruled out (i.e., starting from any belief with inadequate
knowledge, with positive probability some signal will make that action suboptimal). But
there is no guarantee that there is a signal leading to the correct action (i.e., one that is
optimal at the true state). For example, in Figure 2, it could be that c(ω∗) is the correct
action, but under the red-barred posterior showing that belief µ is not stationary, the opti-
mal action is a′ rather than c(ω∗); indeed, given belief µ there is no guarantee of any signal
inducing an agent to take action c(ω∗).

By contrast, social learning has traditionally focused on the stronger property that it is
always possible to induce an agent to take the correct action; this has lead to the empha-
sis on unbounded beliefs. When there are two states and finite actions, always being able
to rule out a wrong action and always being able to induce the correct action are equiva-
lent, as they both simply reduce to unbounded beliefs. But not so more generally. To see
this sharply, consider Ω = A = Z, normal information, and c(ω) = ω for all ω. For any
given state and any full-support prior, the posterior probability is bounded away from 1;
indeed, this bound is arbitrarily small for suitable priors. This means that there is no action
that will be taken with positive probability at every full-support prior.15 So, unlike in the
two-state case, one cannot argue that the correct action always has a positive probability
of overturning an incorrect herd. Rather, the logic behind Theorem 1 is that given SCD
preferences, DUB information ensures that any incorrect herd will be overturned because
some agent will learn that the correct action is superior (because of near-certainty on the
corresponding lower/upper states), even though the requisite signal may lead the agent to
take yet some other action.

3.3. Lemma 2 and a General Welfare Bound

We now return to Lemma 2. The lemma is best understood as a corollary of a result
that provides a welfare bound regardless of whether there is learning. Stating that result
requires some notation. Abusing notation, let

u(µ) := max
a∈A

∑
ω

u(a, ω)µ(ω)

15 This point could have also been made with a three state example, with the caveat that it only applies
to non-extreme actions. In general, given normal information and distinct optimal actions in all states, no
non-extreme action will be taken with positive probability at every full-support prior.
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be the maximal utility an agent can get under belief µ, and let

I(µ) :=

(∑
ω∈Ω

∫
S

u(µs) dF (s|ω)µ(ω)

)
− u(µ)

be the utility improvement from observing a private signal at belief µ. Observe that I(µ) =
0 for any stationary belief µ. We write ΦBP ⊂ ∆∆Ω to denote the set of Bayes-plausible
distributions of beliefs (i.e., Eφ[µ] = µ0 ⇐⇒ φ ∈ ΦBP ). Again abusing notation, we
write u(φ) := Eφ[u(µ)] for the utility of an agent under the distribution of beliefs φ, and
analogously write I(φ) := Eφ[I(µ)]. It follows that

ΦS :=
{
φ ∈ ΦBP : I(φ) = 0

}
is the set of Bayes-plausible belief distributions that are supported on the set of stationary
beliefs. (We have suppressed the dependence of ΦBP and ΦS on the prior µ0.)

Building on a notion mentioned by Lobel and Sadler (2015), we can now define the
cascade utility level as

u∗(µ0) := inf
φ∈ΦS

u(φ).

In words, u∗(µ0) is the lowest utility level that an agent can get if her distribution of beliefs
is supported on stationary beliefs. Our welfare bound, stated loosely, is that eventually all
agents are assured a utility level of at least u∗(µ0). More precisely:

Theorem 2. In any equilibrium σ, lim inf Eσ,µ0 [un] ≥ u∗(µ0).

We highlight that Theorem 2 does not presume SCD or DUB, nor does it require any
order structure on states. The only substantive requirement is our maintained assumption
that the observational network structure satisfies expanding observations. It is straightfor-
ward to see how Theorem 2 implies the “if” direction of Lemma 2. When all stationary
beliefs have adequate knowledge, it holds for any distribution φ ∈ ΦS that almost surely a
correct action is taken. Thus, u∗(µ0) = u∗(µ0), and we have adequate learning.

The argument behind Theorem 2 relies fundamentally on certain compactness and conti-
nuity. First, we establish in Lemma 4 of the appendix that ΦBP is compact when the space of
belief distributions is endowed with the Prohorov metric (which metrizes the weak topol-
ogy). This is a consequence of Bayes-plausibility. Intuitively, for the case of countable states
that our main text focuses on, although the prior µ0 can be supported on an infinite set, it
must concentrate an arbitrarily large mass on only finitely many states. More generally, for
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any δ > 0, there exists a compact subset Ω′ ⊆ Ω such that µ0(Ω
′) ≥ 1− δ.16 So any φ ∈ ΦBP

must put arbitrarily large probability on beliefs that put arbitrarily large probability on the
compact set Ω′ by Bayes plausibility, which yields compactness of ΦBP . Next, owing to
expected utility being continuous in beliefs, the improvement function I(φ) is also contin-
uous (Lemma 5 in the appendix), and thus uniformly continuous on ΦBP . Consequently,
I(φ) achieves a minimum on any closed, hence compact, subset of ΦBP .

Now consider any ε-neighborhood of the set of Bayes-plausible distributions supported
on stationary beliefs, call it (ΦS)ε. If an agent’s belief distribution is in (ΦS)ε, then her
ex-ante expected utility is at least close to u∗ since I(φ) = 0 on ΦS and I(φ) is uniformly
continuous. On the other hand, if the belief distribution is not in (ΦS)ε, then there is some
strictly positive minimum utility improvement that the agent obtains (as the complement
of (ΦS)ε is closed).

We can then apply an argument akin to the improvement principle of Acemoglu, Dahleh,
Lobel, and Ozdaglar (2011) and Lobel and Sadler (2015). Specifically, expanding observa-
tions guarantees that we can partition society into “generations” such that an agent in one
generation observes, with large probability, a predecessor who is in either the previous
generation or the current generation. Consider an agent’s ex-ante expected utility. Either
it is at least close to u∗ (when the agent’s belief distribution is in (ΦS)ε), or the agent can
improve her utility by a fixed amount compared to the agents she observes (because with-
out a private signal she can simply mimic the highest-utility predecessor she observes).
Thus, the lowest ex-ante expected utility in each generation increases by a fixed amount
until it becomes at least close to u∗. Since ε was arbitrary, it follows that eventually all
agents’ utility must be higher than a level arbitrarily close to u∗, which is the conclusion of
Theorem 2.

Although previous authors have deduced versions of Lemma 2 and Theorem 2 in spe-
cial environments, what allows us to establish these two general results is our novel proof
methodology. We highlight two distinctions with Lobel and Sadler (2015, Theorem 1),
which is the most related existing result.17 They consider a binary-state binary-action
model. In that setting, they establish a welfare bound of “diffusion utility”, which is the
utility obtained by a hypothetical agent who observes an information structure that con-
tains only the strongest signals (i.e., an “expert agent”, in their terminology). Our cascade

16 This statement applies for our general setting discussed in Appendix A, where we only require Ω to be
sigma-compact, i.e., it is a countable union of compact sets. That covers, for example, the case of Ω = R.

17 In the complete network, where each agent observes every predecessor’s action, Theorem 2 can be
proved by a martingale argument, as done by Arieli and Mueller-Frank (2021, Lemma 1). They argue that
the asymptotic “public belief” has to be stationary. However, this approach is inoperable in general networks
because the public belief need not be a martingale and its convergence is not guaranteed.
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utility is more fundamentally tied to when learning stops, as it is defined using station-
ary beliefs. It is not hard to see that in general, no matter the number of states or actions,
cascade utility is always at least as high as (the natural extension of) diffusion utility.18 As
Lobel and Sadler (2015) note, cascade utility and diffusion utility coincide in their binary-
state binary-action model; but we note that in general, the former can be strictly higher.19

Methodologically, Lobel and Sadler’s (2015) argument for a minimum improvement fol-
lows Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and relies on certain monotonicity
that owes to their binary-binary setting. Our argument, by contrast, uses continuity of the
improvement function and compactness of the set of Bayes-plausible beliefs.

4. Minimal-Sufficiency of SCD and DUB

In this section, we establish a sense in which SCD and DUB are a minimal pair of suffi-
cient conditions for adequate learning: if one fails, then there are primitives satisfying the
other such that there is inadequate learning.

4.1. Necessity of DUB

Proposition 1. If the information structure does not have DUB, then there is inadequate learning
for some SCD preferences.

This result identifies DUB as the right informational condition to guarantee learning
for all SCD preferences. The argument is as follows. Assume DUB fails: say, some state
ω∗ cannot be distinguished from all lower states (it is analogous if “lower” is replaced by
“upper”). Consider a single-crossing utility difference between two actions a∗ and a given
by ε > 0 in states ω ≥ ω∗, and −1 in states ω < ω∗. Any other actions can be assumed
to be dominated and ignored. The failure of DUB implies that for any prior supported on
ω ≤ ω∗, the posterior on ω∗ is bounded away from 1. But for any such prior, a∗ is chosen
only if the posterior on ω∗ is greater than 1/(1 + ε). It follows that for small enough ε, any

18 Lobel and Sadler’s (2015) definition of diffusion utility is tailored to their binary-binary model. In gen-
eral, we can define it as the highest utility an agent can obtain from any Bayes-plausible belief distribution
that is supported on the set of feasible posteriors (i.e., those available in the given information structure); call
the corresponding signal structure the expert signal structure. Since expert signals are a subset of the original
signals, the definition of stationary beliefs implies that observing a signal from the expert signal structure
cannot improve an agent’s utility when starting from a stationary belief. Hence, cascade utility is no lower
than diffusion utility.

