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1. Introduction

A prevalent view is that a decision maker (DM) benefits from consulting more experts,
particularly when these experts have opposing interests in the DM’s action. This belief
underlies the design of many decision-making processes: judiciaries listen to both defen-
dants and plaintiffs; Congress hears from proponents and opponents of a bill; and the
U.S. Food and Drug Administration (FDA) relies on evidence furnished by companies
that seek approval from the FDA and on independent investigators. These and other in-
stitutions strive to improve the accuracy of their decisions by soliciting information from
multiple, often interested, parties.

Starting with Milgrom and Roberts (1986), the literature on persuasion or voluntary-
disclosure games has formally shown that in many—though not all—settings, adversarial
procedures do facilitate information revelation from interested agents. The literature’s
focus has largely been on the revelation of exogenously given information.1 In practice,
however, information acquisition is endogenous with significant costs: prosecutors juggle
many cases and optimize how much time to spend on searching for evidence in each case;
lobby groups decide how many and which consultants to hire; and drug companies face
an array of costly clinical trials that they can choose among. Untrained intuition does not
illuminate how an interested agent’s incentives to acquire information are affected by the
presence of an opposed agent. One may reckon that the incentive to acquire information
increases because more favorable evidence is needed to counter the other agent, or one
might conjecture the incentive decreases because the DM becomes less responsive to any
one agent’s information.

This article endogenizes information acquisition in a multiple-expert disclosure game;
in particular, we study the impact of adding experts. In our model, detailed in Section 2,
experts first choose how much information to acquire and then what information to dis-
close. Following Grossman (1981) and Milgrom (1981), we view information as hard evi-
dence that can be concealed but not falsified. We assume that experts simply care about
the DM’s belief, independently of the true “state of the world.” The DM, on the other
hand, benefits from information about the state. We depart from much of the disclo-
sure literature (e.g., Milgrom and Roberts, 1986; Shin, 1998; Bhattacharya and Mukherjee,
2013) by assuming that informed experts do not necessarily receive the same information;
in our baseline model, they receive signals that are independent conditional on the state.

In this setting, experts’ disclosure behavior takes the form of “sanitization strategies”

1 We discuss the literature in more detail subsequently, but a notable exception is Dewatripont and Tirole
(1999). They allow the DM to commit to outcome-based payments for the agents; we are instead interested
in sequentially rational decision making. Moreover, the bulk of their analysis concerns incentivizing agents
who are not intrinsically interested in the DM’s action.
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(Shin, 1994): each expert simply conceals information that is unfavorable to his own cause
while revealing favorable information.2 Our main result, developed in Section 3, is that
adding more interested experts (either like-minded or opposed) can harm the DM be-
cause it reduces each expert’s incentive to invest in costly information—even if experts’
disclosure behavior remains unaffected by the number of other experts. In other words,
the DM must trade off individual quality with quantity; fewer but better-informed ex-
perts can be preferable to a larger number of less-informed experts. More broadly, we
establish that experts’ information acquisition decisions are strategic substitutes when
experts have linear preferences over the DM’s expectation of the state of the world. This
linearity assumption plays a key role in our analysis.

The logic underlying our findings is as follows. An expert benefits from acquiring
information only when he obtains evidence that he will disclose (i.e., favorable informa-
tion). In such an event, having evidence allows him to raise the DM’s belief from the skep-
tical belief associated with non-disclosure. When there are multiple experts, the DM’s
belief is influenced by all their messages (either their evidence or claim to ignorance).
Crucially, from any one expert’s point of view, whenever he discloses his information the
expected belief of the DM is independent of any other expert’s equilibrium behavior; this
is a consequence of the iterated expectations property of Bayesian updating. However,
an expert’s expectation of the DM’s belief conditional on favorable information that is
not disclosed does depend on other experts’ equilibrium behavior. The reason is that the
DM’s skeptical non-disclosure belief is “wrong” from the point of view of the expert with
favorable information; as established by Kartik, Lee, and Suen (2015), the more informa-
tive other experts are in the sense of Blackwell (1951, 1953), the more their messages will,
on average, correct this belief.3 Thus, any expert has less to lose by not acquiring (and
disclosing) favorable information in the presence of other experts, which in turn implies
that his incentive to invest in information is diminished when there are more experts.

The same logic implies that information acquisition efforts are strategic substitutes
across experts. From the perspective of any one expert, another expert can be viewed
as an endogenous experiment, the informativeness of which depends on the informa-
tion acquisition (and disclosure behavior) of that expert. The more informative such
experiment—which reflects greater effort from this other expert—the more the above
logic applies, which leads to lower effort from the first expert. In a nutshell, then, our
contribution can be understood as deducing a form of free riding. We emphasize that it

2 The classic unraveling phenomenon does not occur because there is positive probability that an expert
does not have any hard information, as in Dye (1985); upon receiving unfavorable information, an expert
can feign ignorance.

3 Kartik et al. (2015) do not study endogenous information acquisition. Furthermore, Section 4 of the
current article considers a setting in which Kartik et al.’s (2015) general result cannot be applied because
informed experts’ signals are not conditionally independent.
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is not obvious that this effect should emerge; we provide counter-examples to show how
changes in our assumptions would alter the conclusions. In particular, the force driving
our results is not simply that each expert has less influence or impact in the presence of
other experts. It is noteworthy that the strategic substitutes property turns out to not de-
pend on the direction of experts’ biases; it holds even when there are only two experts
with opposed interests. In this case each expert only reveals evidence that hurts his op-
ponent’s cause, which, as previously noted, may bring to mind a complementarity in
information acquisition.

Endogenous information acquisition is key to our results. In the simple binary sig-
nal setup we initially introduce (but later generalize in Section 4), each expert’s disclo-
sure behavior is trivial—reveal the favorable signal and conceal the unfavorable signal—
irrespective of the DM’s conjecture about the expert’s effort or the presence of other ex-
perts. This feature allows us to isolate the interaction of information acquisition efforts.4

It implies that the DM would obviously be better off with more experts if each expert’s
information endowment were exogenous.

Our results have implications for a number of organizational and institutional mat-
ters. A DM may prefer smaller panels of interested experts to larger ones. Citizens may
be worse off when they have access to more news media in terms of their benefit from the
overall information produced (setting aside issues of price competition and other market
factors). A court may not benefit from hearing more experts’ testimonies because each ex-
pert’s incentive to carefully investigate the issues may be diminished.5 Indeed, because
we establish that an expert’s incentive to acquire information is reduced by any additional
information the DM will receive—so long as the expert’s own preferences are linear over
the DM’s belief—a DM may be made worse off by the addition of unbiased experts or by
the possibility of collecting information herself. Thus, institutions like the FDA or courts
may benefit from committing to not use self-appointed neutral experts or, more generally,
to tying their hands to only use information provided by the interested parties. On an-
other note, the ever-improving ability of investors to engage in their own data collection
about firm valuations may prove self-defeating because it could lead to less information
being acquired and then provided by firm managers in their corporate disclosures.

4 The interplay among exogenously informed agents of what to disclose and what to conceal is the focus
of, among others, Okuno-Fujiwara, Postlewaite, and Suzumura (1990), Lipman and Seppi (1995), Bourjade
and Jullien (2011), Bhattacharya, Goltsman, and Mukherjee (2016), and Che and Severinov (2015).

5 To our knowledge, experts’ incentives to acquire information have not received much attention in legal
scholars’ analyses of how much testimony to allow in judiciaries. Although the Federal Rules of Civil
Procedure 16 authorizes each judge to limit the number of expert witnesses, the rationale given is different.
The Federal Judicial Center states, “The goal in setting limits is to ensure that each party has sufficient time
to make his or her case, but without redundancy. The interest of each party in presenting everything that
might influence the jury must be balanced with the interests of other parties who are waiting for their trial
dates.” (http://www.fjc.gov/federal/courts.nsf)
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� Further literature connections.

