Improving Information
from
Manipulable Data

Alex Frankel Navin Kartik

July 2020
Allocation Problem

Designer uses data about an agent to assign her an allocation

Wants higher allocations for higher types

- Credit: Fair Isaac Corp maps credit behavior to credit score used to determine loan eligibility, interest rate, ... → Open/close accounts, adjust balances

- Web search: Google crawls web sites for keywords & metadata used to determine site’s search rankings → SEO

- Product search: Amazon sees product reviews used to determine which products to highlight → Fake positive reviews

Given an allocation rule, agent will manipulate data to improve allocation

Manipulation changes inference of agent type from observables
Response to Manipulation

Allocation rule/policy → agent manipulation →
inference of type from observables → allocation rule

- **Fixed point** policy: best response to itself
 - Rule is ex post optimal given data it induces
 - May achieve through adaptive process

- **Optimal** policy: commitment / Stackelberg solution
 - Maximizes designer’s objective taking manipulation into account
 - Ex ante but (perhaps) not ex post optimal

Our interest:

1. How does optimal policy compare to fixed point?
2. What ex post distortions are introduced?
Fixed Point vs Optimal (commitment) policy

In our model:

1. How does optimal policy compare to fixed point?
 - Optimal policy is *flatter* than fixed point
 Less sensitive to manipulable data

2. What ex post distortions are introduced?
 - Commit to *underutilize* data
 Best response would be put more weight on data
Fixed Point vs Optimal (commitment) policy

Two interpretations of optimally flattening fixed point

- Designer with commitment power
 - Google search, Amazon product rankings, Government targeting
 - Positive perspective or prescriptive advice

- Allocation determined by competitive market
 - Use of credit scores (lending) or other test scores (college admissions)
 - Market settles on ex post optimal allocations
 - What intervention would improve accuracy of allocations? (Govt policy or collusion)
Related Literature

- Framework of “muddled information”
 - Prendergast & Topel 1996; Fischer & Verrecchia 2000; Benabou & Tirole 2006; Frankel & Kartik 2019
 - Ball 2020
 - Björkegren, Blumenstock & Knight 2020

- Related “flattening” to reduce manipulation in other contexts
 - Dynamic screening: Bonatti & Cisternas 2019
 - Finance: Bond & Goldstein 2015; Boleslavsky, Kelly & Taylor 2017

- Other mechanisms/contexts to improve info extraction

- CompSci / ML: classification algorithms with strategic responses
Background on Framework
Information Loss

In some models, fixed point policy yields full information, so no need to distort

- When corresponding signaling game has separating eqm

Muddled information framework (FK 2019)

- Observer cares about agent’s natural action η
 - Agent’s action absent manipulation

- Agents also have heterogeneous gaming ability γ
 - Manipulation skill, private gain from improving allocation, willingness to cheat

- No single crossing: 2-dim type; 1-dim action

- When allocation rule rewards higher actions, high actions will muddle together high η with high γ
Muddled Information
Frankel & Kartik 2019

- Market information in a signaling equilibrium
 Analogous to fixed point in current paper

- Agent is the strategic actor
 - chooses x to maximize $V(\hat{\eta}(x), s) - C(x; \eta, \gamma)$
 - x is observable action, $\hat{\eta}$ is posterior mean,
 s is stakes / manipulation incentive
 - leading example: $s\hat{\eta}(x) - \frac{(x-\eta)^2}{\gamma}$

- Allocation implicit: agent’s payoff depends on market belief

- Key result: higher stakes \implies less eqm info (about natural action)
 - suitable general assumptions on $V(\cdot)$ and $C(\cdot)$
 - precise senses in which the result is true

Current paper explicitly models allocation problem;
How to use commitment to \downarrow info loss and thereby \uparrow alloc accuracy
Model
Designer’s problem

■ Agent(s) of type \((\eta, \gamma) \in \mathbb{R}^2\)
■ Designer wants to match allocation \(y \in \mathbb{R}\) to natural action \(\eta\):

\[
\text{Utility} \equiv -(y - \eta)^2
\]