19 This is true even with just two states and three actions. Alternatively, consider Ω = {0, 1}, A = [0, 1],
u(a, ω) = −(a − ω)2, and the complete network. It is well known that any nontrivial information struc-
ture leads to learning here, with the stationary beliefs being just 0 and 1. So the cascade utility is the full-
information utility of 0, whereas diffusion utility will be strictly lower absent unbounded beliefs.
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such prior will be stationary even though it has inadequate knowledge. By Lemma 2, there
is inadequate learning.

4.2. Necessity of SCD

Given DUB, SCD is not necessary for adequate learning; after all, a violation of SCD
can occur over a pair of actions that are both dominated.20 However, we focus on SCD
preferences because SCD is necessary given DUB when we vary choice sets, as is familiar
in the comparative-statics literature. To make the point precise, say that there is (in)adequate
learning for a choice set Ã ⊂ A in the natural way, i.e., by replacing A with Ã in all relevant
definitions.

Proposition 2. If a preference does not have SCD, then under any information structure with
MLRP (including those with DUB), there is inadequate learning for some (binary) choice set.

Recall that our leading example of DUB information is normal information, which sat-
isfies MLRP. The intuition for Proposition 2 is simple. Consider a utility function that
violates SCD. That is, there are actions a1, a2 ∈ A and states ω1 < ω2 < ω3 such that
u(a1, ωi)−u(a2, ωi) is strictly positive for i ∈ {1, 3} and strictly negative for i = 2. MLRP im-
plies that signals’ informativeness about state ω2 relative to {ω1, ω3} is bounded.21 Hence,
given choice set Ã = {a1, a2}, any belief that is supported on {ω1, ω2, ω3} and puts suffi-
ciently small weight on ω2 relative to each of ω1 and ω3 is stationary. Since such priors have
inadequate knowledge, Lemma 2 implies that there is inadequate learning.

Kartik, Lee, and Rappoport (2019, Theorem 1.1) establish that SCD is equivalent to “in-
terval choice” across all choice sets: for every Ã ⊂ A, if action a ∈ Ã is uniquely optimal in
state ω1 and in state ω2 > ω1, then a ∈ Ã is also optimal in every state ω ∈ (ω1, ω2). But for
a fixed choice set, even if there is a distinct optimal action in every state, learning can fail
under DUB when SCD is violated. The following example illustrates.

Example 1. Let Ω = Z and A = Z ∪ {a∗}. In any state ω, the utility from any integer action
a is given by quadratic loss, u(a, ω) = −(a − ω)2, whereas the action a∗ is a “safe action”,
u(a∗, ω) = −ε for a small constant ε > 0.22 So any action ω is uniquely optimal in state ω

but worse than the safe action a∗ in every other state. Plainly, SCD is violated.

20 In fact, one can show that given DUB, Quah and Strulovici’s (2009) interval dominance order with respect
to some order on the action space ensures adequate learning under some regularity conditions (e.g., a finite
action set).

21 This uses our maintained assumption that the signal density is positive everywhere, which rules out
examples like fully-revealing information.

22 Strictly speaking, given Ω = Z, the quadratic loss utility function violates our maintained assumption of
bounded utility, but we ignore this to keep the example succinct.
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Consider normal information. There are full-support priors such that the posterior prob-
ability of any state is uniformly bounded away from one across all the signals and states.23

For any such prior, for small enough ε > 0, the safe action a∗ is optimal after every sig-
nal. In other words, any such prior is stationary but has inadequate knowledge, and so
Lemma 2 implies that there is inadequate learning. □

5. Discussion

5.1. DUB in Familiar Information Structures

Location families. For tractability, scholars often assume signal structures described by
location-shift families of distributions—normal information being one example. It is of
interest to know when DUB holds in these semi-parametric structures.

Formally, we say that the signal structure is a location-shift signal structure if S = R and
there is a density g : R → R+, referred to as the standard density, such that f(s|ω) = g(s−ω).
We say that g is strictly subexponential if there is some p > 1 (p ∈ R) such that for all
s large enough in absolute value, g(s) ≤ exp(−|s|p). Normal information satisfies this
condition with any p ∈ (1, 2).24 Intuitively, a strictly subexponential density has a thin
tail—it eventually decays faster than the exponential density.

Proposition 3. For a location-shift signal structure with a uniformly continuous standard density
g, DUB holds if g is strictly subexponential.

The exponent p being strictly larger than one in the definition of strictly subexponential
is essential for the result. To see that, consider the Laplace or double exponential stan-
dard density g(s) = (1/2) exp (−|s|). This density is not strictly subexponential, and indeed
DUB fails: for any ω′ < ω < s, f(s|ω′)/f(s|ω) = g(s − ω′)/g(s − ω) = exp (ω′ − ω) is in-

23 Take any prior µ such that for some c > 0, min
{

µ(n−1)
µ(n) , µ(n+1)

µ(n)

}
> c for all n (e.g., a double-sided

geometric distribution). Denoting the posterior after signal s by µs, the posterior likelihood ratio satisfies

µs({n− 1, n+ 1})
µs(n)

=
f(s|n− 1)

f(s|n)
µ(n− 1)

µ(n)
+

f(s|n+ 1)

f(s|n)
µ(n+ 1)

µ(n)
> c

(
f(s|n− 1)

f(s|n)
+

f(s|n+ 1)

f(s|n)

)
.

As the last expression is the sum of a strictly positive decreasing function of s and a strictly positive increasing
function of s, it is bounded away from 0 in s. The bound is independent of n because normal information is
a location-shift family of distributions. Therefore, the posterior likelihood ratio is uniformly bounded away
from zero, and hence, the posterior µs(n) is uniformly bounded away from one.

24 Since normal information has standard density g(s) = 1
σ
√
2π

exp[−(1/2)(s/σ)2] for some σ > 0, it need
not hold that g(s) ≤ exp[−|s|2] for all large s in absolute value, but for any p ∈ (1, 2), g(s) ≤ exp[−|s|p] for all
large s in absolute value.
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dependent of s.25 More broadly, thick-tailed standard densities will tend to violate DUB,
intuitively because a thick tail implies that fixing any pair of states, extreme signals become
uninformative.26 For example, DUB fails for standardized student t-distribution with ar-
bitrary degrees of freedom: it can be checked that for any ω′ < ω, as s → ∞ or s → −∞,
f(s|ω′)/f(s|ω) → 1. By Proposition 1 , such signal structures will entail inadequate learning
under some SCD preferences.

DUB given MLRP. Another common assumption on signal structures is that of MLRP
(fn. 11). Say that there is pairwise unbounded beliefs if any two states are distinguishable
from each other (Arieli and Mueller-Frank, 2021). Given MLRP, it is straightforward to
check for DUB because:

Remark 1. Given MLRP, DUB is equivalent to pairwise unbounded beliefs.

Plainly, regardless of MLRP, DUB implies pairwise unbounded beliefs. For the intuition
why the converse is true given MLRP, consider the case of finite states. Note that for any
ω′ > ω, f(s|ω′)/f(s|ω) → ∞ as s → supS (the ratio is increasing by MLRP, and it diverges
by pairwise unbounded beliefs); similarly, the ratio goes to 0 as s → inf S. Hence, for any
ω and ε > 0, condition 1 of Lemma 1 is met when S is any sufficiently small upper set of
signals, and condition 2 is met when S is any sufficiently small lower set. For an infinite
state space, the intuition is the same but we must appeal to the monotone convergence
theorem; see fn. 35.

5.2. Learning at a Fixed Prior

Given SCD preferences, Proposition 1 says that DUB is necessary when learning is re-
quired for all priors. One may also be interested in whether DUB is necessary for learning
at some given prior, in particular at an arbitrary full-support prior. When there are only
two states, there is no distinction between these two concepts: if learning fails at any prior,
then there is an open ball of stationary beliefs around certainty on some state; hence, no
matter the (full-support) prior, there cannot be a belief path that converges to certainty on
that state.

25 In this example g is logconcave, which is equivalent to the location-shift signal structure
having the MLRP. So any state ω is distinguishable from a lower state ω′ if and only if
f(s|ω′)/f(s|ω) = g(s− ω′)/g(s− ω) → 0 as s → ∞.

26 More precisely, if g is superexponential in the sense that there is some p < 1 such that for all s large
enough, g(s) ≥ exp(−sp), then one can show that for any z > 0, lims→∞ g(s + z)/g(s) = 1 if the limit exists.
That is, for any two states that differ by z, extremely high signals do not distinguish them. The argument is
similar to that used in proving Proposition 3.
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Figure 3: Preference regions among the actions a and a∗ shaded in blues. An MLRP signal structure
such that under belief µ′, posteriors are given by the black curve, while under belief µ, posteriors
are given by the red line.