Beyond the disclosure literature, this article contributes to the study of incentives when
monetary transfers cannot be used. This assumption seems appropriate for many situa-
tions involving persuasion by experts, including the examples mentioned at the article’s
outset.6 On the other hand, there are contexts in which it would be natural for a DM to in-
centivize information acquisition using monetary transfers; see, for example, Demski and
Sappington (1987), Dewatripont and Tirole (1999), and Köhler (2004). Also notable is that
we do not allow the DM to commit ex ante to taking ex-post suboptimal decisions. There
are various articles, too many to mention here, that study how commitment can be used
to induce information acquisition. Note that simple delegation (Aghion and Tirole, 1997)
would not be valuable in our setting because experts’ preferences are state independent.

As already touched on, and elaborated in Section 4, the strategic substitutes property
we uncover in experts’ efforts can be viewed as a form of free riding, but it turns on how
each expert expects additional information to affect the DM’s belief should the expert
not disclose favorable information. Dewatripont and Tirole (2005) study communication
between one expert and a DM, where both parties exert costly effort to improve the prob-
ability of successful communcation. They assume a direct effort complementarity in the
production function, leading to a strategic complementarity in efforts. Persson (2013)
introduces multiple experts into this framework. She shows that the pairwise comple-
mentarity between each expert and the DM can lead to a form of strategic substitutes in
effort across experts, because the DM incurs an effort cost in listening to each expert that
is not separable across experts. Less narrowly related to our article, Holmström (1982)
studies incentive schemes under transferable utility to overcome a free-rider problem in
team production where only joint output can be observed.

Shin (1998) argues in favor of adversarial procedures (where two interested but op-
posed experts present evidence to a DM) over inquisitorial ones (where the DM receives
one neural expert’s evidence). His argument owes to an endogenous convexity in the
DM’s payoff that emerges from allocating the “the burden of proof,” i.e., rational skep-
ticism of an expert’s claim to ignorance. He models experts as receiving perfectly cor-
related signals conditional on being informed, and he treats information acquisition as
exogenous. We find that when these two assumptions are altered according to our spec-
ification, the DM may—but need not always—prefer listening to just one biased expert
over the adversarial procedure. Recently, Emons and Fluet (2016) have shown that Shin’s
(1998) conclusion can also be altered when it is costly for experts to disclose their exoge-

6 Naturally, one can interpret the experts’ persuasion motives as themselves stemming from (exogenous
and unmodeled) monetary rewards, e.g., a plaintiff’s attorney may receive some fraction of the damage
award received by the plaintiff.
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nously given and perfectly correlated information. Bhattacharya and Mukherjee (2013)
show that with costless disclosure, the DM may prefer a pair of like-minded experts to a
pair of opposed experts.

As our experts have linear preferences over the DM’s belief, it is precisely their abil-
ity to conceal evidence that motivates information acquisition; if all evidence had to be
disclosed, the martingale property of Bayesian updating implies that experts would gain
nothing by acquiring information. Voluntary disclosure induces an endogenous convex-
ity in experts’ value functions over information by allowing them to conceal unfavorable
evidence. Although our focus is not on mandatory versus voluntary disclosure, ours is
a setting in which mandatory disclosure rules would harm the DM. Analogous obser-
vations have been made in single-expert settings by Matthews and Postlewaite (1985),
Shavell (1994), and Dahm, Gonzales, and Porteiro (2009). By contrast, Gentzkow and
Kamenica (forthcoming) argue that under certain assumptions, disclosure requirements
have no effect on equilibrium outcomes no matter the number of experts. Our differ-
ing conclusions owe to different assumptions: Gentzkow and Kamenica (forthcoming)
require experts to have access to an unrestricted class of information acquisition tech-
nologies, whereas we consider a parameterized family; they also require overt informa-
tion acquisition (i.e., the DM observes what information structure each expert chooses),
whereas we study the covert case.7

2. Model

There is an unknown state of the world, ω ∈ {0, 1}, with prior probability π ∈ (0, 1) that
ω = 1. A Bayesian decision maker (DM, hereafter) wants to learn the true state. Although
she cannot acquire information directly, she can rely on advice from experts. There are
two Bayesian experts, whom we also refer to as senders. Each sender can potentially
obtain hard information or evidence through costly investigation. Sender i (i = 1, 2)
chooses an investigation level or effort, ei ∈ [0, 1]. He obtains hard evidence with prob-
ability ei, and obtains no evidence with probability 1− ei. More effort thus generates
success-enhancing improvements of information in the sense of Green and Stokey (1981).
Sender i’s cost of effort is given by a strictly increasing, strictly convex, and differentiable
function Ci(ei), with “Inada conditions” C′i(0) = 0 and C′i(1) ≥ 1, where a prime denotes

7 See Kamenica and Gentzkow (2011) for a general approach to costless and overt information acqui-
sition by a single agent with flexible information structures, and Gentzkow and Kamenica (2015a,b) for
a related approach with multiple agents. The latter articles establish that under their assumptions, more
experts cannot provide less aggregate information in the sense of Blackwell (1951). Although their mod-
els are not directly comparable to ours, our results on information acquisition being strategic substitutes
are consistent with the conclusions of Gentzkow and Kamenica (2015a,b), because strategic substitutability
implies that outcomes across varying numbers of experts are not generally ranked in the Blackwell partial
order. When the outcome with more experts is not more Blackwell-informative, the DM can be worse off
with more experts for some preference specifications.
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the derivative.8 We sometimes write MCi(ei) for C′i(ei).

More specifically, the outcome of Sender i’s investigation is represented by a signal
si ∈ {g, b, n}. The “null” signal n, which is realized with probability 1− ei, means the
sender’s investigation is unsuccessful and he obtains no evidence. If Sender i’s investiga-
tion is successful, he obtains a verifiable signal, either g or b. A successful investigation’s
precision is given by pi ∈ (1/2, 1), so that

Pr[si = g | ei, ω = 1] = Pr[si = b | ei, ω = 0] = ei pi,

Pr[si = b | ei, ω = 1] = Pr[si = g | ei, ω = 0] = ei(1− pi),

Pr[si = n | ei, ω] = 1− ei.

Thus, although a successful investigation provides information about the state, it is not
definitive. Unlike much of the literature on multi-sender communication games (e.g.,
in the context of hard information, Milgrom and Roberts, 1986; Shin, 1998; Bhattacharya
and Mukherjee, 2013), we do not assume that senders receive the same information condi-
tional on a successful investigation. Instead, we take s1 and s2 to be independently drawn
conditional on the state. Consequently, given positive efforts by each sender and absent
strategic issues, the two senders jointly generate strictly more information about the state
in the sense of Blackwell (1951) than any one sender by himself.

Neither a sender’s effort ei nor his signal si is directly observable by the DM or the
other sender. Instead, after observing his own signal, each sender chooses a message
mi ∈ {G, B, N} to send to the DM. Sending message G (resp., B) means disclosing the
verifiable evidence g (resp., b); it is not possible to send message G (resp., B) when the
signal is not g (resp., b). Sending message N means showing no evidence; this message
can be sent no matter the outcome of a sender’s investigation. In other words, a sender
cannot prove that his investigation was unsuccessful. If a sender’s signal is in {g, b} but
he chooses to send message N, we say that he is hiding or concealing evidence.

Both senders are biased: they wish to manipulate the DM’s belief systematically re-
gardless of the state. Specifically, letting β ∈ [0, 1] denote the DM’s posterior belief on the
state (hereafter, all beliefs should be viewed as probabilities on state ω = 1), we assume
that Sender 1’s payoff is β−C1(e1) and Sender 2’s payoff is 1− β−C2(e2). Thus, Sender 1
is upward biased in the sense that he wants to induce high beliefs in the DM, and Sender
2 is downward biased. It follows that from Sender 1’s perspective, signal g is “good” and
signal b is “bad,” and vice-versa for Sender 2. The linearity of senders’ preferences in the
DM’s beliefs plays a central role in our analysis, a point we return to in Section 5. Linear-
ity is appropriate for some applications (e.g., when senders are risk neutral over the DM’s

8 Subscripts never denote partial derivatives in this article.
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decision, which equals her expectation of the state); it can also be viewed as a first-order
approximation of any smooth sender utility function.