■ Allocation rule \(Y(x)\), based on agent’s observable \(x \in \mathbb{R}\)
■ Agent chooses \(x\) based on \((\eta, \gamma)\) and \(Y\) (details later)

■ Expected loss for designer:

\[
\text{Loss} \equiv \mathbb{E}[(Y(x) - \eta)^2]
\]

Nb: pure allocation/estimation problem

■ Designer puts no weight on agent utility
■ Effort is purely “gaming”
Designer’s problem

- Agent(s) of type $(\eta, \gamma) \in \mathbb{R}^2$
- Designer wants to match allocation $y \in \mathbb{R}$ to natural action η:
 \[
 \text{Utility} \equiv -(y - \eta)^2
 \]
- Allocation rule $Y(x)$, based on agent’s observable $x \in \mathbb{R}$
- Agent chooses x based on (η, γ) and Y (details later)
- Expected loss for designer:
 \[
 \text{Loss} \equiv \mathbb{E}[(Y(x) - \eta)^2]
 \]

Useful decomposition:

\[
\text{Loss} = \mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2] + \mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]
\]

- Info loss from estimating η from x
- Misallocation loss given estimation
Linearity assumptions

We will focus on

- **Linear allocation policies** for designer:
 \[Y(x) = \beta x + \beta_0 \]
 - \(\beta \) is allocation sensitivity, strength of incentives

- **Agent has a linear response function:**
 Given policy \((\beta, \beta_0)\), agent of type \((\eta, \gamma)\) chooses
 \[x = \eta + m\beta\gamma \]
 Parameter \(m > 0 \) captures manipulability of the data (or stakes)
 Such response is optimal if agent’s utility is, e.g.,
 \[y = \frac{(x - \eta)^2}{2m\gamma} \]
Summary of designer’s problem

- Joint distribution over \((\eta, \gamma)\)
 - Means \(\mu_\eta, \mu_\gamma\); finite variances \(\sigma_\eta^2, \sigma_\gamma^2 > 0\); correlation \(\rho \in (-1, 1)\)
 - \(\rho \geq 0\) may be more salient, but \(\rho < 0\) not unreasonable
 - Main ideas come through with \(\rho = 0\)

- Designer’s optimum \((\beta^*, \beta_0^*)\) minimizes expected quadratic loss:

\[
\min_{\beta, \beta_0} \mathbb{E} \left[\left(\beta (\eta + m_\beta \gamma) + \beta_0 - \eta \right)^2 \right]
\]

- Simple model, but objective is quartic in \(\beta\)
Preliminaries

Linearly predicting type \(\eta \) from observable \(x \)

- Suppose Agent responds to allocation rule \(Y(x) = \beta x + \beta_0 \),
 then Designer gathers data on joint distr of \((\eta, x)\)

- Let \(\hat{\eta}_\beta(x) \) be the best linear predictor of \(\eta \) given \(x \):
 \[
 \hat{\eta}_\beta(x) = \hat{\beta}(\beta)x + \hat{\beta}_0(\beta),
 \]
 where, following OLS,
 \[
 \hat{\beta}(\beta) = \frac{\text{Cov}(x, \eta)}{\text{Var}(x)} = \frac{\sigma_\eta^2 + m\rho\sigma_\eta\sigma_\gamma\beta}{\sigma_\eta^2 + m^2\sigma_\gamma^2\beta^2 + 2m\rho\sigma_\eta\sigma_\gamma\beta}
 \]

- Can rewrite designer’s objective
 \[
 \text{Loss} = \underbrace{\mathbb{E}[(\mathbb{E}[\eta|x] - \eta)^2]}_{\text{Info loss from estimating } \eta \text{ from } x} + \underbrace{\mathbb{E}[(Y(x) - \mathbb{E}[\eta|x])^2]}_{\text{Misallocation loss given estimation}}
 \]
Preliminaries

