Beyond Unbounded Beliefs:

How Preferences and Information Interplay in Social Learning

Navin Kartik SangMok Lee Tianhao Liu Daniel Rappoport

March 2024

Motivation (1)

Sequential observational learning model

• unknown state $\omega \in \Omega$

■ each n = 1, 2, ... takes action $a_n \in A$ (finite set) using private signal and (full) history of actions

• homogenous prefs $u(a_n, \omega)$

Many extensions, variations

Fundamental Q: does society eventually learn ω ?

Received A: Unbounded vs. bounded beliefs (SS '00; AMF '21)

- $\forall \omega$, can posterior from a single signal $\approx \Pr(\omega) = 1$?
- $\forall \omega$, is posterior from single signal bounded away from $\Pr(\omega) = 0$?

(Banerjee '92; BHW '92)

Motivation (2)

Unbounded beliefs \iff learning for **all** prefs

Bounded beliefs \iff nonlearning for all (nontrival) prefs

Exhaustive (more or less) with two states \rightsquigarrow most papers

But with multiple states, a significant gap

Suppose $\Omega = \{1, 2, 3\}$ and signals $\mathcal{N}(\omega, 1)$

- \blacksquare Can become certain about 1 or 3 but not 2
- Neither unbounded nor bounded!

So is there learning? Say for $u(a,\omega) = -(a-\omega)^2$

This Paper

For wide class of observational networks,

- 1. Excludability as a characterization of learning
 - simple cond over prefs & info
 - new perspective: learning requires agents' ability to displace wrong actions, <u>not</u> take the correct action (individually)
- 2. Permits study of learning for broad pref classes. Main application:
 - One-dim state: Single-crossing prefs & directionally unbounded beliefs covers quadratic loss, normal info e.g.
- 3. Methodology: General approach to learning + welfare

Literature

Most related

- Smith & Sørensen '00; Arieli & Mueller-Frank '21
- Acemoglu, Dahleh, Lobel, Ozdaglar '11; Lobel & Sadler '15

Other mechanisms for Bayesian learning

Non-Bayesian / Misspecified learning

Model

Environment

 ${\rm Countable \ set \ of \ states \ } \Omega \quad (|\Omega| \le \infty)$

Signal space S (standard Borel)

 \blacksquare when MLRP is mentioned, both S and Ω are ordered

Signal/info structure $f(s|\omega)$ (R-N densities)

 \blacksquare no signal can exclude any state: $f(\cdot)>0$

Action set A (standard Borel)

can focus on finite

more general setup in paper: e.g., $\Omega = [0, 1]$ or non-full-support signals

The Game

Unobservable state ω drawn from prior pmf $\mu_0 \in \Delta \Omega$

Agents $1, 2, \ldots$ sequentially choose actions; each agent n observes both

- \blacksquare conditionally indep private signal $s_n \sim f(\cdot | \omega)$
- actions of all predecessors in her neighborhood $B(n) \subseteq \{1, \ldots, n-1\}$

 $B(\cdot)$ defines social (observational) network structure (common knowledge)

- e.g., immediate predecessor or complete networks
- for talk, only deterministic networks; papers covers stochastic networks

Strategy $\sigma_n: S \times A^{B(n)} \to \Delta A$

All agents share bounded vNM utility $u: A \times \Omega \rightarrow \mathbb{R}$ (assm optimal action exists \forall beliefs)

Bayes Nash equilibria (or refinements)

 \rightarrow no real strategic interaction

Learning

Full-information exp utility $u^*(\mu) := \sum_{\omega} \max_a u(a, \omega) \mu(\omega)$

Given prior μ_0 and eqm σ , agent n has ex-ante exp utility $\mathbb{E}_{\sigma,\mu_0} u_n$

Definition

There is adequate learning if for every prior μ_0 and every eqm σ , $\mathbb{E}_{\sigma,\mu_0}u_n \to u^*(\mu_0)$ as $n \to \infty$.

Adequate learning clearly impossible if

$$\exists K \in \mathbb{N} : |\{n : B(n) \subseteq \{1, \dots, K\}\}| = \infty$$

Assumption (Expanding Observations) $\forall K \in \mathbb{N}, |\{n : B(n) \subseteq \{1, \dots, K\}\}| < \infty.$

Examples: complete and immediate predecessor networks (or any last M)

Under expanding obs, for what (u, f) is there adequate learning?