To summarize, the timing is as follows: senders simultaneously choose their covert
effort levels e1 and e2; signals s1 and s2 are privately observed; senders simultaneously
send messages m1 and m2 to the DM; the DM updates her belief; and payoffs are then
realized. The senders are expected utility maximizers. Our solution concept is Perfect
Bayesian equilibrium (Fudenberg and Tirole, 1991), which we refer to as just equilibrium
hereafter; the DM is a passive player who simply forms beliefs.9

We have deliberately kept the model simple in order to convey our main points and
their intuitions transparently. A number of generalizations are possible: Section 4 consid-
ers uncertainty about senders’ preferences, many experts, and more general signal struc-
tures (both many signals and correlation conditional on the state). Our results can also be
extended to many states of the world and to other information acquisition technologies,
e.g., “precision-enhancing” effort.

3. Main Results

� Efforts are strategic substitutes.

As the DM does not observe Sender i’s effort, her posterior belief depends instead on
her conjecture about i’s effort. As we will show later, each sender’s objective function
is strictly concave in his effort for any, possibly non-degenerate, effort conjecture of the
DM. There will thus not be any randomization over effort in equilibrium, and without
loss our analysis need not consider mixed strategies over effort. Accordingly, let êi denote
a deterministic conjecture of the DM about i’s effort. We focus on êi ∈ (0, 1) because
our Inada conditions on the cost functions ensure that, in equilibrium, a sender will exert
interior effort. Anticipating the equilibrium analysis, we will also treat êi as the other
sender’s (Sender −i’s) conjecture about Sender i’s effort when relevant.

To minimize repetition, we will focus much of the exposition on Sender 1’s incentives
and behavior; the analogs for Sender 2 are straightforward. We adopt the following no-
tation regarding beliefs about the state. Let βs1 (s1 = g, b, n) denote the belief on the state

9 Equilibrium requires that: (i) the DM’s beliefs be derived from Bayes rule on path, and off path put
probability 1 on si = g (resp., b) if mi = G (resp., B); and (ii) each sender chooses an optimal effort ei and
messaging rule mi(si) given the other sender’s strategy and the DM’s updating rule. We have not explicitly
specified the DM as taking an action with some state-dependent payoff function in order to avoid details
that are inessential to our main points. The specification matters when it comes to the DM’s welfare, which
we address subsequently. We note now that if the DM takes action a = β (because she has a loss function
−(a − ω)2 and is an expected utility maximizer, say) then our model is equivalent to one in which each
sender’s payoff is linear in the DM’s action, with one sender seeking to increase the DM’s action and the
other seeking to decrease it.
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when signal s1 is observed. Let βm1 (m1 = G, B, N) denote the “interim belief ” induced
in the DM by the message m1 from Sender 1.10 Let βm1m2 denote DM’s posterior after
receiving messages m1 and m2 from the two senders. When Sender 1 sends his message
m1, he holds some beliefs about what Sender 2’s message m2 will be; this belief depends
on Sender 1’s signal s1. Let βm1|s1

represent Sender 1’s expectation of the DM’s posterior
belief βm1m2 given that Sender 1’s signal is s1. That is,

βm1|s1
≡ E[βm1m2 | ρ = βs1 ],

where the expectation is taken over realizations of m2, using ρ as Sender 1’s interim belief
about the state.11 Observe that βm1|s1

is the expected payoff to Sender 1 from reporting
m1 when his signal is s1.

As Sender 1 wants to maximize the DM’s belief, and ê1 < 1, Sender 1 never finds it
optimal to reveal bad news b. Due to the binary signal assumption, his reporting strategy
is simple: report G when he observes g and report N otherwise.12 Analogously, as Sender
2 wants to minimize the DM’s belief, his reporting strategy is to report B if he obtains
evidence b and report N otherwise. Following Shin (1994), we refer to such reporting
strategies as sanitization strategies.

Given a sanitization strategy for Sender 1, Bayes rule implies

βg = βG =
πp1

πp1 + (1− π)(1− p1)
,

βb = βB =
π(1− p1)

π(1− p1) + (1− π)p1
,

βn = π,

βN(ê1) =
π (1− ê1p1)

π (1− ê1p1) + (1− π) (1− ê1(1− p1))
,

where we use the facts that messages G and B verify signals g and b respectively, and N
is an on-path message. The posterior following message N depends on the DM’s conjec-
ture about Sender 1’s effort because the DM must weigh the probability that the sender’s
investigation was successful but turned up evidence b versus the probability that the in-

10 As the senders’ messages are independent conditional on the state, one can view the DM as first updat-
ing about the state only from Sender 1’s message, and then using this belief as a prior on the state to update
only from Sender 2’s message.

11 Explicitly: βm1|s1
= ∑

m2∈{B,G,N}
(βs1Pr[m2 | ω = 1] + (1− βs1)Pr[m2 | ω = 0]) βm1m2 .

12 We are using here the facts that Sender 1’s choice of message does not affect Sender 2’s, and for any
message from Sender 2, the DM’s posterior belief is higher when Sender 1 induces a higher interim belief
in the DM.
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vestigation was unsuccessful. We refer to βN as the DM’s interim non-disclosure belief. As
is intuitive, this belief is strictly decreasing in ê1: a higher ê1 makes it more likely that
Sender 1 is concealing unfavorable evidence when he sends m1 = N.

It follows that for any ê1 ∈ (0, 1),

βb < βN(ê1) < βn. (1)

The key to our analysis is that Sender 1’s strategic pooling of signals b and n induces
a difference between the DM’s non-disclosure belief and the private belief of Sender 1,
captured by the inequalities in (1). This wedge between their beliefs means that Sender
1 expects Sender 2’s message to alter, on average, the DM’s posterior following m1 = N.
There would be no such expectation if the DM’s non-disclosure belief were to coincide
with the sender’s private belief, as each player’s own belief is a martingale.

Crucially, the direction in which Sender 1 expects Sender 2’s message to alter the DM’s
non-disclosure belief depends on whether βs1 < βN or βs1 > βN. To see the intuition,
suppose first s1 = n. As seen in (1), the DM’s non-disclosure belief following m1 = N
is more pessimistic than Sender 1’s private belief. The message from the second sender
provides additional information for the DM. If this message were uninformative about
the state, the DM’s belief would not change from βN, and so βN|n = βN. If, on the other
hand, Sender 2’s message were fully informative about the state, then the DM’s posterior
would be either 1 (when ω = 1) or 0 (when ω = 0). As Sender 1 ascribes probability βn to
state ω = 1, it follows that βN|n = βn. Analogously, considering s1 = b, we would have
βN|b = βN should Sender 2’s message be uninformative and βN|b = βb should Sender
2’s message be fully informative. In sum, Sender 1 would expect that the DM’s posterior
would, on average, move closer to his own prior (i.e., move from βN to either βn or βb)
should Sender 2’s message change from uninformative to fully informative.

Sender 2’s message is actually neither uninformative (as he is using a sanitization
strategy with ê2 > 0) nor fully informative about the state (as ê2 < 1). However, Kartik
et al.’s (2015) “information validates the prior” theorem generalizes the aforementioned
monotonicity to any two experiments that are comparable in the sense of Blackwell (1951).
Intuitively, it says that individuals with different beliefs expect that more information
will, on average, bring others’ posterior beliefs closer to one’s own prior belief. In the
present context, we can apply their theorem to deduce the following.

Lemma 1. An increase in ê2 strictly increases βN|n and βN|g but strictly reduces βN|b; it has no
effect on βG|g = βG = βg or βB|b = βB = βb. Furthermore, for any ê2 ∈ (0, 1), βG > βN|g >

βN|n > βN > βN|b > βb.