However, with multiple states, a failure of learning at some prior does not not imply an
open ball of stationary beliefs around certainty on any state, even under SCD preferences.
To illustrate, consider Figure 3. Action a∗ is optimal at states 2 and 3 while a is optimal at
state 1. Learning fails when the prior is µ because µ, which has support {1, 2}, is stationary
but has inadequate knowledge. (SCD holds, but DUB is violated because state 2 is not
distinguishable from state 1 or state 3.) Yet there is no open ball of stationary beliefs around
certainty on any state. Indeed, no full-support belief is stationary because the optimal
actions are distinct at the extreme states 1 and 3, and the extreme states are distinguishable
from their complements. This raises the possibility that there is learning for some—or
even all—full-support priors, with on-path sequences of beliefs (which necessarily have
full support at every finite time) converging to certainty without ever hitting any stationary
belief (all of which have non-full-support).

Nevertheless, we can establish that, at least under some conditions, a failure of DUB
implies a failure of learning for some SCD preference at every full-support prior:

Proposition 4. Suppose the network is complete. If the signal structure has MLRP but fails DUB,
then there is an SCD preference such that there is inadequate learning for all full-support priors.

In particular, under a complete network, the signal structure and preferences in Figure 3
entail inadequate learning at every full-support prior, such as µ′ in the figure.27

Here is the key idea behind Proposition 4. For simplicity, suppose Ω = Z. We will argue
that if for every SCD preference there is a full-support prior for which there is adequate
learning, then DUB holds. Pick any state ω∗, and consider SCD preferences such that a′ is
strictly preferred to a∗ at every state ω < ω∗ while a∗ is strictly preferred at every ω ≥ ω∗

27 It can be confirmed that the figure’s signal structure satisfies MLRP because the black curve is concave
vis-à-vis the 1–3 edge and approaches the 1 and 3 vertices.

19



(and all other actions are dominated, hence can be ignored). Assume there is adequate
learning at some full-support prior. It can be shown that MLRP and the complete network
then guarantee the following property: with positive probability there is an infinite history
with a herd on a′, call it h′ ≡ ( a1, . . . , an︸ ︷︷ ︸

each ai∈{a′,a∗}

, a′, a′, . . .), whose limit belief µ′ satisfies Suppµ′ =

{ω : ω < ω∗}. This support property can be restated as Pr(h′|ω) > 0 ⇐⇒ ω < ω∗. So
the probability of signals that overturn the herd—i.e., lead to action a∗—must vanish over
time at a fast enough rate in each ω < ω∗, but either not vanish or vanish at a slow enough
rate in each ω ≥ ω∗. In particular, there must exist overturning signals whose probability
gets arbitrarily large in state ω∗ relative to those in every ω < ω∗, which implies that ω∗ is
distinguishable from its lower set {ω : ω < ω∗}. A symmetric argument using preferences
in which a∗ is optimal in state ω∗ and below while a′ is optimal in states above ω∗ establishes
that ω∗ is distinguishable from its upper set {ω : ω > ω∗}. Since ω∗ was arbitrary, it follows
that there is DUB.

While Proposition 4 is stated for the complete network and MLRP signal structures, we
suspect that the argument is more general. These conditions are only used in combination
with learning to obtain a herd on a′ that has positive probability in each state in which this
action is optimal. Specifically, the complete network guarantees that there is almost surely
a herd on a′ in state ω∗ − 1, and MLRP ensures that any history with a herd on a′ that has
positive probability in state ω∗ − 1 also has positive probability in all lower states.28 We
hope future research will settle to what extent these properties hold more generally.

5.3. Excludability

In explaining Theorem 1, we highlighted that what is crucial for learning is that a single
agent should always be able to rule out a wrong action, rather than take the correct action.
This subsection expands on a general condition on preferences and information—moving
beyond SCD and DUB—that guarantees this “ruling out” property. Beyond its concep-
tual value, we believe this will be useful for future research investigating other families of

28 The complete network assumption implies that the public belief—an agent’s belief based on the history
before she observes her private signal–is a martingale, and hence converges almost surely. If the limit public
belief has adequate knowledge, then either the public belief on {ω : ω < ω∗} goes to 0, in which case there is
a herd on a′, or the public belief on {ω : ω ≥ ω∗} goes to 0, in which case there is a herd on a∗. Since there is
adequate learning, there must be a herd almost surely; this is a manifestation of Smith and Sørensen’s (2000)
overturning principle. Adequate learning implies that in any state ω < ω∗ the herd must be on a′, while in
any state ω ≥ ω∗ the herd must be on a∗. Hence, following any herd on a′, the limit public belief excludes all
ω ≥ ω∗. Take any infinite history with a herd on a′ that has positive probability in state ω∗ − 1 (such a history
exists). MLRP implies that a′ is only chosen for a lower set of signals and that the probability of any lower set
of signals is nonincreasing in the state. Thus, the history has positive probability under every ω < ω∗, and so
the limit belief’s support is {ω : ω < ω∗}.
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preferences and information that generate learning.

For an arbitrary utility function u(a, ω) and any two actions a1 and a2, define the dom-
inance set Ωa1,a2 := {ω : u(a1, ω) − u(a2, ω) > 0} as the set of states in which a1 is strictly
preferred to a2. Say that a utility function and information structure jointly satisfy exclud-
ability if for every pair of actions a1 and a2, every ω ∈ Ωa1,a2 is distinguishable from Ωa2,a1 .
That is, excludability holds when, for any pair of actions, it is possible to become arbitrarily
certain that one action is strictly better than the other starting from any belief that does not
exclude that event.

Proposition 5. There is adequate learning if there is excludability. If excludability fails and there
are a finite number of states, then there is inadequate learning for some choice set.

Proposition 5 derives from Lemma 2. Although excludability is a joint condition on
preferences and information, it is more interpretable and tractable than the lemma’s con-
dition that all stationary beliefs have adequate knowledge. For, Proposition 5 allows one
to focus on whether information affords distinguishability of all pairs of dominance sets.
To appreciate why this is useful, observe that an SCD preference is characterized by ev-
ery dominance set being either an upper set or a lower set. Thus, an information structure
yields excludability for all SCD preferences if and only if that information structure satisfies
DUB.

Various other learning results in literature also amount to identifying conditions that
imply excludability. For instance, an information structure yields excludability for all util-
ity functions if and only if that information structure has unbounded beliefs. Another
example is Arieli and Mueller-Frank (2021, Theorem 3), which establishes that pairwise
distinguishability—for any pair of states, each is distinguishable from the other—is suffi-
cient for learning if the agents have a simple utility function that gives utility 1 if the action
matches the state and 0 otherwise. Here the dominance sets are all individual states, and
so excludability reduces to the information structure having pairwise distinguishability.

The second portion of Proposition 5 says that if we can vary the choice set (and subject
to the finiteness qualifier), then excludability is also necessary for learning. Varying the
choice set is often subsumed when considering a family of preferences; for example, any
SCD utility function restricted to a subset of actions still has SCD, so the class of all SCD
preferences on the action set A automatically includes all choice sets Ã ⊂ A. Hence, Propo-
sition 1 is a direct corollary of Proposition 5, up to the finiteness qualifier in the latter.29

29 The appendix provides a stronger version of Proposition 5, Proposition 5′, that does not require finiteness
and can be used to prove Proposition 1.
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The intuition for the necessity of excludability is also similar to that of Proposition 1: if ex-
cludability fails, then there is some dominance set Ωa1,a2 that cannot be distinguished from
Ωa2,a1 . This means that under the choice set Ã = {a1, a2}, a prior that puts small enough
probability on Ωa1,a2 relative to Ωa2,a1 will be stationary yet have inadequate knowledge.

For a fixed choice set, excludability is not necessary for adequate learning. A well-
known example is that of responsive preferences (Lee, 1993; Ali, 2018): there is a different
optimal action for every belief about the state. For example, consider Ω = {0, 1}, A =

[0, 1], and u(a, ω) = −(a − ω)2. Adequate learning obtains in this example for any non-
trivial information structure by Lemma 2, because given any nondegenerate belief, with
positive probability the posterior-optimal action will be different from the prior-optimal
action. However, excludability is equivalent to unbounded beliefs.
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A. Backbone Results

We prove our backbone results—Theorem 2, Lemma 2, and Proposition 5—in the fol-
lowing setting, which is more general than that described in the main text. These results
do not require SCD or DUB, nor any order structure on Ω.

• The action space and signal space (A,A), (S,S) are standard Borel spaces;

• The state space Ω is equipped with a metric d and its Borel sigma-algebra, B(Ω), such
that (Ω, d) is a sigma-compact Polish space;30,31

• The utility function u(a, ω) is uniformly bounded by u and is pointwise equicontinu-
ous when regarded as a collection of functions of ω indexed by a; moreover, for every
belief (Borel probability distribution over Ω), there exists an optimal action;

• The information/signal structure F (·|ω) is a Markov kernel from (Ω,B(Ω)) to (S,S)
that is continuous in ω in the total variation (TV) sense;

• The network structure Q ≡ (Qn)n∈N, where each Qn is a probability measure over all
neighborhoods, i.e., all subsets of {1, 2, . . . , n−1}, independent across n, independent
of the state ω, and independent of any private signals.

Note that the main text’s setting is subsumed because our sigma-compactness and conti-
nuity requirements are trivially satisfied when a countable Ω is endowed with the discrete
topology.

With these elements, we can define an overarching probability space over all realizations
of the state, signals, observation neighborhoods, and actions. An overarching probability
measure is determined uniquely by the prior µ0, the signal structure F , the network struc-
ture Q, and a strategy profile σ. We will refer to this overarching probability measure by
Pσ,µ0 , or sometimes just P for short. The agents’ beliefs are defined as the regular condi-
tional probabilities of this overarching probability measure, which are guaranteed to exist
and are unique almost everywhere. Appendix D elaborates.