Example

Unbounded Beliefs

Given belief μ , let $\mu_s(\omega)$ be posterior after signal s

Definition

Signal structure has unbounded beliefs if $\forall \mu \in \Delta \Omega$ with full support, $\forall \varepsilon > 0$:

 $\forall \omega, \Pr\{s: \mu_s(\omega) > 1 - \varepsilon\} > 0.$

Unbounded beliefs \implies adeq learning for all prefs \therefore every individual can take correct action

With only two states, adeq learning for **any** (nontrivial) pref \implies unbounded beliefs \therefore if ω not distinguishable from ω' , take prior $\mu_0(\omega') \approx 1$

Learning without Unbounded Beliefs

Normal info: $s_n \sim \mathcal{N}(\omega, 1)$ fails unbounded beliefs

Learning without Unbounded Beliefs

Complete network
$$\begin{split} \Omega &= A = \{1,2,3\}\\ s_n &\sim \mathcal{N}(\omega,1)\\ \text{Consider realization } \omega = 2 \end{split}$$

 $\mu \in$ Gray region: no signal leads to correct action (a = 2) \rightarrow first few surely take wrong actions

But either wrong a can be displaced, eventually leading to correct action

Characterizations of Learning

Excludability

Definition

 Ω' is distinguishable from Ω'' if $\forall \mu \in \Delta(\Omega' \cup \Omega'')$ with $\mu(\Omega') > 0$, $\forall \varepsilon > 0$:

$$\Pr\{s: \mu_s(\Omega') > 1 - \varepsilon\} > 0.$$

 \rightarrow can become \approx certain about Ω' relative to all of $\Omega'',$ simultaneously

ightarrow e.g., $\Omega = \{1,2,3\}$, $s \sim \mathcal{N}(\omega,1)$:

can become certain about 2 vs 1 and 2 vs 3 separately, but not simultaneously so 2 is not distinguishable from $\{1,3\}$

Excludability

Definition

 Ω' is distinguishable from Ω'' if $\forall \mu \in \Delta(\Omega' \cup \Omega'')$ with $\mu(\Omega') > 0$, $\forall \varepsilon > 0$:

 $\Pr\{s: \mu_s(\Omega') > 1 - \varepsilon\} > 0.$

 \rightarrow can become \approx certain about Ω' relative to all of $\Omega'',$ simultaneously

If each $\omega' \in \Omega'$ is distinguishable from Ω'' , then so is Ω' .

So Ω' distinguishable from Ω'' if [and only if, for finite Ω]:

 $\begin{array}{l} \forall \omega' \in \Omega': \\ \exists \ (s_i) \text{ s.t. } \forall \omega'' \in \Omega'', \ \lim_{i \to \infty} f(s_i | \omega'') / f(s_i | \omega') = 0. \end{array} \right)$

(writing as if S countable)

Excludability and Learning

Theorem

Excludability \implies adeq learning \forall choice sets. If Ω finite, also the converse.

For converse, consider binary choice sets and extreme prior

Say that μ is stationary if $\exists a$ that is optimal no matter the signal Say that μ has adequate knowledge if $\exists a$ that is optimal $\forall \omega \in \text{Supp } \mu$

Straightforward: adeq learning \implies all stationary beliefs have adequate knowledge \therefore at a stationary prior, there can be an immediate info cascade

Theorem

(Fix any choice set.) Adeq learning \iff all stationary beliefs have adequate knowledge.

Excludability thm follows \therefore excludability \implies any inadeq knowledge belief μ is not stationary $\rightarrow a^*(\omega) \succ_{\omega} a^*(\mu)$, so $a^*(\mu)$ will be displaced ... perhaps never by $a^*(\omega)$

Excludability vs Unbounded Beliefs

Though a joint cond on prefs & info, excludability can usefully separate prefs and info classes

Corollary: adeq learning for all prefs \iff unbounded beliefs

But unbounded beliefs very demanding when $|\Omega|>2$

Remark

Assume $|\Omega| > 2$. MLRP \implies NOT unbounded beliefs.

recall normal info

Main Application: One-Dimensional State with Single-Crossing Prefs

Single-Crossing Differences

Now let $\Omega \subset \mathbb{R}$

 $h:\mathbb{R}\to\mathbb{R}$ is single crossing if $\mathrm{sign}[h]$ is monotonic

Definition

Utility $u : A \times \Omega \to \mathbb{R}$ has single-crossing differences (SCD) if $\forall a, a' : u(a, \omega) - u(a', \omega)$ is single crossing in ω .