Proof. Assume sanitization strategies. An increase in ê2 makes the message from Sender
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2 a more informative experiment for the DM in the sense of Blackwell (1951). To confirm
this, let m′2 be the message sent by Sender 2 when his effort is conjectured to be ê′2 > ê2.
The original message m2 can be generated by a garbling of m′2:

If m′2 = N, then m2 = N;

If m′2 = B, then m2 =

B with probability ê2/ê′2,

N with probability 1− ê2/ê′2.

By Theorem 1 of Kartik et al. (2015), a more informative experiment raises E[βNm2 | ρ] if
the private belief ρ of Sender 1 is greater than the interim belief βN that he induces in the
DM, and lowers E[βNm2 | ρ] if ρ is less than βN. Using βg > βn and (1), it follows that an
increase in ê2 increases βN|n and βN|g but it reduces βN|b. That these changes hold strictly
can be directly verified.

The second part of the lemma follows from the law of iterated expectations, viz. that

βG|g = E[βGm2 | ρ = βg] = E[βGm2 | ρ = βG] = βG = βg,

which is independent of ê2. Similarly, βB|b = βB = βb does not depend on ê2.

Finally, the last part of the lemma follows from the previous parts when combined
with the following observations: (i) βN|s1

= βN for all s1 if ê2 = 0, because in that case
message m2 would be uninformative; (ii) βN|s1

is strictly increasing in βs1 (see fn. 11); and
(iii) βN|s1

= βs1 for any s1 if and only if Sender 2’s message were fully informative.

Consider now Sender 1’s incentive to acquire information. Given his sanitization strat-
egy, there is no gain from having acquired information when his signal turns out to be n
or b. He only gains when his signal is g, in which event acquiring evidence allows him to
report message G with expected payoff βG rather than being constrained to report mes-
sage N with expected payoff βN|g < βG had he not acquired evidence. The probability of
obtaining signal g with effort e1 is e1Pr1[g], where

Pr1[g] ≡ πp1 + (1− π)(1− p1).

It follows that the marginal benefit of increasing effort is independent of actual effort, and
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instead depends only on the DM’s conjecture ê1. Specifically, the marginal benefit is 13

MB1(ê1, ê2) = Pr1[g]
(

βG − βN|g(ê1, ê2)
)

. (2)

Note that βN|g is a function of the conjecture of both senders’ efforts: Sender 1’s effort
affects the interim non-disclosure belief βN, and Sender 2’s effort affects both the posterior
βNN and the distribution of m2.

Lemma 1 implies that efforts are strategic substitutes: MB1 is strictly decreasing in ê2 be-
cause ∂βN|g/∂ê2 > 0. Intuitively, more (conjectured) effort from Sender 2 reduces Sender
1’s gain from obtaining the favorable signal g relative to not obtaining it, because, on av-
erage conditional on this signal, Sender 1 expects Sender 2’s message to induce a higher
belief in the DM following m1 = N.

Lemma 2. The marginal benefit of effort for Sender 1, MB1(ê1, ê2), is strictly decreasing in ê2.

Proof. Immediate from Lemma 1 and Equation 2.

For any given conjectures ê1 and ê2, Sender 1’s payoff is strictly concave in his choice
of e1 because the marginal benefit is independent of his effort and the marginal cost is
strictly increasing. By the Inada conditions on effort costs, the optimal choice e1 is interior
and satisfies the first order condition MB1(ê1, ê2) = MC1(e1). Furthermore, equilibrium
requires e1 = ê1. We write eBR

1 (ê2) for the set of such consistent “best responses,” i.e.,

ê1 ∈ eBR
1 (ê2) ⇐⇒ MB1(ê1, ê2) = MC1(ê1).

Despite the sender’s objective being concave in his effort, eBR
1 (·) is generally a correspon-

dence. The reason is that, holding fixed ê2, there is a complementarity between the DM’s
conjecture ê1 and Sender 1’s optimal choice e1: when the DM conjectures more effort, the
non-disclosure belief βN becomes less favorable to Sender 1, which induces him to exert
more effort. Formally, MB1(ê1, ê2) is independent of e1 but is strictly increasing in ê1.14

13 The following alternative derivation may be useful to some readers. Given conjectures ê1 and ê2, Sender
1’s gross benefit (ignoring effort cost) from choosing effort e1 is

e1

(
Pr1[g]βG + (1− Pr1[g])βN|b(ê1, ê2)

)
+ (1− e1)βN|n(ê1, ê2).

Differentiating with respect to e1 yields the marginal benefit

MB1(ê1, ê2) = Pr1[g]βG + (1− Pr1[g])βN|b(ê1, ê2)− βN|n(ê1, ê2).

Substituting βN|n(·) = Pr1[g]βN|g(·) + (1− Pr1[g])βN|b(·) and simplifying yields Equation 2.
14 Example 1 illustrates how this feature can lead to multiple equilibria even in a single-sender setting.
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So far we have focussed on Sender 1, even in the statements of Lemma 1 and Lemma 2.
Plainly, the points hold just as well for Sender 2, mutatis mutandis. In particular, we define
the correspondence eBR

2 (ê1) by

ê2 ∈ eBR
2 (ê2) ⇐⇒ MB2(ê2, ê1) = MC2(ê2),

where MB2(ê2, ê1) is defined analogously to Equation 2.

A pair of effort levels (e∗1 , e∗2) characterizes an equilibrium of the two-sender game if
and only if it is a fixed point of (eBR

1 (·), eBR
2 (·)). As senders’ efforts are strategic substitutes

(Lemma 2), each Sender i’s incentive to investigate is highest when ê−i = 0. But a sender
facing a competing sender who is believed to acquire evidence with zero probability is in
the same shoes as one who faces no competitor.

Proposition 1. In any equilibrium, both players report using sanitization strategies and choose
deterministic efforts. For any equilibrium effort level e∗i (i = 1, 2), there is an equilibrium of the
game with only Sender i in which his effort is strictly larger than e∗i .

Proof. That players use sanitization strategies and pure effort choices has been discussed.
We prove the rest of the proposition for Sender 1; the argument is analogous for Sender
2. Any equilibrium (e∗1 , e∗2) must have e∗2 > 0 by the Inada conditions on effort costs.
Hence, MB1(e∗1 , 0) > MB1(e∗1 , e∗2) = MC1(e∗1), where the inequality is by Lemma 2 and
the equality by the first-order condition. As MB1(e1, 0)−MC1(e1) is continuous in e1 and
negative when e1 = 1, the intermediate value theorem implies that there is some e1 > e∗1
such that MB1(e1, 0) = MC1(e1); as the second-order condition is satisfied, this e1 is an
equilibrium effort level of the one-sender game.

The logic underlying Proposition 1, and, more broadly, Lemma 2 can be viewed as un-
covering a form of free riding. But it bears emphasis that the logic is not simply that each
sender reduces the other’s impact or influence on the DM. Such reasoning is murky be-
cause the senders have opposed interests; moreover, we explain in Section 4 why adding
a second sender does not necessarily reduce a sender’s impact or influence. Rather, our
key insight is twofold: (i) a sender’s gain from acquiring information is tied to the the
extent of divergence between the belief he expects to generate (on average) by disclos-
ing favorable information versus not disclosing it, as encapsulated in Equation 2; and (ii)
this divergence is reduced when the DM gets more information from another source, as
shown in Lemma 1.

Some intuitive comparative statics follow from the fact that efforts are strategic sub-
stitutes. We say that Sender i’s marginal cost increases if MCi(ei) strictly increases point-
wise. As there can be multiple equilibria, we follow a common practice of focussing on
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the two extremal equilibria: one with the highest value of e∗1 and the lowest value of e∗2 ,
and the other with the lowest e∗1 and the highest e∗2 .

Proposition 2. In an extremal equilibrium, an increase in Sender i’s (i = 1, 2) marginal cost
strictly lowers his effort and strictly raises Sender −i’s effort.

Proof. For i = 1, 2, let ci be a parameter such that MCi(ei; ci) increases pointwise in ci and

hi(e−i; ci) ≡ inf{ei | MBi(ei, e−i)−MCi(ei; ci) ≤ 0},
hi(e−i; ci) ≡ sup{ei | MBi(ei, e−i)−MCi(ei; ci) ≥ 0}.

