Observational Learning with Ordered States

Navin Kartik SangMok Lee Daniel Rappoport

May 2021

Motivation (1)

 ■ Sequential observational learning model (Banerjee '92; BHW '92) unknown state ω ∈ Ω
 each n = 1, 2, ... takes action a_n ∈ A <u>finite</u> using private signal and history of actions
 homogenous prefs u(a, ω)

- Many extensions, variations
- **Q**: does society eventually learn ω ?
- A: Unbounded vs. bounded beliefs/signals (Smith & Sørensen '00)
 Given any prior,
 ~ can private beliefs → certainty about every ω?
 ~ are private beliefs bounded away from 0 about every ω?

Motivation (2)

- Unbounded beliefs ⇒ learning for all prefs Bounded beliefs ⇒ nonlearning for all (nontrival) prefs
- Essentially exhaustive with two states (most papers)
- But with multiple states, a large gap
- \blacksquare Suppose $\Omega = \{1,2,3\}$ and signals $\mathcal{N}(\omega,1)$

Neither unbounded nor bounded!

 \rightarrow can become certain about 1 or 3 but not 2

So is there learning? Say with $u(a, \omega) = -(a - \omega)^2$

This Paper

- Prefs satisfying single-crossing differences (SCD) widely-used property (Milgrom & Shannon '94) but not previously for learning satisfied by quadratic loss
- Information satisfying directionally unbounded beliefs (DUB) new property
 - \rightarrow can get certainty about each state vs. lower/upper sets weaker than unbounded beliefs satisfied by normal information
- Main result

SCD & DUB are a minimal pair of sufficient conditions for learning

Literature

Most related (will elaborate later)

- Smith & Sørensen '00
- Arieli & Mueller-Frank '19

Other mechanisms for learning

- Infinite actions with responsive prefs Lee '93; Ali '18
- Suitably heterogenous preferences Goeree, Palfrey, Rogers '06
- Prices/congestion costs
 Avery & Zemsky '98; Eyster, Galeotti, Kartik, Rabin '14

Things we don't tackle

- Partial observation of history Acemoglu, Dahleh, Lobel, Ozdaglar '11
- Speed of convergence Rosenberg & Vielle '19

Model

Environment

- Countable set of states Ω ⊂ ℝ (finite or infinite) so states are ordered
- Signal set S ⊂ R, either countable or interval order not needed for main result but is when we invoke MLRP
- Action set \mathcal{A} ; countable choice set $A \subseteq \mathcal{A}$
- Signal structure $f(s|\omega)$

assume no signal can exclude any state: $f(\cdot) > 0$ technical: $\forall s \ f(s|\cdot)$ is bounded

The Game

- State ω drawn from pmf $\mu_0 \in \Delta\Omega$; unobservable
- Agents 1, 2, ... sequentially select actions agent n chooses a_n ∈ A at date n ∈ N after observing indep private signal s_n ~ f(·|ω) and action history hⁿ ≡ (a₁,..., a_{n-1}) ∈ Aⁿ⁻¹

Strategy
$$\sigma_n: S \times A^{n-1} \to \Delta A$$

- All agents have vNM utility $u: \mathcal{A} \times \Omega \to \mathbb{R}$
- Bayes Nash equilibria (or refinements)

Learning (1)

- Given prior μ_0 , info structure f, and strategies (σ_n) , every history induces a public belief $\mu(h^n) \in \Delta\Omega$
- Let $\tilde{\mu}_n$ denote corresponding r.v.
- ${\rm ~~}\langle \tilde{\mu}_n \rangle$ is a martingale that $\rightarrow_{\rm a.s.} \tilde{\mu}^*$
- \blacksquare Intuitively, learning if, a.s., $\tilde{\mu}^*$ allows agents to make correct decisions

Learning (2)

For $\mu \in \Delta\Omega$, let $c(\mu) \equiv \underset{a \in A}{\operatorname{argmax}} \mathbb{E}_{\mu}[u(a, \omega)]$ (omitting dependence of c on A)

Let Q be beliefs with adequate knowledge: $Q \equiv \{\mu : \bigcap_{\omega \in \text{Supp } \mu} c(\omega) \neq \emptyset\}$

 \rightarrow no gain to learning anything further

Definition

Fix prefs u and info structure f.

- **1** There is adequate learning if for every choice set, every prior, and every equilibrium, $Pr(\tilde{\mu}^* \in Q) = 1$.
- 2 There is inadequate learning if for some choice set and prior, in every equilibrium Pr (µ̃* ∈ Q) < 1.</p>
- (1): asympt. take correct actions

(2): asympt. sometimes take incorrect actions, for some choice set and prior

For what (u, f) is there adequate learning?