Linearly predicting type η from observable x

- Suppose Agent responds to allocation rule $Y(x) = \beta x + \beta_0$, then Designer gathers data on joint distr of (η, x)

- Let $\hat{\eta}_\beta(x)$ be the best linear predictor of η given x:
 \[\hat{\eta}_\beta(x) = \hat{\beta}(\beta)x + \hat{\beta}_0(\beta), \]
 where, following OLS,
 \[\hat{\beta}(\beta) = \frac{\text{Cov}(x, \eta)}{\text{Var}(x)} = \frac{\sigma_\eta^2 + m\rho\sigma_\eta\sigma_\gamma\beta}{\sigma_\eta^2 + m^2\sigma_\gamma^2\beta^2 + 2m\rho\sigma_\eta\sigma_\gamma\beta} \]

- Can rewrite designer’s objective for linear policies
 \[
 \text{Loss} = \underbrace{\mathbb{E}[(\hat{\eta}_\beta(x) - \eta)^2]}_{\text{Info loss from linearly estimating } \eta \text{ from } x} + \underbrace{\mathbb{E}[(Y(x) - \hat{\eta}_\beta(x))^2]}_{\text{Misallocation loss given linear estimation}}
 \]
 - Info loss $\propto 1 - R_{\eta x}^2$
 - For corr. $\rho \geq 0$, $\hat{\beta}(\beta)$ is ↓ on $\beta \geq 0$ (\therefore x = $\eta + m\beta\gamma$)
Benchmarks
Benchmarks

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

Constant policy: \(Y(x) = 0 \cdot x + \beta_0 \)
- No manipulation, \(x = \eta \)
- Info loss is 0
- Misallocation loss may be very large

Naive policy: \(Y(x) = 1 \cdot x + 0 \)
- Designer’s b.r. to data generated by constant policy
 \[Y(x) = \hat{\eta}_{\beta=0}(x) = \hat{\beta}(0)x + \hat{\beta}_0(0) \]
- But after implementing this policy, agent’s behavior changes
 Agent now responding to \(\beta = 1 \), not \(\beta = 0 \)
Benchmarks

\[\text{Loss} = \text{Info loss from linear estimation} + \text{Misallocation loss given linear estimation} \]

Designer’s b.r. if agent behaves as if policy is \((\beta, \beta_0)\)

- Set \(Y(x) = \hat{\eta}_\beta(x) = \hat{\beta}(\beta)x + \hat{\beta}_0(\beta)\)
- Designer’s optimum if agent’s behavior were fixed

Fixed point policy: \(Y(x) = \beta^{fp}x + \beta_0^{fp}\)

- \(\hat{\beta}_0(\beta^{fp}) = \beta_0^{fp}\) and \(\hat{\beta}(\beta^{fp}) = \beta^{fp}\)
- Simultaneous-move game’s NE (under linearity restriction)
 - NE w/o restriction if \((\eta, \gamma)\) is elliptically distr
- Misallocation loss given linear estimation = 0, allocations ex post optimal
- Info loss may be large
Designer best response $\hat{\beta}(\cdot)$ and fixed points

If (η, γ)’s corr. is $\rho \geq 0$, then:

- For $\beta \geq 0$, best response sensitivity $\hat{\beta}(\beta)$ is positive and ↓
- Unique positive fixed point, and it is below naive b.r.: $\beta^{fp} < 1$
Designer best response $\hat{\beta}(\cdot)$ and fixed points

If (η, γ)'s corr. is $\rho < 0$, then:

- $\beta \gg 0 \implies$ higher x indicates lower $\eta \implies \hat{\beta}(\beta) < 0$
- $\hat{\beta}(\beta)$ can increase on $\beta \geq 0$
- Possible for fixed point sensitivity above naive: $\beta^{fp} > 1$
- Multiple positive fixed points possible
Main Result
Main Result

Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition

For the optimal policy's sensitivity β^*:

1. (Flattening.) $0 < \beta^* < \beta^{fp}$ for any $\beta^{fp} > 0$.