- \blacksquare implied by supermodularity if A ordered

Directionally Unbounded Beliefs

Definition

There is directionally unbounded beliefs (DUB) if every ω is distinguishable from $\{\omega' : \omega' < \omega\}$ and also from $\{\omega' : \omega' > \omega\}$.

But need not distinguish ω simultaneously from both lower and higher states

Under MLRP, DUB \iff "pairwise distinguishability" (e.g., normal info)

SCD-DUB Result

Proposition

SCD prefs & DUB info \implies adeq learning.

<u>Proof sketch</u> (for finite Ω)

$\begin{array}{ll} \mathsf{SCD} \implies \forall a,a', \ \min\{\omega:a\succ a'\} > \max\{\omega:a'\succ a\} \\ & \mathsf{or \ vice-versa} \end{array}$

 $\mathsf{DUB}\implies\mathsf{disjoint}$ upper and lower sets are distinguishable from each other Apply Excludability Thm

SCD-DUB Result

Proposition

SCD prefs & DUB info \implies adeq learning. They are a minimal suff. pair (varying choice set).

Excludability for all SCD prefs \implies DUB

 \rightarrow Consider $a' \succ_{\omega} a''$ iff $\omega \ge \omega^*$. Excludability $\implies \omega^*$ distinguishable from lower set

Absent SCD, excludability fails for some binary choice set under normal info (:: MLRP)

Application: Multi-dimensional State with Intermediate Prefs

Multidimensional Application

- $\ \ \, \Omega,A\subset \mathbb{R}^d$
- Intermediate Prefs: $\forall a' \neq a''$, either $\Omega_{a',a''} = \emptyset$ or $\Omega_{a',a''} = \Omega$ or $\exists h \in \mathbb{R}^d$ and $c \in \mathbb{R}$ s.t. $\Omega_{a',a''} = \{\omega : h \cdot \omega > c\}.$

Grandmont '78; Caplin & Nalebuff '88

e.g., Weighted Euclidean: $u(a, \omega) = -l((a - \omega)'W(a - \omega))$, for some $d \times d$ sym. positive definite matrix W and str. \uparrow loss function l

e.g., **CES**:
$$u(a,\omega) = (\omega_1 a_1^r + \cdots \omega_d a_d^r)^{1/r}$$
 with $r
eq 0$

• Location-shift info: $S = \mathbb{R}^d$, uniformly cts standard density $g : \mathbb{R}^n \to \mathbb{R}$ s.t. $f(s|\omega) = g(s - \omega)$

Say g is subexponential if $\exists p > 1$: $g(s) < \exp(-\|s\|^p)$ when $\|s\|$ large e.g., g is multidim $\mathcal{N}(\omega, \Sigma)$

Multidimensional Application

 $\ \ \, \Omega,A\subset \mathbb{R}^d$

Intermediate Prefs: $\forall a' \neq a''$, either $\Omega_{a',a''} = \emptyset$ or $\Omega_{a',a''} = \Omega$ or

$$\exists h \in \mathbb{R}^d \text{ and } c \in \mathbb{R} \text{ s.t. } \Omega_{a',a''} = \{\omega : h \cdot \omega > c\}.$$

Grandmont '78; Caplin & Nalebuff '88

e.g., Weighted Euclidean:
$$u(a, \omega) = -l((a - \omega)'W(a - \omega))$$
,
for some $d \times d$ sympositive definite matrix W and str. \uparrow loss function

for some $d \times d$ sym. positive definite matrix W and str. \uparrow loss function l

e.g., **CES**:
$$u(a, \omega) = (\omega_1 a_1^r + \cdots \omega_d a_d^r)^{1/r}$$
 with $r \neq 0$

Proposition

In this setting, there is excludability (hence adeq learning) if g is subexponential. Intuition: $\{\omega : h \cdot \omega > c\}$ and $\{\omega : h \cdot \omega < c\}$ can be distinguished $\therefore g$ has thin tail. Methodology

Backbone Result

Theorem

Adequate learning \iff all stationary beliefs have adequate knowledge.