Because MBi(ei, e−i) decreases in e−i (Lemma 2), hi(e−i) also decreases in e−i. Likewise,
hi(e−i) is decreasing in e−i. By flipping the sign of e2, we can apply Theorem 3 of Milgrom
and Roberts (1994) to (h1, h2) to find the smallest fixed point of (h1, h2), which gives the
equilibrium with least effort for Sender 1 and most effort for Sender 2. Because a higher
c1 lowers h1, and because e∗1 and e∗2 are interior by the Inada conditions on the effort costs,
a higher c1 strictly lowers e∗1 and −e∗2 in this extremal equilibrium. Similarly, the largest
fixed point of (h1, h2) gives the equilibrium that has the most effort for Sender 1 and least
for Sender 2. Because a higher c1 lowers h1, a higher c1 strictly lowers e∗1 and −e∗2 in this
extremal equilibrium as well. The logic is analogous for an increase in c2.

Although Proposition 2 is stated for extremal equilibria, its conclusion is also valid for
a non-extremal equilibrium that is stable in the sense of best-response dynamics. We omit
details as this is a common theme in games with strategic substitutes.

� Senders’ welfare.

By the law of iterated expectations, the ex-ante expectation of the DM’s posterior is π

(the prior), given any information acquisition and disclosure strategies by the senders.
Thus, given their linear preferences over the DM’s posterior, neither sender benefits ex
ante from persuasion. Each sender’s welfare (ex-ante expected utility) is simply π mi-
nus the cost of information acquisition he bears. The combination of covert information
acquisition and voluntary disclosure is actually self-defeating because the DM’s rational
skepticism leads each sender to exert costly effort; if effort were observable or disclosure
were mandatory, then the unique equilibrium would have e∗1 = e∗2 = 0 (cf. Matthews
and Postlewaite, 1985) and both senders’ welfare would be strictly higher. Even more
interestingly, in our setting each sender’s welfare is strictly higher in the presence of the
other sender than if he were the only expert, in the sense that for every equilibrium of the
two-sender game there is an equilibrium of the single-sender game in which the sender
would exert strictly more effort (Proposition 1) and hence have strictly lower welfare. It
is striking that this point holds even though senders have opposing interests.
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� DM’s welfare.

To evaluate the DM’s welfare, suppose she is an expected utility maximizer who takes an
action a = β with some utility function u(a, ω). The previous subsection showed that, in
an appropriate sense, each sender is better off in the presence of the other sender; how
about the DM? The presence of an additional sender would obviously benefit the DM if
it did not affect the initial sender’s effort; however, this effort is in fact reduced (in the
appropriate sense). In general, the informativeness of any equilibrium of the two-sender
game is not Blackwell-comparable to that of any equilibrium of either one-sender game,
and so the effects on the DM’s welfare depend on u(a, ω). We now detail an example,
which is not particularly special, in which the DM is strictly worse off with competing
senders than with just one sender. The example also sheds additional light on the issue
of multiple equilibria.

Example 1. To keep the example simple, consider a variant of the model in which the
effort choice is binary, ei ∈ {eL, eH} with 1 > eH > eL > 0, and marginal costs are given
by MCi(eL) = cL < MCi(eH) = cH. Let p1 = p2 = p and π = 1/2. It is readily computed
that in the absence of Sender 2, the marginal benefit of effort for Sender 1 is

MB1(ê1, 0) =
2p− 1

2(2− ê1)
.

As discussed before Proposition 1, MB1(ê1, 0) is strictly increasing in ê1. Thus, if

MB1(eH, 0) ≥ cH > cL > MB1(eL, 0), (3)

then e1 = eH is the unique equilibrium of the game in which Sender 1 is the only sender.
If, instead, MB1(eH, 0) ≥ cH > MB1(eL, 0) ≥ cL, then there would be multiple equilibria,
with both eL and eH being equilibrium effort levels.

Turning to the two-sender game, it holds that

MB1(ê1, ê2) = Pr1[g]
(

βG − 2ê2p(1− p)βNB − ê2(p2 + (1− p)2)βNN − (1− ê2)βNN)
)

.

Again, MB1(ê1, ê2) is strictly increasing in ê1. If

cH > MB1(eH, eL), (4)

then cH > MB1(eL, eL), and so eBR
1 (eL) = eL; in other words, the “best response” to ê2 = eL

is ê1 = eL. It further follows from strategic substitution that eBR
1 (eH) = eL. As the two

senders are symmetric, there is a unique equilibrium: e∗1 = e∗2 = eL. On the other hand, if
MB1(eH, eL) ≥ cH > MB1(eH, eH) > MB1(eL, eH) ≥ cL, then {eL, eH} and {eH, eL} are the
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only two equilibria.

It can be numerically confirmed that there is an open and dense set of parameters
{p, eH, eL, cH, cL} such that (i) inequalities (3) and (4) simultaneously hold, so that the only
equilibrium in the single-sender game has effort eH and the only equilibrium in the two-
sender game has efforts {eL, eL}; and (ii) the DM’s welfare when u(a, ω) = −(a− ω)2 is
strictly higher in the one-sender game than in the two-sender game. Intuitively, the reason
is that when a single successful investigation is quite accurate (high p), the DM cares more
about increasing each sender’s effort than about multiple successful investigations.

Corollary 1. The DM’s welfare may be higher with a single sender than with two senders.

For some applications, it is useful to consider the DM’s welfare in an alternative setting
in which the second sender is truthful and non-strategic. For example, the FDA hires an
independent advisory board to collect evidence on the safety of drugs, and the U.S. Patent
and Trademark Office uses its own patent examiner to collect evidence on patent applica-
tions. These situations can be viewed as the DM bearing the information acquisition costs
of Sender 2 and Sender 2 truthfully revealing the outcome of his investigation (his pref-
erences may coincide with the DM’s). It is clear from the earlier discussion that Sender 1
will still reduce his effort in response to higher effort from Sender 2. Consequently, the
DM may prefer to restrict Sender 2 ex ante to a low level of information acquisition in
order to benefit from Sender 1’s information acquisition. In fact, one can construct exam-
ples in which the DM would prefer to eliminate Sender 2—or, equivalently, tie the DM’s
own hands to not acquire any information—even when his effort is costless over some
range.

4. Discussion

� Aligned vs. opposed interests.

We have assumed the two senders have opposed interests in that one wants to raise DM’s
belief and the other wants to lower it. We made this assumption because it is relevant for
many applications, and, a priori, it stacks the deck against our main points: conflicting in-
terests should strengthen experts’ incentives to acquire and reveal information. However,
our analysis makes clear that our results do not need the assumption of conflicting inter-
ests. Suppose Sender 2 wants to influence the DM just as Sender 1 does; i.e., let Sender 2’s
payoff function be β− C2(e2) instead of 1− β− C2(e2). Then, just like Sender 1, Sender
2 will report using the sanitization strategy of concealing signal b and revealing signal g.
The key observation is that Sender 2’s message is still an experiment whose (Blackwell)
informativeness is strictly increasing in his effort. As this monotonicity of informative-
ness is the key to Lemma 1, that lemma continues to hold verbatim. Consequently, all our
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other results remain valid too.

Our results do use the assumption that senders act independently. We believe this is
a palatable assumption in some contexts even when senders have aligned interests. For
example, each of two economists may know that a policy-maker is soliciting input from
another economist on trade policy. Even if it is commonly known that all economists aim
to reduce trade barriers, neither economist may know the identity of the other, precluding
collusion. That said, there are contexts in which aligned interests may foster collusion
more readily than opposed interests, in which case our model would be less relevant.

� Uncertain bias.