SCD Preferences and DUB Information

Single-Crossing Differences

$$\begin{split} h: \mathbb{R} &\to \mathbb{R} \backslash \{0\} \text{ is single crossing if either} \\ &\forall x < x': \ h(x) > 0 \implies h(x') \geq 0; \\ &\text{or} \\ &\forall x < x': \ h(x) < 0 \implies h(x') \leq 0. \end{split}$$

Definition

Utility $u : \mathcal{A} \times \Omega \to \mathbb{R}$ has single-crossing differences (SCD) if $\forall a, a' : u(a, \omega) - u(a', \omega)$ is single crossing in ω .

 \sim Milgrom & Shannon '94 / Athey '01, but w/o order on ${\cal A}$ ~ (KLR '19) implied by supermodularity

SCD \iff interval choice:

 $\forall \text{ choice sets and } \omega_1 < \omega_2 < \omega_3, \ \{a\} = c(\omega_1) \cap c(\omega_3) \implies a \in c(\omega_2)$

Directionally Unbounded Beliefs

Definition

Signal structure $f(s|\omega)$ has directionally unbounded beliefs (DUB) if $\forall \omega$:

(i)
$$\exists (\bar{s}_i) \text{ s.t. } \forall \omega' < \omega, \lim_{i \to \infty} \frac{f(\bar{s}_i | \omega')}{f(\bar{s}_i | \omega)} = 0; \text{ and}$$

(ii) $\exists (\underline{s}_i) \text{ s.t. } \forall \omega' > \omega, \lim_{i \to \infty} \frac{f(\underline{s}_i | \omega')}{f(\underline{s}_i | \omega)} = 0.$

+ uniform boundedness condition for $\boldsymbol{\Omega}$ infinite

- (i) \iff can simultaneously distinguish ω from all lower states given any prior μ with $\mu(\omega) > 0$, can rule out $\{\omega' : \omega' < \omega\}$
- (ii) \iff can simultaneously distinguish ω from all higher states given any prior μ with $\mu(\omega) > 0$, can rule out $\{\omega' : \omega' < \omega\}$

May not sim distinguish ω from both lower and higher states!

Main Result

Theorem

 $\bullet SCD prefs \& DUB info \implies adequate learning.$

- ② If prefs fail SCD, then ∃ DUB info with inadequate learning.
- **3** If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.
- A key fact for the proof
 - Given (u, f, A), say that $\mu \in \Delta \Omega$ is stationary if a.s. $c(\mu_s) = c(\mu)$ $(\mu_s \text{ is posterior; assume unique choices})$
 - Adeq learning \iff all stationary beliefs have adeq knowledge $(\mu \in Q)$

 \implies if $\mu \notin Q$ is stationary, consider the prior being μ

← all limits beliefs are stationary (Arieli & Muller-Frank '19)

■ Nb: adeq knowledge means no value of any info; stationary means no value of info from f(s|ω)

Theorem

 $\bullet SCD prefs \& DUB info \implies adequate learning.$

② If prefs fail SCD, then ∃ DUB info with inadequate learning.

3 If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.

Intuition for part 1:

In general, $\mu \notin Q$ may be stationary \because mismatch between prefs and info

• SCD
$$\implies$$
 if $\mu \notin Q$ then $\exists \omega^* \in \operatorname{Supp} \mu$ s.t.

 $u(c(\omega^*),\omega^*)>u(c(\mu),\omega^*)$ and

 $u(c(\omega^*),\omega) \geq u(c(\mu),\omega) \ \ \forall \omega > \omega^* \text{ or } \forall \omega < \omega^*$

■ DUB $\implies \exists$ signals that rule out $\{\omega : \omega < \omega^*\}$ and $\{\omega : \omega > \omega^*\}$ $\rightarrow c(\mu)$ not chosen after those signals

 $\blacksquare \ {\rm So} \ {\rm SCD} \, + \, {\rm DUB} \implies \ {\rm any} \ \mu \notin Q \ {\rm is \ not \ stationary}$

Theorem

$\textbf{0} \text{ SCD prefs \& DUB info} \implies \text{adequate learning.}$

- 2 If prefs fail SCD, then ∃ DUB info with inadequate learning.
- **3** If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.

Intuition for part 1:

Theorem

- 1 SCD prefs & DUB info \implies adequate learning.
- Ø If prefs fail SCD, then ∃ DUB info with inadequate learning.
- **3** If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.

Intuition for part 2:

In fact: given non-SCD prefs, any DUB and MLRP info \implies inadequate learning

Theorem

- 1 SCD prefs & DUB info \implies adequate learning.
- 2 If prefs fail SCD, then ∃ DUB info with inadequate learning.

③ If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.

