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Motivation (1)

Sequential observational learning model (Banerjee ’92; BHW ’92)

unknown state ω ∈ Ω

each n = 1, 2, . . . takes action an ∈ A finite

using private signal and history of actions

homogenous prefs u(a, ω)

Many extensions, variations

Q: does society eventually learn ω?

A: Unbounded vs. bounded beliefs/signals (Smith & Sørensen ’00)

Given any prior,
∼ can private beliefs → certainty about every ω?

∼ are private beliefs bounded away from 0 about every ω?
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Motivation (2)

Unbounded beliefs =⇒ learning for all prefs

Bounded beliefs =⇒ nonlearning for all (nontrival) prefs

Essentially exhaustive with two states (most papers)

But with multiple states, a large gap

Suppose Ω = {1, 2, 3} and signals N (ω, 1)

Neither unbounded nor bounded!

→ can become certain about 1 or 3 but not 2

So is there learning? Say with u(a, ω) = −(a− ω)2
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This Paper

Prefs satisfying single-crossing differences (SCD)

widely-used property (Milgrom & Shannon ’94)

but not previously for learning

satisfied by quadratic loss

Information satisfying directionally unbounded beliefs (DUB)

new property

→ can get certainty about each state vs. lower/upper sets

weaker than unbounded beliefs

satisfied by normal information

Main result

SCD & DUB are a minimal pair of sufficient conditions for learning
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Model



Environment

Countable set of states Ω ⊂ R (finite or infinite)

so states are ordered

Signal set S ⊂ R, either countable or interval

order not needed for main result

but is when we invoke MLRP

Action set A; countable choice set A ⊆ A

Signal structure f(s|ω)

assume no signal can exclude any state: f(·) > 0

technical: ∀s f(s|·) is bounded
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The Game

State ω drawn from pmf µ0 ∈ ∆Ω; unobservable

Agents 1, 2, . . . sequentially select actions

agent n chooses an ∈ A at date n ∈ N

after observing indep private signal sn ∼ f(·|ω)

and action history hn ≡ (a1, . . . , an−1) ∈ An−1

Strategy σn : S ×An−1 → ∆A

All agents have vNM utility u : A× Ω→ R

Bayes Nash equilibria (or refinements)
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Learning (1)

Given prior µ0, info structure f , and strategies (σn),
every history induces a public belief µ(hn) ∈ ∆Ω

Let µ̃n denote corresponding r.v.

〈µ̃n〉 is a martingale that →a.s. µ̃
∗

Intuitively, learning if, a.s., µ̃∗ allows agents to make correct decisions
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Learning (2)

For µ ∈ ∆Ω, let c(µ) ≡ argmax
a∈A

Eµ[u(a, ω)] (omitting dependence of c on A)

Let Q be beliefs with adequate knowledge: Q ≡ {µ :
⋂

ω∈Suppµ
c(ω) 6= ∅}

→ no gain to learning anything further

Definition

Fix prefs u and info structure f .

1 There is adequate learning if for every choice set, every prior, and
every equilibrium, Pr (µ̃∗ ∈ Q) = 1.

2 There is inadequate learning if for some choice set and prior,
in every equilibrium Pr (µ̃∗ ∈ Q) < 1.

(1): asympt. take correct actions

(2): asympt. sometimes take incorrect actions, for some choice set and prior

For what (u, f) is there adequate learning?
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SCD Preferences

and

DUB Information



Single-Crossing Differences

h : R→ R\{0} is single crossing if either

∀x < x′: h(x) > 0 =⇒ h(x′) ≥ 0;

or

∀x < x′: h(x) < 0 =⇒ h(x′) ≤ 0.

Definition

Utility u : A× Ω→ R has single-crossing differences (SCD) if

∀a, a′ : u(a, ω)− u(a′, ω) is single crossing in ω.

∼ Milgrom & Shannon ’94 / Athey ’01, but w/o order on A (KLR ’19)

implied by supermodularity

SCD ⇐⇒ interval choice:

∀ choice sets and ω1 < ω2 < ω3, {a} = c(ω1) ∩ c(ω3) =⇒ a ∈ c(ω2)
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Directionally Unbounded Beliefs

Definition

Signal structure f(s|ω) has directionally unbounded beliefs (DUB) if ∀ω:

(i) ∃ (si) s.t. ∀ω′ < ω, lim
i→∞

f(si|ω′)
f(si|ω)

= 0; and

(ii) ∃ (si) s.t. ∀ω′ > ω, lim
i→∞

f(si|ω′)
f(si|ω)

= 0.

+ uniform boundedness condition for Ω infinite

(i) ⇐⇒ can simultaneously distinguish ω from all lower states

given any prior µ with µ(ω) > 0, can rule out {ω′ : ω′ < ω}

(ii) ⇐⇒ can simultaneously distinguish ω from all higher states

given any prior µ with µ(ω) > 0, can rule out {ω′ : ω′ < ω}

May not sim distinguish ω from both lower and higher states! (UB)

Normal info:
f(s|ω) = ω +N (0, 1) Violation
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µ

µ′

µ′′

µ

10 / 16



Main Result



Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

A key fact for the proof

Given (u, f,A), say that µ ∈ ∆Ω is stationary if a.s. c(µs) = c(µ)

(µs is posterior; assume unique choices)

Adeq learning ⇐⇒ all stationary beliefs have adeq knowledge (µ ∈ Q)