We will denote by ∆Ω the space of beliefs (Borel probability measures on Ω) equipped
with the Prohorov metric, and by ∆∆Ω the space of belief distributions (Borel probability
measures on ∆Ω) equipped with the Prohorov metric.

30 That is, (Ω, d) is a complete and separable metric space that can be represented as a countable union of
compact sets.

31 Our backbone results hold regardless of the topology on Ω, so long as the sigma-compactness and sub-
sequent continuity assumptions are met. The topology only plays a role in the proofs. Indeed, given some
utility function and information structure, the backbone results hold so long as we can find a topology en-
suring the compactness/continuity properties.
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A.1. Space of Bayes-plausible Belief Distributions is Compact

Given a prior µ0 ∈ ∆Ω and a strategy profile σ, any agent’s belief distribution φ ∈ ∆∆Ω

must be Bayes plausible: ∫
A

µ(A) dφ(µ) = µ0(A), ∀A ∈ B(Ω). (1)

Let ΦBP ⊂ ∆∆Ω be the set of Bayes-plausible belief distributions; note that we suppress
the dependence of ΦBP on µ0.

Our goal is to establish (Lemma 4 below) that even though the set of belief distributions
∆∆Ω need not be compact, the subset of Bayes-plausible distributions ΦBP is. A key step
is the following lemma, which shows that any belief φ ∈ ΦBP has to put a large probability
on a compact subset of ∆Ω.

Lemma 3. Let δ > 0 and {Ωi}i∈N be a sequence of compact sets with µ0(Ωi) ≥ 1 − ( δ
2i
)2, ∀i.

Defining Vδ := {µ ∈ ∆Ω : µ(Ωi) ≥ 1− δ
2i
, ∀i}, it holds that:

1. Vδ is compact;

2. φ(µ /∈ Vδ) < δ, ∀φ ∈ ΦBP .

Intuitively, in the lemma’s statement, the set Vδ contains all beliefs that put high proba-
bility on a set of states that the prior µ0 ascribes high probability to. The lemma concludes
that the set Vδ is compact and that any Bayes-plausible belief distribution must put high
probability on Vδ.

Proof. (Part 1) First, Vδ is closed. To see this, take any µk → µ and µk ∈ Vδ. Since each Ωi is
compact (and thus closed), weak convergence implies

lim sup
k

µk(Ωi) ≤ µ(Ωi), ∀i,

which implies µ(Ωi) ≥ 1− δ
2i

. Thus, µ ∈ Vδ, and hence Vδ is closed.

Next, the beliefs in Vδ are tight by definition. Hence, by Prohorov’s Theorem, the closure
of Vδ, which is Vδ itself, is compact.

(Part 2) Note that φ(µ /∈ Vδ) = φ(∪i{µ(Ωc
i) > δ

2i
}) ≤

∑
i φ(µ(Ω

c
i) > δ

2i
). For each i ∈

N, we view µ(Ωc
i) as a non-negative random variable with a distribution φ. Since φ is

Bayes plausible, Eφ[µ(Ω
c
i)] = µ0(Ω

c
i) ≤ ( δ

2i
)2, which implies (using Markov’s inequality)

that φ(µ(Ωc
i) >

δ
2i
) < δ

2i
. This implies that φ(µ /∈ Vδ) <

∑
i

δ
2i
= δ. Q.E.D.
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Given Lemma 3, the idea now is to apply Prohorov’s theorem again to ΦBP and obtain:

Lemma 4. ΦBP is compact.

Proof. First, to prove that ΦBP is closed, it is sufficient to take any φk → φ and φk ∈ ΦBP ,
and show that φ ∈ ΦBP , i.e., Eφ[µ(A)] = µ0(A),∀A ∈ B(Ω).

Take any open set A ∈ B(Ω). For any µk → µ, it holds that µ(A) ≤ lim inf µk(A) . In other
words, µ(A) (as a function of µ) is lower semi-continuous. By properties of weak conver-
gence, it follows that Eφ[µ(A)] ≤ lim inf Eφk

[µ(A)] = µ0(A). That is, the mean measure of φ
ascribes a smaller probability than µ0 to any open set.

Now observe that Ac ⊂ ∪x∈AcB1/n(x) for any n. Hence,

Eφ[µ(A
c)] ≤ lim

n
Eφ[µ(∪x∈AcB1/n(x))] ≤ lim

n
µ0(∪x∈AcB1/n(x)) = µ0(A

c),

where the second inequality is from the previous result applied to open sets ∪x∈AcB1/n(x),
and the last equality follows from Ac = ∩n ∪x∈Ac B1/n(x) (and this equality holds because
Ac is closed). Therefore, Eφ[µ(A)] = µ0(A).

Since Eφ[µ] and µ0 agree on all open sets, and open sets generate B(Ω), Eφ[µ] and µ0

agree on all sets in B(Ω).

Finally, Ω being sigma-compact implies that for any δ, there is an increasing sequence of
compact sets {Ωi}i∈N such that Ω = ∪iΩi, and so this sequence {Ωi} satisfies the hypotheses
in Lemma 3. The lemma guarantees that there is a compact set Vδ such that φ(Vδ) < δ for
all φ ∈ ΦBP , and so ΦBP is tight. Prohorov’s theorem now implies that cl(ΦBP ) = ΦBP is
compact. Q.E.D.

A.2. Continuity of Various Functions

We next define some functions of interest, some of which were already defined in the
main text but are now defined for the more general setting considered in the appendix.

Let u(µ) be the expected utility that an agent can get at belief µ:

u(µ) := sup
a

∫
Ω

u(a, ω) dµ(ω).

Let uF (µ) be the expected utility that an agent can get at belief µ, if she can choose an action
after observing her private signal:

uF (µ) := sup
β:S→A

∫
Ω

∫
S

u(β(s), ω) dF (s|ω) dµ(ω).
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Finally, let u∗(µ) be the full information utility at µ:

u∗(µ) :=

∫
Ω

sup
a

u(a, ω) dµ(ω).

Our continuity assumptions on the utility function and the information structure allow
us to prove:

Lemma 5. u, uF , u∗ are continuous in µ.

To prove Lemma 5, we require Theorem 2.2.8 in Bogachev (2018), which we restate with-
out proof for our context as the following claim:

Claim 1. Let µk → µ. If Γ is a uniformly bounded and pointwise equicontinuous family of func-
tions on Ω, then

lim
k

sup
f∈Γ

∣∣∣∣∫
Ω

f dµk −
∫
Ω

f dµ

∣∣∣∣ = 0.

Proof of Lemma 5. By assumption, Γ := {u(a, ω)}a∈A, viewed as a family of functions of ω
indexed by a, is uniformly bounded and pointwise equicontinuous.

Consider the function u∗. Since the supremum of the pointwise equicontinuous func-
tions u∗(ω) := supa u(a, ω) is continuous in ω, the definition of weak convergence implies
that u∗(µ) is continuous in µ.

Now consider the function u. Its continuity follows from

|u(µk)− u(µ)| =
∣∣∣∣sup
f∈Γ

∫
Ω

f dµk − sup
f∈Γ

∫
Ω

f dµ

∣∣∣∣ ≤ sup
f∈Γ

∣∣∣∣∫
Ω

f dµk −
∫
Ω

f dµ

∣∣∣∣ ,
which converges to 0 for µk → µ by Claim 1.

Lastly, suppose we establish that ΓF :=
{∫

S
u(β(s), ω) dF (s|ω)

}
β:S→A

, as a family of func-
tions of ω indexed by β, is pointwise equicontinuous.32 Then, as ΓF is uniformly bounded,
Claim 1 implies that uF (µ) is continuous, proving the lemma.

To establish the pointwise equicontinuity of ΓF , observe that ∀ω, ω′ and ∀β,∣∣∣∣∫
S

u(β(s), ω) dF (s|ω)−
∫
S

u(β(s), ω′) dF (s|ω′)

∣∣∣∣ (2)

≤
∣∣∣∣∫

S

(u(β(s), ω)− u(β(s), ω′)) dF (s|ω)
∣∣∣∣+ ∣∣∣∣∫

S

u(β(s), ω′) dF (s|ω)−
∫
S

u(β(s), ω′) dF (s|ω′)

∣∣∣∣ .
32 Here we assume β are (measurable) pure strategies for notation clarity. The same argument works for

mixed strategies, in which case β would be Markov kernels.

29



Fix any ω and any ε > 0. Since {u(a, ω)}a∈A is pointwise equicontinuous, there exists δ1

such that d(ω′, ω) < δ1 implies the first term on the right-hand side of inequality (2) to be
smaller than ε/2 (regardless of β(s)). The second term is smaller than 2udTV (F (·|ω), F (·|ω′))

(where TV represents total variation), and by the continuity assumption of the information
structure, there exists δ2 > 0 such that d(ω′, ω) < δ2 implies dTV (F (·|ω), F (·|ω′)) < ε/4u.
Therefore, if d(ω′, ω) < min{δ1, δ2}, then the right-hand side of inequality (2) is less than ε

(regardless of β(s)). It follows that ΓF is pointwise equicontinuous. Q.E.D.