Intuition for part 3:

Trickier case in right panel: what if certainty possible about extreme states? May need to restrict prior's support

Theorem

- 1 SCD prefs & DUB info \implies adequate learning.
- ② If prefs fail SCD, then ∃ DUB info with inadequate learning.
- ${f 8}$ If info fails DUB and $|\Omega| < \infty$, then \exists SCD prefs with inadeq learning.

Intuition for part 3:

In fact: Assume MLRP and not DUB. \exists SCD prefs s.t. there is inadeq learning for any full support prior.

Discussion

DUB in Location Families

Location family: $S = \mathbb{R}$ and for some density g, $f(s|\omega) = g(s - \omega)$

- e.g., Normal info
- \blacksquare Intuitively, DUB requires a thin tail of standard density g

g strictly subexponential: $\exists p>1$ s.t. $g(x)<\exp[-|x|^p]$ for large |x|

Proposition

In a location family, DUB holds if g is strictly subexponential.

- \blacksquare If g is exponential then $g(s-\omega')/g(s-\omega)=\exp(\omega'-\omega)$ is indep of s
- An even thicker tail (superexp) makes extreme signals uninformative
- So Laplace, Cauchy, Student-t distrs fail DUB

Unbounded Beliefs

Restrict to finite $\Omega,$ for simplicity

Unbounded beliefs: $\forall \omega \exists (s_i) \text{ s.t. } \forall \omega' \neq \omega, \lim_{i \to \infty} \frac{f(s_i | \omega')}{f(s_i | \omega)} = 0.$

(Smith & Sørensen '00; "totally unbounded" in Arieli & Mueller-Frank '19)

- Each ω can be simultaneously distinguished from all others
- **DUB** weaker : for each ω , separately distinguish upper and lower sets
- Unbounded beliefs adeq learning for all preferences
- But unbounded beliefs very demanding with more than two states

Proposition

Assume $|\Omega| > 2$. MLRP \implies not unbounded beliefs.

So, with multiple states, must restrict prefs to obtain learning

Pairwise Unbounded Beliefs

Pairwise unbounded beliefs: $\forall \omega \ \forall \omega' \neq \omega \ \exists \ (s_i) \ \text{s.t.} \ \lim_{i \to \infty} \frac{f(s_i | \omega')}{f(s_i | \omega)} = 0.$

(Arieli & Mueller-Frank '19)

- Each ω can be distinguished from every other, but not simultaneously
- DUB is stronger: simultaneously distinguish each ω from its upper set and its lower set
- Pairwise UB is not sufficient for adeq learning under SCD
- But pairwise UB is necessary for adeq learning over any "minimally-rich" class of preferences

Proposition

Assume MLRP. Pairwise UB \iff DUB.

So, given MLRP, DUB is unavoidable for adeq learning

On Bounded Beliefs

Bounded beliefs: $\forall \omega, \omega'$, $\frac{f(s|\omega')}{f(s|\omega)}$ is bounded above in s

- A natural notion, generalizing two-state case
- But stronger than just ruling out certainty about any state
- Negation of pairwise unbounded beliefs (for every pair)
- So incompatible with DUB
- Guarantees inadequate learning for all nontrivial prefs

Conclusion

Conclusion

Recap:

- \blacksquare Std condition, unbounded beliefs, very demanding with >2 states
- Study learning under economic pref restriction with ordered states
- New informational condition: DUB
 - \rightarrow weaker than unbounded beliefs
 - \rightarrow rules out bounded beliefs
- DUB info and SCD prefs are minimal pair of suff conditions for adequate learning

Future directions:

- Extend to other obsv learning environments (e.g., partial histories)
- Speed of convergence?
- Is DUB useful in other contexts?

Thank you!

Faulty Intuition for Sufficiency

- Take µ with inadequate knowledge
 - $oldsymbol{0}$ SCD implies different optimal actions at extreme states of $\operatorname{Supp}\mu$
 - ${f 0}$ DUB implies potential certainty about extreme states of ${
 m Supp}\,\mu$
 - $\mathbf{8} \ \mu$ is non-stationary
- Is learning about SCD or different optimal actions at extreme states?
- Our result applies to infinite states and weak SCD environments where above logic fails
 - \rightarrow Not about responsive preferences

Faulty Intuition for Sufficiency

• Let $\Omega = \mathbb{Z}$ and $A = \mathbb{Z} \cup \{a^*\}$

$$u(a,\omega) = \begin{cases} 1 & \text{if } a = \omega \\ 0 & \text{if } a \notin \{\omega, a^*\} \\ 1 - \varepsilon & \text{if } a = a^* \end{cases}$$

 \blacksquare For small $\varepsilon>0,~a^*$ is a safe action but suboptimal in every state

Different optimal action in every state, but u violates SCD

Suppose $s \sim \mathcal{N}(\omega, 1)$. For any full support prior

- signals cannot provide certainty about any state
- for small enough $\varepsilon > 0$ the prior is stationary