2. (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Commitment can yield large gains: \exists params s.t.

$$L(\beta^{fp}) \simeq L(0) = \sigma^2_\eta$$ arbitrarily large

$$L(\beta^*) \simeq 0$$, first best
Main Result
Designer chooses policy $Y(x) = \beta x + \beta_0$

Nb: Always at least one positive fixed point; just one if $\rho \geq 0$

Proposition
For the optimal policy's sensitivity β^*:

1. (Flattening.) $0 < \beta^* < \beta^{fp}$ for any $\beta^{fp} > 0$.

2. (Underutilize info.) $\hat{\beta}(\beta^*) > \beta^*$.

Proof logic:

1. First order benefit of $\uparrow \beta$ from 0: constant policy not optimal

2. Lemma 1: First order benefit of $\downarrow \beta$ from any β^{fp}
 \implies There is a local max in $(0, \beta^{fp})$

3. Show that such local max is global max
 (quartic polynomial)
Intuition for main result

\[\text{Loss} = \text{Info loss from linear estimation} + \text{Misallocation loss given linear estimation} \]

- Misallocation loss is smaller when \(\beta \) close to b.r. \(\hat{\beta}(\beta) \)
- Info loss from estimation is smaller when \(\beta \) is smaller
 - Stronger incentives \(\beta \) \(\Rightarrow \) more manipulation, less informative \(x \)
 - True for all \(\beta > 0 \) when \(\rho \geq 0 \), true for relevant range of \(\beta \) when \(\rho < 0 \)
Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

At $\beta = \beta^{fp}$, misallocation loss is minimized

Slightly reducing sensitivity β yields

- First order benefit from \downarrow info loss
- Second order harm from \uparrow misallocation loss

(Alogously for $\uparrow \beta$ from 0, because there info loss minimized.)
Intuition for main result

Loss = Info loss from linear estimation + Misallocation loss given linear estimation

(In general, Loss not convex or even quasiconvex on \mathbb{R}.)
Some comparative statics

Recall $x = \eta + m\beta\gamma$

Let $k \equiv m\sigma\gamma/\sigma\eta$ describe susceptibility to manipulation

Proposition

1. As $k \to \infty$, $\beta^* \to 0$; As $k \to 0$, $\beta^* \to 1$;

 When $\rho \geq 0$, β^* ↓ in k.

2. When $\rho = 0$, $\beta^*/\beta^{fp} \downarrow$ in k;

 $\beta^*/\beta^{fp} \to 1$ as $k \to 0$ and $\beta^*/\beta^{fp} \to 3\sqrt{1/2} \simeq .79$ as $k \to \infty$.

![Figure with $\rho = 0$.](image-url)
Conclusion
Discussion

- Can nonlinear allocation rules do better?
 - Typically yes
 - Linear rules are simple, easier to verify/commit to
 - Comparable to linear fixed points, which exist for elliptical distrs and to naive, which is linear
- If designer wants to reduce manipulation costs, $\downarrow \beta^*$
- If manipulation is productive effort, $\uparrow \beta^*$
- Crucial asymmetry in agent behavior $x = \eta + m\beta\gamma$
 - E.g., agent chooses effort (cost) e to generate data $x = \eta + \sqrt{\gamma} \sqrt{e}$
 Is effort a substitute or complement to the trait designer’s values?
 - If designer wants to match allocation to γ, logic flips
 \rightarrow For $\rho \geq 0$, $\beta^* > \beta^{fp}$ for any β^{fp}
 - If designer wants to match $(1 - w)\eta + w\gamma$,
 \rightarrow For $\rho = 0$, $\text{sign}(\beta^* - \beta^{fp}) = \text{sign}(w - w^*)$
Discussion

- Our model: info loss driven by heterogeneous response to incentives
 Does flattening fixed point extend to other sources of info loss?
 - Appendix: simple model of info loss driven by bounded action space

- More research: counterparts to “flattening” / “underutilizing information” in general allocation problems

Thank you!