Although in some applications the DM knows the objectives of each sender, there are
others in which she may not (e.g., consumers and the news media). We can extend our
model to allow for uncertainty in the direction of each sender’s bias. Suppose Sender 1 is
upward biased with probability γ ∈ (0, 1) and downward biased with probability 1− γ,
and this preference type is the sender’s private information. Then both types of Sender 1
will use a sanitization strategy, with the upward-biased type hiding b and the downward-
biased type hiding g. Using superscripts + to denote notation for the upward-biased type
and − for the downward-biased type, the DM forms effort conjectures ê+1 and ê−1 . The
marginal benefit for the upward-biased Sender 1 is now

MB+
1 (ê+1 , ê−1 , ê2) = Pr1[g]

(
βG − βN|g(ê

+
1 , ê−1 , ê2)

)
,

and that for the downward-biased Sender 1 is

MB−1 (ê+1 , ê−1 , ê2) = Pr1[b]
(

βN|b(ê
+
1 , ê−1 , ê2)− βB

)
.

The interim non-disclosure belief βN will take into account the uncertainty in the bias of
Sender 1 and the two types’ distinct sanitization strategies; in particular, depending on
the prior probability of the two types, it could be that βN < βn as before, or βN ≥ βn.
Nevertheless, a version of Lemma 1 still holds: βN|g is strictly increasing in ê2 and βN|b
is strictly decreasing in ê2, even though it is now ambiguous how βN|n changes with ê2.
The substance of Lemma 2 thus continues to hold: the marginal benefit of effort for both
types of Sender 1 is strictly decreasing in ê2.

� Many senders.

Our results extend to more than two senders. Each additional sender is another informa-
tive experiment for the DM, which means that from any existing sender’s perspective, the
overall informativeness of the DM’s experiment from the other senders increases when a
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new sender is added, holding fixed the existing senders’ behavior. Thus, following the
logic of Lemma 1 and Lemma 2, each sender’s marginal benefit of acquiring information
reduces when the DM consults more experts.15 Hence, the larger the advising panel, the
less each expert invests in information acquisition. Even when a large set of experts can
be costlessly secured, it can be optimal for the DM to consult just a limited number of
experts, sometimes just one.

Although others have argued that costly information acquisition can limit the benefits
of increasing committee sizes, the current mechanism is different from that of “pivotal
voting” (Mukhopadhaya, 2003; Persico, 2004). If decisions are made by voting, then in a
larger group each individual is less likely to be pivotal, and hence a larger group decreases
individuals’ incentives to become well informed. In our model, each sender cares about
even small changes in the DM’s belief, and every sender is always pivotal in the sense
that his message always has some influence on the DM’s belief.

� More general signal structures.

We have so far focussed on a simple binary signal structure in which the experts’ signals
are independent conditional on the state. The model can be generalized to allow for richer
signal structures. Let f (s1, s2|ω) be the joint probability mass function of the two signals
conditional on state ω, where si ∈ {1, . . . , K} (with K > 1) for i = 1, 2, and ω ∈ {0, 1}.
Define f (s1, s2) ≡ π f (s1, s2|1) + (1 − π) f (s1, s2|0) as the ex-ante probability of signal
profile (s1, s2), and for simplicity assume ex-ante full support: f (s1, s2) > 0 for all s1, s2.

Assumption 1. The signal structure satisfies:

1. For any s1 and s2, the likelihood ratios f (·,s2|1)
f (·,s2|0)

and f (s1,·|1)
f (s1,·|0) are each weakly increasing.

15 More formally: suppose there are k + 1 senders, where k is a positive integer. Suppressing dependence
on conjectured efforts, let βNmm′ denote the DM’s posterior belief when Sender 1 reports N, Senders 2
through k report m ∈ {G, N, B}k−1, and Sender k + 1 reports m′ ∈ {G, N, B}. Let βNm denote the DM’s
posterior belief based only on the reports of Sender 1 through k. It holds that

βN|g(k + 1) = ∑
m

∑
m′

Pr[{m, m′} | ρ = βg]βNmm′

= ∑
m

(
Pr[{m} | ρ = βg]∑

m′
Pr[{m′} | ρ = βGm]βNmm′

)

> ∑
m

(
Pr[{m} | ρ = βg]∑

m′
Pr[{m′} | ρ = βNm]βNmm′

)
= ∑

m
Pr[{m} | ρ = βg]βNm

= βN|g(k).

In this derivation, the third line follows from Lemma 1, as the interim belief βGm is higher than βNm.
The fourth line follows from the law of iterated expectations. Because MB1 decreases in βN|g, we obtain
MB1(k + 1) < MB1(k).
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2. For any s1 > s̃1 and s2 > s̃2, the likelihood ratios f (·,s2)
f (·,s̃2)

and f (s1,·)
f (s̃1,·) are each weakly increas-

ing.

Assumption 1 allows for the senders’ signals to be correlated conditional on the state,
but requires each Sender i’s signal to be affiliated with the state given any signal of Sender
−i (part 1), and that ex ante, the two senders’ signals be affiliated (part 2). The assumption
is weaker than joint affiliation of (s1, s2, ω) because it does not require senders’ signals to
be affiliated conditional on each state. Part 1 of Assumption 1 implies that the DM’s
posterior belief is increasing in any sender’s signal, holding fixed an arbitrary realization
of the other sender’s signal.

Extending the idea of sanitization, suppose the senders follow threshold strategies
for disclosure based on their bias. That is, if both senders are upward biased, Sender
i (i = 1, 2) follows the following threshold strategy: (a) disclose the signal (i.e., send
message mi = k) when si = k > k∗i ; and (b) report no evidence (i.e., send message mi = N)
whenever si ≤ k∗i or when he indeed obtains no evidence (i.e., observes the null signal
n).16 As it is always optimal for a sender to reveal the most favorable signal and conceal
the most unfavorable signal, we take k∗i ∈ {1, . . . , K − 1}. We call Di ≡ {k∗i + 1, . . . , K}
the disclosure set of Sender i. The disclosure set for a sender with downward bias would
be of the form {1, . . . , k∗i − 1}. Sender 1’s marginal benefit from information acquisition is
a generalization of Equation 2:

MB1(ê1, ê2) = ∑
j∈D1

Pr[s1 = j]
(

β j − βN|j(ê1, ê2)
)

. (5)

We will show that βN|j(ê1, ê2) weakly increases in ê2 for any j ∈ D1, which implies that
MB1(ê1, ê2) weakly decreases in ê2. We require an auxiliary result concerning the DM’s
posterior belief when both senders claim ignorance.17

Lemma 3. Suppose part 1 of Assumption 1 holds and senders use threshold strategies for disclo-
sure. If Sender i (i = 1, 2) is upward biased, βNN(ê1, ê2) weakly decreases in êi; if Sender i is
downward biased, βNN(ê1, ê2) weakly increases in êi.

16 At the cost of a more cluttered notation, the analysis can also handle mixed strategies in which Sender i
discloses if si < k∗i ; conceals if si > k∗i ; and randomizes between disclosure and concealment when si = k∗i .

17 Below, we treat each sender’s disclosure set as independent of the other’s sender’s conjectured effort.
While this obviously holds with binary signals, it need not hold with more signals; the reason is that in
general each sender’s disclosure set can depend on the DM’s belief βNN , which in turn depends on the
other sender’s conjectured effort. Our arguments can be extended to cover this possibility; alternatively,
the analysis can be viewed as considering small changes in a sender’s conjectured effort, which generically
will not affect the other sender’s disclosure set because of the discrete signal space.
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Proof. By the law of iterated expectations,

βN(ê1) = ê2 ∑
k∈D2

Pr[s2 = k | m1 = N]βNk(ê1)

+

(
1− ê2 ∑

k∈D2

Pr[s2 = k | m1 = N]

)
βNN(ê1, ê2). (6)

Note that βN(ê1) and βNk(ê1) (for k ∈ D2) are independent of ê2. Differentiating Equa-
tion 6 with respect to ê2 and manipulating terms yields(

1− ê2 ∑
k∈D2

Pr[s2 = k | m1 = N]

)
∂βNN(ê1, ê2)

∂ê2
=

1
ê2
(βNN(ê1, ê2)− βN(ê1)).