Now define the utility improvement I(µ) and the utility gap G(µ) at µ as:

I(µ) := uF (µ)− u(µ), G(µ) := u∗(µ)− u(µ).

By Lemma 5, I(µ) and G(µ) are continuous. Lastly, with an abuse of notation, define
u(φ) := Eφ[u(µ)], I(φ) := Eφ[I(µ)], and G(φ) := Eφ[G(µ)] as the corresponding functions
over distributions of beliefs. Since u(µ), I(µ), and G(µ) are continuous, so are u(φ), I(φ),
and G(φ).

A.3. Proofs of Backbone Results

We say that a belief µ is stationary if I(µ) = 0, and a belief µ has adequate knowledge
if G(µ) = 0. Note that these definitions agree with those in the main text. To see that,
consider stationary beliefs. If there is an action that is a.s. optimal regardless of the signal,
then clearly I(µ) = 0. Conversely, if there is no action that is a.s. optimal regardless of
the signal, then for any action there is a positive-probability set of signals for which that
action is strictly suboptimal; hence uF (µ) > u(µ), and I(µ) > 0. The argument for adequate
knowledge beliefs is similar and omitted.

Proof of Theorem 2. We prove the result in two steps. In Step 1 below, we prove that if
agent n’s belief distribution φn, which is her belief distribution incorporating the obser-
vation of her neighborhood’s actions but not her private signal, is not close to being sup-
ported on only stationary beliefs, then her utility Eσ,µ0 [un], which is the ex-ante expected
utility under equilibrium σ after observing the private signal, improves from u(φn) by a
fixed positive minimum. In Step 2 below, we use the expanding observations assumption
to establish that this minimum improvement propagates through the network until even-
tually agents obtain at least arbitrarily close to their cascade utility level.

Step 1: Recall the set of Bayes-plausible belief distributions that are supported by sta-
tionary beliefs, ΦS := {φ ∈ ΦBP : I(φ) = 0}, and the cascade utility, u∗ := infφ∈ΦS u(φ).
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Take any ε > 0, and let (ΦS)ε denote the ε-neighborhood of ΦS . An agent n’s belief
distribution φn must be Bayes plausible, so φn ∈ ΦBP . Since u(φ) is uniformly continuous
(being continuous on the compact set ΦBP ), if φn ∈ (ΦS)ε, then u(φn) ≥ u∗ − γ(ε) for
some γ(·) such that γ(ε) → 0 when ε → 0. If, on the other hand, φn ∈ Φ+ := ΦBP\(ΦS)ε,
then I(φn) > 0 because φn puts positive probability on {µ : I(µ) > 0}. Note that Φ+ is a
closed subset of a compact set ΦBP , so it is compact, and since I(φ) is continuous, it attains
a minimum over Φ+ at some φ ∈ Φ+. Thus, if φn ∈ Φ+ the agent obtains a minimum
improvement I(φn) ≥ I(φ) > 0.

Step 2: We will argue that for any ε > 0, Eσ,µ0 [un] ≥ u∗ − γ(ε) once n is large enough.
Since ε is arbitrary, taking ε → 0 implies lim inf Eσ,µ0 [un] ≥ u∗, which completes the proof.

For a given ε > 0, let δ =
I(φ)

4u
> 0, let N0 = 1, and define Nk for k = 1, 2, . . . sequentially

such that for all n ≥ Nk, Qn(maxb∈Bn b < Nk−1) < δ. Expanding observations ensures that
such Nk exist.

We claim that, for any agent n ≥ Nk, Eσ,µ0 [un] ≥ αk := min{u∗−γ(ε),
kI(φ)

2
−u}. Since α0 =

−u, clearly Eσ,µ0 [un] ≥ α0 for any n ≥ N0. Suppose the claim holds for all agents n′ ≥ Nk−1.
Take any agent n ≥ Nk. Agent n’s neighborhood is drawn independently of everything
that has happened before, so conditional on agent n observing an agent n′ ≥ Nk−1, even
without her private signal agent n can achieve a utility of at least αk−1 by imitating agent
n′. Hence, u(φn) ≥ (1−δ) ·αk−1+δ ·(−u). If φn ∈ (ΦS)ε, then by definition u(φn) ≥ u∗−γ(ε),
and thus Eσ,µ0 [un] ≥ u(φn) ≥ u∗ − γ(ε) ≥ αk. If φn /∈ (ΦS)ε, then agent n can improve her
utility by at least I(φ), and so

Eσ,µ0 [un] ≥ (1− δ)αk−1 + δ · (−u) + I(φ)

≥ αk−1 +
I(φ)

2
(because αk−1 ≤ u and δ =

I(φ)

4u
)

≥ αk.

Since the definition of αk implies that there is a finite K such that for all k ≥ K, αk =

u∗ − γ(ε), it follows that for all n ≥ NK , Eσ,µ0 [un] ≥ u∗ − γ(ε). Q.E.D.

Proof of Lemma 2. The “only if” direction is straightforward. If there is a stationary belief
without adequate knowledge, then when the prior is that belief there is an equilibrium
where each agent ignores her signal and action history and obtains a utility that is strictly
below the full-information utility level.

For the ”if” direction, fix any prior µ0 and equilibrium σ. Since all stationary beliefs have
adequate knowledge, I(µ) = 0 implies G(µ) = 0. Thus, for any φ ∈ ΦS , φ({µ : I(µ) = 0}) =
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φ({µ : G(µ) = 0}) = 1, which implies G(φ) = u∗(φ)−u(φ) = 0. Moreover, because µ0 is the
mean measure of φ,

u∗(φ) = Eφ

[∫
Ω

sup
a

u(a, ω) dµ

]
=

∫
Ω

sup
a

u(a, ω) dµ0 = u∗(µ0),

which implies u(φ) = u∗(µ0). As a result, u∗(µ0) = infφ∈ΦS u(φ) = u∗(µ0). It follows from
Theorem 2 that lim infn Eσ,µ0 [un] ≥ u∗(µ0). Since Eσ,µ0 [un] ≤ u∗(µ0) for all n, it further
follows that Eσ,µ0 [un] → u∗(µ0). As µ0 and σ are arbitrarily, we have adequate learning.

Q.E.D.

Extending the notion given in the main text, for a general state space we say that a set Ω′

is distinguishable from another set Ω′′ if for any ε > 0 and any µ ∈ ∆(Ω′∪Ω′′) with µ(Ω′) > 0,
there is a set of signals S ′ such that Pµ(S

′) > 0 and µs(Ω
′) > 1 − ε for all s ∈ S ′. Also

generalizing from the main text, we say that preference u and signal structure F satisfy
excludability if Ωa1,a2 is distinguishable from Ωa2,a1 for any a1, a2 ∈ A. Note that when the
state space Ω is countable, as assumed the main text, Ω′ is distinguishable from Ω′′ if and
only if every ω ∈ Ω′ is distinguishable from Ω′′.

Next we state and prove a more general version of Proposition 5. For any n ∈ N, define
Ωn

a1,a2
:= {ω : u(a1, ω)− u(a2, ω) >

1
n
}.

Proposition 5′. There is adequate learning if

Ωn
a1,a2

is distinguishable from Ωa2,a1 for all a1, a2 and n. (3)

There is inadequate learning for choice set {a1, a2} if

Ωa1,a2 is not distinguishable from Ωn
a2,a1

for some n. (4)

When Ω is countable, condition (3) is equivalent to excludability. When Ω is finite, or
the utility difference between between any pair of actions is bounded away from zero, a
failure of excludability is equivalent to condition (4) holding for some a1, a2.

Proof. (First statement) Lemma 2 implies that we need only show that any µ ∈ ∆Ω with
inadequate knowledge is not stationary. So take any µ ∈ ∆Ω with inadequate knowledge
and any a ∈ c(µ). Since there is inadequate knowledge, µ(∪a′∈AΩa′,a) > 0, i.e., there is
a positive measure of states where a is not optimal . The continuity of u(a′, ω) − u(a, ω)

implies that Ωn
a′,a are open sets for any a′ and n. Since Ω is Polish, it is second-countable

and hence has a countable basis. Therefore, each open set Ωn
a′,a, and hence the open set
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∪a′Ωa′,a(= ∪a′∪nΩ
n
a′,a), is the union of countably many basic open sets. Since µ(∪a′Ωa′,a) > 0,

at least one basic open set contained in Ωn
a′,a for some a′ and n has strictly positive measure,

i.e., µ(Ωn
a′,a) > 0.

Now denote µ′(·) := µ(·|Ωa,a′ ∪Ωn
a′,a) as the corresponding conditional probability. Since

Ωn
a′,a is distinguishable from Ωa,a′ by assumption, for any ε > 0 there exists a set of signals

S ′ such that Pµ′(S ′) > 0 and µ′
s(Ω

n
a′,a) > 1 − ε for all s ∈ S ′. The utility improvement upon

observing any s ∈ S ′ by switching from a to a′ is therefore bounded below by ( 1
n
(1 − ε) −

2uε)µs(Ωa,a′ ∪ Ωn
a′,a), as the expected improvement on Ω\(Ωa,a′ ∪ Ωn

a′,a) is nonnegative. For
small ε > 0, ( 1

n
(1− ε)− 2uε) > 0, and hence, integrating over S ′, the ex-ante improvement

is bounded below by ( 1
n
(1 − ε) − 2uε)Pµ′(S ′)µ(Ωa,a′ ∪ Ωn

a′,a) > 0. It follows that I(µ) > 0,
and thus µ is not stationary.