Proof idea (⇐=):

(elaborate)

If agent's social belief distr is not close to stationary, can achieve a min utility improvement

 $\rightarrow \Phi^S \subset \Phi^{BP} \subset \Delta \Delta \Omega; \text{ and } \Phi^{BP} \text{ is compact} \quad (\text{weak topology; } \Delta \Delta \Omega \text{ may not be compact})$

- \rightarrow complement of ε -nbhd of Φ^S is a closed (hence compact) subset (Prohorov metric)
- \rightarrow exp utility / improvement is cts in belief, also cts on distrs
- 2 Expanding observations => improvement principle: these min improvements propogate (e.g., consider immediate-predecessor network); so they can occur only finitely often
 - \rightarrow eventually <u>as if</u> every agent has arb. close to stationary social belief
 - \rightarrow eventual exp utility is at least that of the worst stationary belief distr: Theorem 3
 - \rightarrow when all stationary beliefs have adeq knowledge, there is adeq learning

Backbone Result

Theorem

Adequate learning \iff all stationary beliefs have adequate knowledge.

Recall this characterization is for any given action set \boldsymbol{A}

Excludability is sufficient for learning; necess requires varying choice sets

Subsumes existing learning results (and "info diffusion"; Lobel & Sadler '15)

- Including "responsive prefs" with infinite action spaces (Lee '93; Ali '18)
 - $\rightarrow\,$ E.g., if $\Omega=\{0,1\},\,A=[0,1],$ and $u(a,\omega)=-(a-\omega)^2,$

then given any informative signal structure, only stationary beliefs are $\{0,1\}$

- Suppose only 2 states and finite actions, as much of the literature
 - \rightarrow Adeq knowledge means knowing the state (modulo trivialities)
 - \rightarrow So unbounded beliefs

Discussion

Most-Related Papers

Complete network: Smith & Sørensen '00 (two states) Arieli & Mueller-Frank '21 (general)

- unbounded beliefs characterizes learning for all prefs
- AMF '21: "vanishing value of private information", analogous to our Backbone Lemma
 - \rightarrow Martingale approach, which fails for general networks

General networks, but only two states and two actions

- Acemoglu, Dahleh, Lobel, Ozdaglar '11: introduce improvement principle approach
- Lobel & Sadler '15 introduce "info diffusion" (and correlated networks)
 - $\rightarrow\,$ Both rely critically on two states & actions to derive minimum improvement
 - $\rightarrow\,$ Our methodology using compactness/continuity works generally

Study of broad pref classes is new to social learning (but classical approach!)

AMF '21 have example with a special utility

Conclusion

Std condition for learning, unbounded beliefs, very demanding with >2 states

For a given pair of prefs and info, excludability characterizes learning in general environment with social networks satisfying expanding observations

Permits a study of learning for canonical classes of prefs

- SCD prefs + DUB info
- Intermediate prefs + subexponential location-shift info

Beyond learning, general welfare bound

Interesting future directions:

- Other pairs of suff conds
- Heterogenous prefs

- Speed of convergence
- DUB in other contexts

Thank you!

More on Backbone Result

 $u_*(\mu_0) := \inf_{\varphi \in \Phi^S} u(\varphi)$, where $\Phi^S \subset \Phi^{BP} \subset \Delta \Delta \Omega$ is set of Bayes-Plausible stationary distrs

Theorem

In any equilibrium
$$\sigma$$
, $\liminf_n \mathbb{E}_{\sigma,\mu_0}[u_n] \ge u_*(\mu_0)$.

When all stationary beliefs have adeq knowl, u_* is full-information utility, so adeq learning.

Proof idea:

 Φ^{BP} is compact, even when $\Delta\Delta\Omega$ is not $(\Delta\Delta\Omega$ metrized by Prohorov)

Fix small $\varepsilon>0$ and let Φ^S_ε be an $\varepsilon\text{-nbhd}$ of Φ^S

Expected improvement $I(\varphi)$ is cts, so attains minimum $\delta(\varepsilon) > 0$ over $(\Phi^S_{\varepsilon})^c$ (closed hence compact) Whereas for $\varphi \in \Phi^S_{\varepsilon}$, $u(\varphi) > u_* - \gamma(\varepsilon)$, with $\gamma(\varepsilon) \to 0$ as $\varepsilon \to 0$ (using unif cont of u)

By an improvement principle, $\liminf_n \mathbb{E}u_n \ge u_* - \gamma(\varepsilon)$ (this step adapts ADLO '11)

- E.g., consider immediate-predecessor network
- Each $\mathbb{E}u_n \ge \min\{u_* \gamma(\varepsilon), \mathbb{E}u_{n-1} + \delta(\varepsilon)\}$
- Iterate

Result follows $\because \varepsilon > 0$ is arbitrary