=⇒ if µ /∈ Q is stationary, consider the prior being µ

⇐= all limits beliefs are stationary (Arieli & Muller-Frank ’19)

Nb: adeq knowledge means no value of any info;

stationary means no value of info from f(s|ω)
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Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

Intuition for part 1:

In general, µ /∈ Q may be stationary ∵ mismatch between prefs and info

SCD =⇒ if µ /∈ Q then ∃ω∗ ∈ Suppµ s.t.

u(c(ω∗), ω∗) > u(c(µ), ω∗) and

u(c(ω∗), ω) ≥ u(c(µ), ω) ∀ω > ω∗ or ∀ω < ω∗

DUB =⇒ ∃ signals that rule out {ω : ω < ω∗} and {ω : ω > ω∗}
→ c(µ) not chosen after those signals

So SCD + DUB =⇒ any µ /∈ Q is not stationary (faulty intuition) 11 / 16



Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

Intuition for part 1:
test

a3

a2
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3

µ

a1 a2
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Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

Intuition for part 2:

a3

a2

1 2

3

µ

In fact: given non-SCD prefs, any DUB and MLRP info =⇒ inadequate learning
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Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

Intuition for part 3:

a∗

a

1 2

3

µ a∗a

1 2

3

µ′

µ

Trickier case in right panel: what if certainty possible about extreme states?

May need to restrict prior’s support 11 / 16



Learning with SCD & DUB

Theorem

1 SCD prefs & DUB info =⇒ adequate learning.

2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and |Ω| <∞, then ∃ SCD prefs with inadeq learning.

Intuition for part 3:

a∗

a

1 2

3

µ a∗a

1 2

3

µ′

µ

In fact: Assume MLRP and not DUB.
∃ SCD prefs s.t. there is inadeq learning for any full support prior.
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Discussion



DUB in Location Families

Location family: S = R and for some density g, f(s|ω) = g(s− ω)

e.g., Normal info

Intuitively, DUB requires a thin tail of standard density g

g strictly subexponential: ∃p > 1 s.t. g(x) < exp[−|x|p] for large |x|

Proposition

In a location family, DUB holds if g is strictly subexponential.

If g is exponential then g(s−ω′)/g(s−ω) = exp(ω′−ω) is indep of s

An even thicker tail (superexp) makes extreme signals uninformative

So Laplace, Cauchy, Student-t distrs fail DUB
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Unbounded Beliefs

Restrict to finite Ω, for simplicity

Unbounded beliefs: ∀ω ∃ (si) s.t. ∀ω′ 6= ω, lim
i→∞

f(si|ω′)
f(si|ω)

= 0.

(Smith & Sørensen ’00; “totally unbounded” in Arieli & Mueller-Frank ’19)

Each ω can be simultaneously distinguished from all others

DUB weaker ∵ for each ω, separately distinguish upper and lower sets

Unbounded beliefs ⇐⇒ adeq learning for all preferences

But unbounded beliefs very demanding with more than two states

Proposition

Assume |Ω| > 2. MLRP =⇒ not unbounded beliefs.

So, with multiple states, must restrict prefs to obtain learning
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Pairwise Unbounded Beliefs

Pairwise unbounded beliefs: ∀ω ∀ω′ 6= ω ∃ (si) s.t. lim
i→∞

f(si|ω′)
f(si|ω)

= 0.

(Arieli & Mueller-Frank ’19)

Each ω can be distinguished from every other, but not simultaneously

DUB is stronger: simultaneously distinguish each ω from its upper set

and its lower set

Pairwise UB is not sufficient for adeq learning under SCD

But pairwise UB is necessary for adeq learning

over any “minimally-rich” class of preferences

Proposition

Assume MLRP. Pairwise UB ⇐⇒ DUB.

So, given MLRP, DUB is unavoidable for adeq learning
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On Bounded Beliefs

Bounded beliefs: ∀ω, ω′, f(s|ω′)
f(s|ω) is bounded above in s

A natural notion, generalizing two-state case

But stronger than just ruling out certainty about any state

Negation of pairwise unbounded beliefs (for every pair)

So incompatible with DUB

Guarantees inadequate learning for all nontrivial prefs
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Conclusion



Conclusion

Recap:

Std condition, unbounded beliefs, very demanding with > 2 states

Study learning under economic pref restriction with ordered states

New informational condition: DUB

→ weaker than unbounded beliefs

→ rules out bounded beliefs

DUB info and SCD prefs are minimal pair
of suff conditions for adequate learning

Future directions:

Extend to other obsv learning environments (e.g., partial histories)

Speed of convergence?

Is DUB useful in other contexts?
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Thank you!



Faulty Intuition for Sufficiency

(thm)

Take µ with inadequate knowledge

1 SCD implies different optimal actions at extreme states of Suppµ

2 DUB implies potential certainty about extreme states of Suppµ

3 µ is non-stationary

Is learning about SCD or different optimal actions at extreme states?

Our result applies to infinite states and weak SCD environments
where above logic fails

→ Not about responsive preferences



Faulty Intuition for Sufficiency

(thm)

Let Ω = Z and A = Z ∪ {a∗}

u(a, ω) =


1 if a = ω

0 if a /∈ {ω, a∗}
1− ε if a = a∗

For small ε > 0, a∗ is a safe action but suboptimal in every state

Different optimal action in every state, but u violates SCD

Suppose s ∼ N (ω, 1). For any full support prior

• signals cannot provide certainty about any state

• for small enough ε > 0 the prior is stationary
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