(Second statement) Suppose there are two actions a1, a2 and an n such that Ωa1,a2 is not
distinguishable from Ωn

a2,a1
. This means there exists µ ∈ ∆(Ωa1,a2 ∪Ωn

a2,a1
) with µ(Ωa1,a2) > 0

such that µs(Ωa1,a2) ≤ 1 − ε for some ε > 0 and µ-a.e. s. Consider µ′ ∈ ∆(Ωa1,a2 ∪ Ωn
a2,a1

)

with a small µ′(Ωa1,a2) > 0 such that µ′(·|Ωa1,a2) = µ(·|Ωa1,a2) and µ′(·|Ωn
a2,a1

) = µ(·|Ωn
a2,a1

).
Under µ′, upon observing signal s, the posterior on Ωa1,a2 satisfies

µ′
s(Ωa1,a2)

µ′
s(Ω

n
a2,a1

)
=

µs(Ωa1,a2)/µ(Ωa1,a2)

µs(Ωn
a2,a1

)/µ(Ωn
a2,a1

)

µ′(Ωa1,a2)

µ′(Ωn
a2,a1

)
≤ 1− ε

ε

µ(Ωn
a2,a1

)

µ(Ωa1,a2)

µ′(Ωa1,a2)

µ′(Ωn
a2,a1

)

for µ-a.e. s. Hence, by choosing µ′ so that µ′(Ωa1,a2 )

µ′(Ωn
a2,a1

)
is arbitrarily small, the ratio µ′

s(Ωa1,a2 )

µ′
s(Ω

n
a2,a1

)
can

be made arbitrarily small uniformly over s.

Under µ′, after observing s, the expected improvement by switching from a2 to a1 is
bounded above by 2uµ′

s(Ωa1,a2) − 1
n
µ′
s(Ω

n
a2,a1

), which is strictly negative when µ′
s(Ωa1,a2 )

µ′
s(Ω

n
a2,a1

)
is

small. Therefore, for µ′-a.e. s, a2 is strictly better than a1, and thus µ′ is stationary for
choice set {a1, a2}. However, since µ′(Ωa1,a2) > 0, the belief µ′ has inadequate knowledge.
Lemma 2 implies there is inadequate learning for choice set {a1, a2}. Q.E.D.

B. Proofs for SCD & DUB being Minimally Sufficient
Given the general setup of Appendix A, we now assume in addition that Ω is totally

ordered. To ensure that all intervals are open, we assume the topology on Ω is finer than
the order topology. It is then without loss of generality to let Ω ⊂ R because Ω can be
embedded into R isomorphically.33 It bears emphasizing that the topology on Ω ⊂ R need
not be the Euclidean subspace topology.

33 For, it can be shown that Ω has a countable order-dense subset, and then Jaffray (1975, Corollary 1)
applies. Details are available on request.
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For sets U, V ⊆ Ω, we say that U is smaller than a set V (denoted as U < V ) if u < v, ∀u ∈
U, v ∈ V . Recalling the notion of distinguishability of two sets given before Proposition 5′,
we define DUB for an arbitrary Ω ⊂ R as follows:

Definition 2′. There is directionally unbounded beliefs (DUB) if all open sets U, V ⊂ Ω satisfy-
ing U < V and cl(U) ∩ cl(V ) = ∅ are distinguishable from each other.

Note that this definition coincides with Definition 2 when Ω is countable and endowed
with the discrete topology, but it applies more generally. We use this definition to prove the
relevant results from the main text in the more general setting considered in this appendix.

Proof of Theorem 1. For any two actions a1, a2 and any n ∈ N, both Ωn
a1,a2

≡ {ω : u(a1, ω)−
u(a2, ω) > 1

n
} and Ωa2,a1 are open because of continuity, and cl(Ωn

a1,a2
) ⊂ {ω : u(a1, ω) −

u(a2, ω) ≥ 1
n
} and cl(Ωa2,a1) ⊂ {ω : u(a2, ω) − u(a1, ω) ≥ 0}, which implies cl(Ωn

a1,a2
) ∩

cl(Ωa2,a1) = ∅. SCD implies Ωn
a1,a2

< Ωa2,a1 or Ωn
a1,a2

> Ωa2,a1 . Either way, DUB implies
Ωn

a1,a2
is distinguishable from Ωa2,a1 . It follows from Proposition 5′ that there is adequate

learning. Q.E.D.

Proof of Proposition 1. If the information structure fails DUB, then there exist open sets
U, V ⊂ Ω such that U < V and cl(U) ∩ cl(V ) = ∅, and U is not distinguishable from V

(or V is not distinguishable from U , which is analogous and hence omitted). Consider the
following SCD preference with two actions: action a1 gives a utility of 0 on all states; action
a2 gives 1 on U , −1 on V , and any number on other states such that u(a2, ·) is single-crossing
and continuous.34 Ωa2,a1 is not distinguishable from Ω2

a1,a2
because U is not distinguishable

from V , U ⊂ Ωa2,a1 , and V ⊂ Ω2
a1,a2

. Proposition 5′ implies that learning fails for choice set
{a1, a2}. Q.E.D.

Proof of Proposition 2. Suppose that u violates SCD. So there are actions a′, a′′ and states
ω1 < ω2 < ω3 such that min{Da′,a′′(ω1), Da′,a′′(ω3)} > 0 > Da′,a′′(ω2), where Da′,a′′(ω) :=

u(a′, ω)− u(a′′, ω). We focus on priors that are only supported on {ω1, ω2, ω3}.

34 Existence of such a continuous function is not trivial when the topology is not the standard Euclidean
subspace topology. But one such function can be defined as follows. Firstly, define a function f ′ on cl(U) ∪
cl(V ) as f ′(cl(U)) = 1 and f ′(cl(V )) = −1. The function is well defined because cl(U) ∩ cl(V ) = ∅. Note f ′

is continuous. Note also that cl(U) < cl(V ); for otherwise, ∃u ∈ cl(U), v ∈ cl(V ) s.t. v < u, and (v,∞) is a
neighborhood of u, which contains some point in U , contradicting U < V . Then, by Tietze extension theorem
we can extend f ′ from cl(U) ∪ cl(V ) to Ω as f ′′ such that f ′′ is continuous and |f ′′(Ω)| ≤ 1. Finally, define a
function f over Ω such that f(ω) = 1 if ω ≤ u for some u ∈ cl(U); f(ω) = −1 if ω ≥ v for some v ∈ cl(V ); and
f(ω) = infU<ω′≤ω f ′′(ω′) otherwise. Note f is continuous and decreasing (since |f ′′(Ω)| ≤ 1), with the latter
implying it is single-crossing.
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Take any signal structure with strictly positive density f that satisfies MLRP (fn. 11) and
DUB (e.g., normal information).35 For any signal s and any belief µ ∈ ∆{ω1, ω2, ω3},

Eµs [Da′,a′′(ω)] =
∑

i=1,2,3

µ(ωi|s)Da′,a′′(ωi) > 0

⇐⇒ µ(ω1)f(s|ω1)Da′,a′′(ω1) + µ(ω3)f(s|ω3)Da′,a′′(ω3) > −µ(ω2)f(s|ω2)Da′,a′′(ω2)

⇐⇒ − µ(ω1)
f(s|ω1)Da′,a′′(ω1)

f(s|ω2)Da′,a′′(ω2)
− µ(ω3)

f(s|ω3)Da′,a′′(ω3)

f(s|ω2)Da′,a′′(ω2)
> µ(ω2). (5)

Under MLRP, the strictly positive functions

h(s) := −f(s|ω1)Da′,a′′(ω1)

f(s|ω2)Da′,a′′(ω2)
and g(s) := −f(s|ω3)Da′,a′′(ω3)

f(s|ω2)Da′,a′′(ω2)

are decreasing and increasing, respectively, in s. Thus, given any s′ and δ := min{h(s′), g(s′)} >

0, it holds that h(s) ≥ δ for all s ≤ s′, while g(s) ≥ δ for all s ≥ s′. Consequently, for any
ε > 0 small enough and µ ∈ ∆{ω1, ω2, ω3} such that µ(ω2) = ε and µ(ω1) = µ(ω3) =

1−ε
2

, it
holds for all signals s that

µ(ω1)h(s) + µ(ω3)g(s) =
1− ε

2
(h(s) + g(s)) ≥ 1− ε

2
δ > ε = µ(ω2). (6)

Combining (6) and the equivalences leading up to (5), we have Eµs [Da′,a′′(ω)] > 0 for all
s. Therefore, Ωa′′,a′ is not distinguishable from Ωa′,a′′ , and thus learning fails for choice set
{a′, a′′} by Proposition 5′. Q.E.D.