When Sender 2 is upward biased, the disclosure setD2 is an upper truncation set, whereas
m2 = N occurs when Sender 2 is either uninformed or s2 /∈ D2. It follows from part 1 of
Assumption 1 that βNN(ê1, ê2)− βN(ê1) ≤ 0. When Sender 2 is downward biased, D2 is a
lower truncation set, hence βNN(ê1, ê2)− βN(ê1) ≥ 0. An analogous argument holds for
Sender 1.

Lemma 3 owes to rational skepticism by the DM: following both senders’ claims to
ignorance, more conjectured effort by one sender moves the DM’s belief in the direction
opposite to that sender’s bias.

Proposition 3. Suppose Assumption 1 holds and senders use threshold strategies for disclosure.
When one sender is conjectured to exert more effort, the other sender’s incentive to acquire infor-
mation weakly decreases, regardless of whether the two senders have the same or opposite biases.

Proof. Consider the case of two upward-biased senders. Suppressing the dependence of
beliefs on conjectured effort, it holds that

βN|j = ê2 ∑
k∈D2

Pr[s2 = k | s1 = j]βNk +

(
1− ê2 ∑

k∈D2

Pr[s2 = k | s1 = j]

)
βNN.

Subtract Equation 6 from the above to get

βN|j − βN = ê2 ∑
k∈D2

(Pr[s2 = k | s1 = j]− Pr[s2 = k | m1 = N]) (βNk − βNN).
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Multiply both sides by Pr[s1 = j] for j ∈ D1 and take the sum to obtain

∑
j∈D1

Pr[s1 = j]
(

βN|j − βN

)
= ê2Pr[s1 ∈ D1] ∑

k∈D2

(Pr[s2 = k | s1 ∈ D1]− Pr[s2 = k | m1 = N]) (βNk − βNN). (7)

The probability distribution Pr[s2 | s1 ∈ D1] likelihood-ratio dominates the distribution
Pr[s2 | m1 = N] because s1 and s2 are ex-ante affiliated (part 2 of Assumption 1) and D1

is an upper truncation set, whereas m1 = N occurs either if Sender 1 is uninformed or
s1 /∈ D2. By Shaked and Shanthikumar (2007, Theorem 1.C.6), this in turn implies that
the truncated distribution Pr[s2 | s1 ∈ D1, s2 ∈ D2] first-order stochastically dominates
Pr[s2 | m1 = N, s2 ∈ D2]. Furthermore, because βNk weakly increases in k (by part 1 of
Assumption 1), first-order stochastic dominance implies

∑
k∈D2

Pr[s2 = k | s1 ∈ D1]

Pr[s2 ∈ D2 | s1 ∈ D1]
(βNk − βNN) ≥ ∑

k∈D2

Pr[s2 = k | m1 = N]

Pr[s2 ∈ D2 | m1 = N]
(βNk − βNN)

≥ ∑
k∈D2

Pr[s2 = k | m1 = N]

Pr[s2 ∈ D2 | s1 ∈ D1]
(βNk − βNN),

where the second inequality follows because the right-hand-side of the inequality is non-
negative and Pr[s2 ∈ D2 | s1 ∈ D1] ≥ Pr[s2 ∈ D2 | m1 = N]. This establishes that the
right-hand-side of Equation 7 is non-negative. Finally, βN is independent of ê2 and βNN

weakly decreases in ê2 (Lemma 3); hence, ∑j∈D1
Pr[s1 = j]βN|j weakly increases in ê2. We

conclude from Equation 5 that MB1(ê1, ê2) weakly decreases when ê2 rises. The proof for
the case of two opposite-biased senders follows the same logic.

Strictly speaking, our maintained assumption of ex-ante full support rules out the two
senders’ signals being perfectly correlated. However, our assumptions permit approxi-
mating this case arbitrarily closely, and the substance of Proposition 3 applies to this case
as well.18

The proof of Proposition 3 establishes that the left-hand-side of Equation 7 is non-

18 It may be instructive to elaborate on the case with opposed senders who receive perfectly correlated
signals. For simplicity, suppose the signal space is binary, {b, g}, with b < g. Sender 1 is upward biased
and hence only discloses g while Sender 2 is downward biased and only discloses b. Equation 5 then
simplifies to MB1(·) = Pr[s1 = g]

(
βg − βNN(·)

)
. The DM’s belief βNN is increasing in ê2, and hence

MB1 is decreasing in ê2. Notice that this logic only requires the senders to have strictly monotonic (not
necessarily linear) preferences over the DM’s beliefs. Kim (2014) has previously studied such a model; his
focus is not on strategic substitution.
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negative. Dividing that expression by Pr[s1 ∈ D1] yields

∑
j∈D1

Pr[s1 = j | s1 ∈ D1]βN|j ≥ βN;

in words, that Sender 1 expects Sender 2’s communication to correct the DM’s “wrong”
and unfavorable belief should Sender 1 not disclose a favorable signal. Unlike in Sec-
tion 3, the result in the current setting does not follow from the “information validates
the prior” theorem of Kartik et al. (2015)—for that theorem to apply, the senders’ signals
would have to be conditionally independent so that the divergence in information sets
of either sender and the DM could be summarized by the difference in their interim be-
liefs about the state. The conclusion of Proposition 3 exploits the hypothesis that senders
follow a threshold strategy for disclosure. Because senders’ objectives are strictly mono-
tonic in the DM’s posterior belief, an equilibrium in the current setting requires threshold
strategies (modulo possible randomization at one signal, cf. fn. 16). However, Proposi-
tion 3 may not hold in more complex disclosure environments; for example, the proof of
Proposition 3 is not valid if K > 2 and D1 = {2, . . . , K− 1}.

We also emphasize that Assumption 1 is important for Proposition 3. The following
example shows that under some information structures a sender may have more incen-
tive to acquire information in the presence of another sender; the reason is that senders’
signals are negatively correlated conditional on both states (which is ruled out by ex-ante
affiliation of the signals, part 2 of Assumption 1).

Example 2. Suppose Sender 1 is upward biased, Sender 2 is downward biased and there
are only two signal realizations for each sender, b ≡ 1 and g ≡ 2. Signals are conditionally
negatively correlated: Pr[si = s|s−i = s, ω] < Pr[si = s|s−i 6= s, ω] for i = 1, 2, s =

g, b, and ω = 1, 2. We maintain part 1 of Assumption 1. The available messages for
each sender are G, B and N. Let both senders use their respective sanitization strategies.
Suppressing dependence on ê1, it holds that

βN|g(ê2) = Pr[s2 = b|s1 = g]ê2βNB + (1− Pr[s2 = b|s1 = g]ê2) βNN(ê2).

By the law of iterated expectations,

βN = Pr[s = b|m1 = N]ê2βNB + (1− Pr[s = b|m1 = N]ê2) βNN(ê2).

Therefore,

βN|g(ê2)− βN = (βNN(ê2)− βNB) (Pr[s2 = b|m1 = N]− Pr[s2 = b|s1 = g]) ê2.

Signal-state affiliation (part 1 of Assumption 1) implies βNN(ê2) > βNB. It can be ver-
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ified through a direct computation that βNN(ê2) is increasing in ê2. Moreover, negative
conditional correlation implies Pr[s2 = b|m1 = N] < Pr[s2 = b|s1 = g]. Therefore,

β′N|g(ê2) = (Pr[s2 = g|m1 = N]− Pr[s2 = g|s1 = g])
(

β′NN(ê2)ê2 + βNN(ê2)− βNB
)
< 0.

By Equation 2, Sender 1’s marginal benefit of acquiring information is increasing in ê2,
in contrast to Lemma 2.

Although signals being negatively conditionally correlated is perhaps not a natural as-
sumption, the example does demonstrate that, even with only binary signals, the signals’
correlation structure is a key determinant of whether information acquisition decisions
are strategic substitutes.

� Free riding, impact, and influence.