35 Normal information satisfies DUB even when Ω is not countable. This is because normal information
satisfies MLRP and pairwise unbounded beliefs. In fact, under MLRP, any sets of states U < V are distin-
guishable from each other if and only if each u ∈ U is distinguishable from each v ∈ V , which implies that
DUB is equivalent to pairwise unbounded beliefs (since the topology on Ω is finer than the order topology).
Here is the argument. The “only if” direction clearly holds even without MLRP. For the “if” direction, we
establish that U is distinguishable from V . (The other case is symmetric.) By MLRP and pairwise unbounded
beliefs, for any u < v, f(s|u)/f(s|v) converges monotonically to 0 as s increases to supS. Invoking the
monotone convergence theorem twice, we have that for any µ ∈ ∆(U ∪ V ) with µ(V ) > 0:

∀u ∈ U, lim
s↑supS

∫
V

f(s|ω)
f(s|u)

dµ =

∫
V

lim
s↑supS

f(s|ω)
f(s|u)

dµ = ∞;

and hence lim
s↑supS

µ(U |s)
µ(V |s)

=

∫
U

lim
s↑supS

f(s|ω)∫
V
f(s|ω)dµ

dµ = 0.
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C. Proofs for Other Results

In this appendix we prove the remaining results (Lemma 1, Proposition 3, Proposition 4)
within the setting considered in the main text: Ω is countable (endowed with the discrete
metric); F (·|ω) are absolutely continuous with respect to each to other, and so there are
densities f(·|ω) > 0.36

Proof of Lemma 1. We first prove sufficiency. Take any state ω and a belief µ ∈ ∆({ω′ :

ω′ ≤ ω}) such that µ(ω) > 0. By assumption, for any ε > 0 there exists a positive probability
set of signals S such that f(s|ω′)

f(s|ω) < ε,∀ω′ < ω,∀s ∈ S. It follows that for all s ∈ S,

µ(ω|s) = f(s|ω)µ(ω)∑
ω′≤ω f(s|ω′)µ(ω′)

=
µ(ω)

µ(ω) +
∑

ω′<ω
f(s|ω′)
f(s|ω) µ(ω

′)
>

µ(ω)

µ(ω) + ε
.

Since for any ε > 0 we can find a positive probability set of signals S satisfying the above
inequality, we conclude that 1 ∈ Suppµ(ω|·). Since ω and µ are arbitrary, ω is distinguish-
able from {ω′ : ω′ < ω}. The proof that ω is distinguishable from {ω′ : ω′ > ω} is analogous.

We next prove necessity assuming Ω is finite. Consider any ω and let µ be uniformly
distributed over {ω′ : ω′ ≤ ω}. The distinguishability of ω from {ω′ : ω′ < ω} implies
that for every ε > 0 there is a positive measure of signals S such that ∀s ∈ S we have∑

ω′<ω f(s|ω′)

f(s|ω) < ε, and so f(s|ω′)
f(s|ω) < ε for every ω′ < ω. The argument establishing condition 2

of the lemma is analogous. Q.E.D.

Proof of Proposition 3. We prove that ω is distinguishable from its lower set. A symmetric
argument applies for ω being distinguishable its upper set. We first prove the following
claim:

Claim 2. If g is strictly subexponential, then for any s > 0 and ε ∈ (0, 1) there is s ≥ s + 1 such
that (i) supk≥1/s

g(s+k)
g(s)

< ε and (ii) sup0<k<1/s
g(s+k)
g(s)

< 2.

Proof of claim: Suppose not, to contradiction. Then for some s > 0 and ε ∈ (0, 1), every
s ≥ s + 1 has ks > 0 such that either (i) ks ≥ 1/s and g(s+ks)

g(s)
≥ ε, or (ii) 0 < ks < 1/s and

g(s+ks)
g(s)

≥ 2. Hence, for all s ≥ s + 1, either (i) g(s+ks)
g(s)

≥ ε ≥ εkss (because kss ≥ 1), or (ii)

36 The difficulty with extending these results to an uncountable state space is that once beliefs can put zero
probability on all individual states, a set U may not be distinguishable from a set V even if every state in U
is distinguishable from V . The results hold for an uncountable state space if we assume, for instance, that
whenever a state u is distinguishable from a set V , there is a neighborhood around u that is distinguishable
from V .
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g(s+ks)
g(s)

≥ 2 > εkss (because ε < 1). Moreover, there is an increasing sequence (si)
∞
i=1 such

that s1 = s+ 1 and for all i > 1, si = si−1 + ksi−1
. Note that for all i, si = (s+ 1) +

∑i−1
j=1 ksj .

First, suppose that
∑∞

i=1 ksi = ∞, so that limi→∞ si = ∞. It holds that for all si,
g(si)
g(s)

≥
ε(ksi−1+···+ks1 )s = ε(si−s−1)s, which in turn implies that

(si − s− 1)s log(ε) + log(g(s)) ≤ log(g(si)). (7)

However, since g is strictly subexponential, there is p > 1 such that for all large enough si,

log(g(si)) ≤ −(si)
p. (8)

The left-hand side of inequality (7) is linear in si while the right-hand side of inequality (8)
has exponent p > 1, so for large enough si these inequalities are in contradiction.

Next, suppose instead limi→∞ si < ∞. Then there is N such that for all i ≥ N , we
have ksi < 1/s and thus g(si+1)

g(si)
≥ 2. It follows that limi→∞

g(si)
g(sN )

≥ limi→∞ 2i−N = ∞, a
contradiction to the boundedness of g (being a density, g is bounded because it is uniformly
continuous). □

We use Claim 2 iteratively to construct a signal sequence (s∗i )
∞
i=1. Choose any s∗1 > 0,

and for i > 1, choose any s∗i ≥ s∗i−1 + 1 that satisfies (i) supk≥1/s∗i−1

g(s∗i+k)

g(s∗i )
< 1

i−1
and (ii)

sup0<k<1/s∗i−1

g(s∗i+k)

g(s∗i )
< 2. This construction is well-defined by Claim 2, with limi→∞ s∗i = ∞.

Take any µ ∈ ∆{ω′ ≤ ω} with µ(ω) > 0, and define si := s∗i + ω. Then, for all i,

∀ω′ < ω,
f(si|ω′)

f(si|ω)
=

g(si − ω′)

g(si − ω)
=

g(s∗i + (ω − ω′))

g(s∗i )
< 2,

and

∀ω′ ≤ ω − (1/s∗i−1),
f(si|ω′)

f(si|ω)
=

g(s∗i + (ω − ω′))

g(s∗i )
≤ sup

k≥1/s∗i−1

g(s∗i + k)

g(s∗i )
<

1

i− 1
,

and thus,

1− µ(ω|si)
µ(ω|si)

=

∑
ω′<ω µ(ω

′)f(si|ω′)

µ(ω)f(si|ω)
<

1

i− 1

∑
ω′≤ω−(1/s∗i−1)

µ(ω′)

µ(ω)
+ 2

∑
ω−(1/s∗i−1)<ω′<ω µ(ω

′)

µ(ω)
.

The last expression can be taken arbitrarily small because s∗i−1 → ∞ as i → ∞. Finally,
by uniform continuity of g there exists a small neighborhood of signals Si around si over
which the above inequality continues to hold. Therefore, 1 ∈ Suppµ(ω|·). Q.E.D.
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The next two lemmas will be used in the proof of Proposition 4. Lemma 6 strengthens
the standard result that (strict) MLRP implies that posteriors after any two signals are or-
dered by (strict) first-order stochastic dominance, FOSD hereafter. Lemma 7 shows that if
certain histories occur in some states but not in some other state, then the latter must be
distinguishable from the former.37

We say that signals s and s′ are equivalent if there is a constant c such that for all ω,
f(s|ω) = cf(s′|ω). That is, equivalent signals generate the same posteriors from any prior.

Lemma 6. Assume the signal structure f satisfies MLRP. For any full-support prior µ and non-
equivalent signals s < s′, the posterior µs′ strictly dominates the posterior µs in the sense of FOSD:
∀ω < supΩ, µs({ω′ ≤ ω}) > µs′({ω′ ≤ ω}).

Proof. Take any signals s < s′ and a full-support prior µ. As is well known, MLRP implies
that for all ω,

µs({ω′ ≤ ω}) ≥ µs′({ω′ ≤ ω}).

Suppose, towards contradiction, that s and s′ are not equivalent and there is ω̃ < supΩ

such that
µs({ω′ ≤ ω̃}) = µs′({ω′ ≤ ω̃}). (9)

As s and s′ are not equivalent, there is some ω such that µs({ω′ ≤ ω}) ̸= µs′({ω′ ≤ ω}),
which implies µs({ω′ ≤ ω}) > µs′({ω′ ≤ ω}).

We proceed assuming ω < ω̃; a symmetric argument applies if ω > ω̃. Equation 9 implies
µs′({ω < ω′ ≤ ω̃}) > µs({ω < ω′ ≤ ω̃}). By MLRP this means µs′({ω′ > ω̃}) > µs({ω′ > ω̃}):

µs′({ω′ > ω̃})
µs({ω′ > ω̃})

=

∫
{ω′>ω̃} f(s

′|ω) dµ(ω)∫
{ω′>ω̃} f(s|ω) dµ(ω)

∫
Ω
f(s|ω) dµ(ω)∫

Ω
f(s′|ω) dµ(ω)

≥ f(s′|ω̃)
f(s|ω̃)

∫
Ω
f(s|ω) dµ(ω)∫

Ω
f(s′|ω) dµ(ω)

≥

∫
{ω<ω′≤ω̃} f(s

′|ω) dµ(ω)∫
{ω<ω′≤ω̃} f(s|ω) dµ(ω)

∫
Ω
f(s|ω) dµ(ω)∫

Ω
f(s′|ω) dµ(ω)

=
µs′({ω < ω′ ≤ ω̃})
µs({ω < ω′ ≤ ω̃})

> 1,

which is a contradiction to Equation 9. Q.E.D.