As already noted, our results on strategic substitution of effort can be viewed as uncov-
ering a free-riding phenomenon. The logic used to prove our results makes clear that
the mechanism is not a priori obvious; indeed, Example 2 has already demonstrated that
subtle changes in the information structure can reverse the result. In this subsection, we
further scrutinize the source of free riding and show that it cannot be traced to just “re-
duced impact” of each sender in the presence of an additional sender.

It will be useful to allow the realization of each sender’s (conditionally independent)
signal to take on an arbitrary K ≥ 3 possible values, s1, . . . , sK, one of which is the null
signal n; correspondingly, each sender has K possible messages, one of which is the non-
disclosure message N. Let the likelihood ratio (assumed to be well-defined) of observing
signal sk be

lk ≡ Pr[sk|ω = 1]
Pr[sk|ω = 0]

,

which we take to be increasing in k. Given a conjectured effort and reporting strategy of
Sender 1, let

lN ≡ Pr[m1 = N|ω = 1]
Pr[m1 = N|ω = 0]

denote the likelihood ratio of the DM receiving message m1 = N. We define the impact
I(π; lk, lN) of disclosing evidence sk as the difference in the posterior beliefs induced by
sk versus non-disclosure:

I(π; lk, lN) ≡ πlk

πlk + 1− π
− πlN

πlN + 1− π
.

As before, suppose Sender 1 is upward biased. We can then focus on lN < 1 because
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given any (non-trivial) threshold strategy of Sender 1, message N is more likely in state 0
than state 1.

One may conjecture that the expected impact of a sender on the DM is smaller when-
ever a second sender is present. To evaluate this claim, we can view the DM as updating
sequentially: she first updates from the prior π to an interim belief π̃ following Sender
2’s message, and then updates from π̃ to a posterior based on Sender 1’s message.

From Sender 1’s perspective prior to acquiring his own information, he does not know
what Sender 2’s message will be. So the interim belief π̃ is a random variable with mean
π (owing to the martingale property). Thus, Sender 1’s expected impact from obtaining
and disclosing signal sk in a two-sender environment is Eπ̃[I(π̃; lk, lN)].19 In general, the
curvature of I(·; lk, lN) is ambiguous; specifically:

∂2 I(π̃; lk, lN)

∂π̃2 =
2(1− lk)lk

((lk − 1)π̃ + 1)3 −
2(1− lN)lN

((lN − 1)π̃ + 1)3 . (8)

The second fraction in the right-hand side above is positive because lN < 1. However, the
first fraction could be sufficiently positive to make I(·; lk, lN) convex over some interval
of π̃. For example, Figure 1 reports the shape of I(·; lk, lN) when lk = 0.1 and lN = 0.05.
This function is locally convex around 0.5. Thus, if the prior belief is 0.5, and if Sender 2’s
message is not very informative (so that I(·; lk, lN) is convex in the support of the interim
belief π̃), then it holds that Eπ̃[I(π̃; lk, lN)] > I(π; lk, lN). In this case, Sender 1 expects to
have a greater impact on DM by disclosing signal sk (over non-disclosure) when there is a
second sender present. Consequently, it is not generally the case that a sender’s impact is
less in a multi-sender environment.

When a sender can only receive two pieces of evidence (so K = 3), then as Sender
1 would never disclose the “low” signal s1 (b earlier), the only signal that would be
disclosed is sK (g earlier), which necessarily has lK > 1. In this case, the right-hand
side of Equation 8 is negative, so that Eπ̃[I(π̃; lK, lN)] is concave over the entire domain
π̃ ∈ (0, 1). More generally, however, one is only assured that Sender 1 will disclose the
highest signal sK and conceal the lowest signal s1; some intermediate evidence sk with
lk < 1 could be disclosed. The key point is that Lemma 2 does not depend on the num-
ber of signals, as Proposition 3 shows that Lemma 2 holds beyond binary signal struc-
tures. From the point of view of expected impact, one can view Lemma 2 as showing
that, in general, whereas the expected impact of disclosing any particular evidence can
be larger in a multi-sender environment (compared to a single-sender environment), the

19 Note that here, we are reasoning as if the DM is holding fixed the same conjecture about Sender 1’s
effort and reporting strategy regardless of Sender 2’s presence. This need not be the case in equilibrium.
But our goal is to examine the intuition of how the presence of Sender 2 affects Sender 1’s impact, for which
purpose one should indeed hold fixed the DM’s conjecture about Sender 1’s behavior.
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Figure 1. The impact of revealing signal sk as opposed to non-disclosure need not be concave in the interim
belief of DM.

“average” expected impact—averaging over the signals that a sender would disclose—is
indeed lower in the multi-sender environment.

A different perspective on why a sender’s influence should be less with two senders
is that the DM simply values each sender’s signal less in the presence of another sender.
This is also not generally true. In fact, even setting aside any strategic issues, one can
construct examples (with binary signals) in which the DM’s expected utility gain (under
a quadratic loss function) from obtaining a second signal over the first is larger than the
gain from obtaining the first over no signal. An intuition is that the DM’s gain from
obtaining a signal can be locally convex in the prior.20

5. Conclusion

This article has studied the incentive of biased agents to acquire costly evidence in a per-
suasion game in which unfavorable information can be strategically concealed. Skeptical,
but rational, inference by the decision maker (DM) creates a credible threat that pun-
ishes a sender’s non-disclosure with an unfavorable belief, which creates an incentive for
the sender to collect evidence even when his preferences are linear over the DM’s be-
lief. There is an equilibrium discrepancy between the sender’s and DM’s beliefs when

20 Börgers, Hernando-Veciana, and Krähmer (2013) provide an analysis of when two signals are comple-
ments rather than substitutes across all decision problems.
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the sender does not furnish evidence. In particular, when the sender has truly failed to
turn up evidence or if he does not disclose favorable evidence, the DM’s belief is overly
unfavorable from the sender’s perspective. The sender expects other senders’ disclosure
to, on average, “correct” this belief of the DM, no matter the other senders’ biases. Conse-
quently, additional senders reduce an existing sender’s incentive to acquire information:
senders’ information acquisition decisions are strategic substitutes.

By implication, the conventional wisdom that competition forces each sender to reveal
more information does not hold when endogenous information acquisition is taken into
account. The DM may be harmed by the presence of more senders. In a similar vein, a
DM’s own investigation may discourage a sender from acquiring information and, as a
result, a DM may want to delegate information acquisition to a biased expert or advisor
even if it is costless for a DM to acquire a limited amount of information. We refer to the
Introduction for applications in which these cautionary results may be relevant.

We conclude by reiterating that our assumption of senders’ preferences being linear
in the DM’s belief plays a central role in our analysis. Linearity may be appropriate
for some applications (e.g., whenever senders are risk neutral over the DM’s decision,
which equals her expectation of the state) or may be justified as a first-order approxima-
tion. When senders’ preferences are not linear, they will care about not only how other
senders’ messages affect the DM’s expectation—which is what our insights turn on—
but also higher-order moments. We are aware that there are specifications under which
senders’ information acquisition decisions are not strategic substitutes. Consider an ex-
ample (with binary conditionally independent signals) in which Sender 1’s preferences
over the DM’s belief β are represented by the log likelihood ratio V(β) ≡ log β

1−β . The
marginal benefit of effort is a generalization of Equation 2:

MB1(ê1, ê2) = Pr1[g]Em2|g [V(βGm2(ê2))−V(βNm2(ê1, ê2))] ,

where the expectation is taken over m2 given s1 = g. Exploiting the form of Bayesian
updating of log likelihood ratios, it can readily be checked that the marginal benefit of
effort is now independent of ê2.21 Thus, for this particular specification, each sender
would exert the same amount of effort independent of other senders, and the DM would
be strictly better off with every additional sender. Further analysis awaits future research.

21 Recalling that βm1 denotes the interim belief for the DM, the log likelihood of the posterior belief is

V(βm1m2) = V(βm1) + log
(

Pr(m2|1)
Pr(m2|0)

)
,

and hence V(βGm2)−V(βNm2) = V(βG)−V(βN), independent of m2.
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