Lemma 7. State ω∗ is distinguishable from the set of states V if there exists a strategy profile, a
history of actions h∞, and a finite sub-history hm such that P(h∞|hm, ω∗) = 0 and P(h∞|hm, v) is
bounded away from 0 across v ∈ V .

The idea is as follows. Conditional on the finite history hm, if the infinite history h∞ has
0 probability in ω∗ but positive probability in each v ∈ V , then there must be a sequence

37 Both lemmas hold even if the state space is uncountable, so we write integrals instead of summations.
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of “diverting” signals (i.e., that lead to histories other than h∞) that have arbitrarily higher
probability in ω∗ relative to all v ∈ V . Hence, ω∗ is distinguishable from V .

Proof. Suppose not. Then there exists µ ∈ ∆(V ∪ {ω∗}) with µ(ω∗) > 0 and a small ε > 0

such that for almost every signal s, the posterior µ(ω∗|s) ≤ 1− ε. By taking the conditional
distribution of µ on V , call it µ̃, and z := εµ(ω∗)

1−µ(ω∗)
∈ (0, 1), we obtain for almost every s,∫

V

f(s|ω) dµ̃(ω) ≥ zf(s|ω∗). (10)

Let P(a′|hn, ω) :=
∑

Bn
Qn(Bn)

∫
S
σ(a′|s, hBn)f(s|ω) ds be the probability that agent n

plays action a′ when the state is ω and the action history is hn. Let an be the action taken by
agent n along h∞ and A−n := A\{an}. It holds that:

∞∑
n=m

log(1− zP(A−n|hn, ω∗)) ≥
∞∑

n=m

log

(
1−

∫
V

P(A−n|hn, ω) dµ̃(ω)

)
(using (10))

=
∞∑

n=m

log

(∫
V

P(an|hn, ω) dµ̃(ω)

)

≥
∞∑

n=m

∫
V

log(P(an|hn, ω)) dµ̃(ω) (by Jensen’s inequality)

=

∫
V

∞∑
n=m

log(P(an|hn, ω)) dµ̃(ω) (by Tonelli’s theorem)

=

∫
V

log

(
∞∏

n=m

P(an|hn, ω)

)
dµ̃(ω)

> −∞ (since P(h∞|hm, ω) is bounded across ω ∈ V ). (11)

Below we will invoke the mathematical fact that for arbitrary sequences (Sn) and (Tn)

and constant c > 0, if limn→∞
Sn

Tn
= c > 0 and

∑
n Sn < ∞, then

∑
n Tn < ∞.38 Let

Sn = − log(1 − zP(A−n|hn, ω∗)) and Tn = − log(1 − P(A−n|hn, ω∗)). Note that limn→∞
Sn

Tn
=

z ∈ (0, 1) because limx→0
log(1−zx)
log(1−x)

= z and (11) implies limn→∞ P(A−n|hn, ω∗) = 0. The
aforementioned mathematical fact implies that

∞∑
n=m

log(1− P(A−n|hn, ω∗)) > −∞.

38 For any c′ < c there exists N such that for all n > N , Sn/Tn ≥ c′, or Tn ≤ Sn/c
′. So

∑
n Tn ≤

∑
n≤N Tn +∑

n>N Sn/c
′ < ∞.
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As P(an|hn, ω∗) = 1− P(A−n|hn, ω∗), it further follows that

∞∏
n=m

P(an|hn, ω∗) > 0,

which contradicts P(h∞|hm, ω∗) = 0. Q.E.D.

Proof of Proposition 4. Take any signal structure f that satisfies MLRP but fails DUB. We
begin by constructing an SCD preference u with useful properties, and then argue that
given f and u, there is inadequate learning for any full-support prior.

Since f violates DUB, take ω∗ that is not distinguishable from its lower set {ω : ω < ω∗}.
(If ω∗ is not distinguishable from its upper set, the argument is analogous.) This implies
ω∗ is not distinguishable from {ω : ω ≤ ω′} for some ω′ < ω∗. For, under MLRP, ω∗

being distinguishable from its lower set is equivalent to ω∗ being distinguishable from each
element of the lower set, which in turn is equivalent to ω∗ being distinguishable from every
{ω : ω ≤ ω′} with ω′ < ω∗ (see fn. 35).39

Take any pair of actions a′, a∗, and consider an SCD preference u such that u(a′, ·) =

0, u(a∗, ω) = −1 for ω < ω∗, u(a∗, ω) = 1 for ω ≥ ω∗, and all other actions are strictly
dominated by both a′ and a∗. Hence, an agent strictly prefers a′ to a∗ if and only if she
ascribes probability strictly greater than 1/2 to {ω : ω < ω∗}, and is indifferent if and only
if this probability is 1/2.

Fix any full-support prior µ0 and an equilibrium σ. It is without loss of generality to
assume that for any history h, σ(a′|s, h) is decreasing (weakly) in s. To see that, note
from Lemma 6 that for non-equivalent signals s < s′, σ(a′|s, h) > σ(a′|s′, h), with either
σ(a′|s, h) = 1 or σ(a′|s′, h) = 0. Thus, the set of signals after which an agent randomizes
must all be equivalent to each other. Since the agent is indifferent when randomizing, we
can assume a constant randomization probability for all those signals without changing
the public belief that is generated from a′ being chosen at h.

Now assume, towards contradiction, that there is adequate learning under µ0 and σ.
Therefore, the limit belief will be almost surely supported on either {ω : ω < ω∗} or {ω :

ω ≥ ω∗}. So there is an infinite history with a herd on a′, h∞ ≡ (a1, . . . , am−1︸ ︷︷ ︸
each ai∈{a′,a∗}

, a′, a′, . . .)

that occurs with positive probability in state ω′. Given a finite sub-history hn of h∞, let
P(a′|hn, ω) ≡

∫
S
σ(a′|s, hn)f(s|ω) ds be the probability that agent n plays action a′ when the

39 In this argument, MLRP is only used to rule out the case in which ω∗ is distinguishable from {ω : ω ≤ ω′}
for all ω′ < ω∗, but ω∗ is not distinguishable from {ω : ω < ω∗}. This property can also be guaranteed by
other conditions, e.g., {ω : ω < ω∗} has a largest element.
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state is ω. The probability of playing a′ is decreasing in ω because σ(a′|s, hn) is decreasing
in s and f satisfies MLRP. In particular,

∀ω ≤ ω′ : P(a′|hn, ω) ≥ P(a′|hn, ω′) > 0,

and since h∞ has positive probability at ω′, it follows that

∀ω ≤ ω′ :
∞∏

n=m

P(a′|hn, ω) ≥
∞∏

n=m

P(a′|hn, ω′) > 0. (12)

This means P(h∞|hm, ω) is uniformly bounded away from 0 for {ω : ω ≤ ω′}. On the
other hand, since there is adequate learning and hm will occur with positive probability
conditional on ω∗ by absolute continuity, P(h∞|hm, ω∗) = 0. So Lemma 7 implies ω∗ is
distinguishable from {ω : ω ≤ ω′}, which is a contradiction. Q.E.D.

D. Overarching Probability Space and Beliefs

This appendix elaborates on the formal objects corresponding to an agent’s belief and
the distribution of her beliefs. To define those, we must first define a suitable probability
space.

Overarching probability space. Our probability space is constructed from several ele-
ments:

1. The Markov kernel F and probability space (Ω,B(Ω), µ0) jointly define the probability
distribution of states and signals;

2. The network structure Q ≡ (Qn)n∈N is independent of everything else. All Qn’s
are mutually independent, respectively supported on {1, . . . , n− 1}, with the sigma-
algebra being all subsets;

3. Each agent n’s strategy σn(·|aBn , Bn) is a Markov kernel from (A|Bn|,A|Bn|) to (A,A)

for each realization of neighborhood Bn.

Taken together, for the first n agents, we can define a probability space that describes
the joint distribution of their neighborhoods, signals, actions, and the states. Since all these
elements lie in standard Borel spaces, the Kolmogorov Extension Theorem guarantees ex-
istence of an overarching probability space (H∞,H∞,P) that is consistent with each finite
probability space (i.e., up to each agent n).
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Beliefs. Given this overarching probability space, the interim belief (i.e., the belief after
observing her neighbors and their actions, but before observing her private signal) of agent
n is P(·|aBn , Bn), and the posterior belief of agent n is P(·|aBn , Bn, sn). These beliefs are well
defined because, as a countable product of standard Borel spaces, the overarching probabil-
ity space is a standard Borel space, and hence there exist regular conditional probabilities
(Durrett, 2019, Theorem 4.1.17).

Distribution of beliefs. The interim belief of agent n, µn, as a regular conditional prob-
ability, can be regarded as a measurable function from (H∞,H∞,P) to (∆Ω,B(∆Ω)); see
Crauel (2002, Remark 3.20). As Ω is a Polish space, so is ∆Ω. We define agent n’s distribu-
tion of (interim) beliefs, φn, as the push-forward measure of µn. Hence, φn ∈ ∆∆Ω since it
is by definition a Borel probability measure on ∆Ω.
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