Lemonade from Lemons:

Information Design with Interdependent Values

Navin Kartik Weijie Zhong

April 2021

Introduction

■ Asymmetric information can affect market outcomes

- (in)efficiency \& distribution

■ Various mechanisms can alter—help or hurt—outcomes

- Our paper: information design
- fix a canonical interdependent-values trading environment
- characterize all outcomes as participants' info varies
\rightarrow interested in more than just efficiency
- Interpretations
- designer with some objective (e.g., regulator)
- predictions across info structures

Punchlines

- Information design can achieve a lot
- with no restrictions, all feasible and "indiv. rational" payoffs
- restrictions to canonical classes of info do matter; but not in some salient cases
- Methodological contributions
- allow information to vary on both sides of market
- identify role of canonical information classes

Example

Example (1)

■ Seller can sell one indivisible good

	$\operatorname{Prob}(1 / 2)$	$\operatorname{Prob}(1 / 2)$
Buyer's valuation v	1	2
Seller's cost $c(v)$	$1 / 2$	2

- Seller posts a TIOLI price $p \in \mathbb{R}$
- Payoffs:

	Seller	Buyer
No trade	0	0
Trade	$p-c(v)$	$v-p$

■ Akerlof benchmark: Fully-informed Buyer; Uninformed Seller

- eqm price $p=2$ (or $p>2$); no gains from trade; foregone surplus $1 / 4$

Example (2)

■ Both informed: eqm price $p=v$; all surplus to Seller

Example (2)

■ Both informed: eqm price $p=v$; all surplus to Seller
■ \exists Seller info (with informed Buyer) giving all surplus to Buyer?

- Yes: reveal $c=2$ sometimes and o-wise induce belief with $\mathbb{E} c=1$. Upon latter, Seller prices at 1, efficient trade, no surplus to Seller.
- All points in \triangle with some Seller info (and informed Buyer)

■ Feasibility $+\mathrm{IR} \Longrightarrow$ nothing else implemented with any info design

Example (3)

	$\operatorname{Prob}(1 / 2)$	$\operatorname{Prob}(1 / 2)$
Buyer's valuation v	1	2
Seller's cost $c(v)$	$\mathbf{0 . 3}$	$\mathbf{1 . 8}$

■ Akerlof benchmark: $p=2$; still inefficient, but some gains from trade

Example (3)

	$\operatorname{Prob}(1 / 2)$	$\operatorname{Prob}(1 / 2)$
Buyer's valuation v	1	2
Seller's cost $c(v)$	$\mathbf{0 . 3}$	$\mathbf{1 . 8}$

■ Akerlof benchmark: $p=2$; still inefficient, but some gains from trade

■ Implement other payoffs with some Buyer info and uninformed Seller
■ In fact, a superset of those with fully-informed Buyer

Example (4)

■ Nothing else implementable if Buyer more informed than Seller

- But o-wise can implement still more
- e.g., Uninformed Buyer; with ε pr. Seller is informed of $v=1$ Seller's $p \approx \mathbb{E} c$ indep of signal; Buyer gets approx entire surplus
\rightarrow Seller's info makes off-path belief that $v=1$ credible
- Using joint info design, can fill in the entire feasible \& IR \triangle

General Results

■ Uninformed Seller sufficient for more-informed Buyer

- more generally, if Buyer does not update from price
- All three triangles coincide if and only if either
- Akerlof info can generate full trade
- Akerlof info can generate no trade

Literature

Monopoly pricing

- BBM 2015
- Roesler, Szentes 2017

Info design in games

- Berg, Morris 2016
- Doval, Ely 2020
- Makris, Renou 2021

Others

- Kessler 2001; Levin 2001
- Bar-Isaac, Jewitt, Leaver 2020

Model

Model

- Buyer's valuation: $v \in[\underline{v}, \bar{v}]$; prior μ with support V

■ Seller's cost: $c(v) \leq v$, continuous with $\mathbb{E}[v-c(v)]>0$
■ Private signals $t_{b}, t_{s} \sim P\left(t_{b}, t_{s} \mid v\right)$: info structure; design variable \rightarrow private signals are wlog

■ Seller posts a price $p \in \mathbb{R}$; Buyer decides whether to accept

- Seller, Buyer vNM payoffs: $\begin{cases}(0,0) & \text { if no trade } \\ (p-c(v), v-p) & \text { if trade }\end{cases}$
- weak Perfect Bayesian Equilibrium
+ strengthenings
Nb : not assuming $c(v) \uparrow$
subsumes monopoly pricing, adverse or favorable selection

Canonical Info Structures and Payoff Sets

$\Gamma \equiv(c(v), \mu)$ is the environment
Canonical information classes
■ T: all (joint) info structures
■ $\mathbf{T}_{m b}$: Buyer more informed than Seller, i.e., t_{b} is suff statistic for v
$■ \mathbf{T}_{u s}$: Seller uninformed (singleton signal space)

- $\mathbf{T}_{f b}$: Buyer fully informed of v

Implementable payoffs
■ $\Pi(\Gamma)$: payoff vectors across all info structures and all wPBE
■ $\Pi^{*}(\Gamma)$: subset with price-independent beliefs
\rightarrow Buyer does not update from price, after conditioning on t_{b}
\rightarrow implied by NSWYDK if Buyer more informed
■ $\Pi_{i}^{*}(\Gamma)$: further subset when information structure is restricted to class $i=m b, u s, f b$

$$
\boldsymbol{\Pi}_{u s}^{*}(\Gamma) \cup \boldsymbol{\Pi}_{f b}^{*}(\Gamma) \subset \boldsymbol{\Pi}_{m b}^{*}(\Gamma) \subset \mathbf{\Pi}^{*}(\Gamma) \subset \boldsymbol{\Pi}(\Gamma)
$$

Results

All Info Structures

$$
\text { Total surplus: } \mathbb{E}[v-c(v)] \equiv S(\Gamma)
$$

Seller guarantee: $\max \{\underline{v}-\mathbb{E}[c(v)], 0\} \equiv \underline{\pi}_{s}(\Gamma)$
Buyer guarantee: 0

Theorem (All info structures and equilibria.)

$$
\boldsymbol{\Pi}(\Gamma)=\left\{\begin{array}{ll}
& \pi_{b} \geq 0 \\
\left(\pi_{b}, \pi_{s}\right): & \pi_{s} \geq \pi_{s}(\Gamma) \\
& \pi_{b}+\pi_{s} \leq S(\Gamma)
\end{array}\right\}
$$

Moreover, $\forall \varepsilon>0 \exists$ a finite information structure and price grid whose set of sequential equilibrium payoffs is an ε-net of $\Pi(\Gamma)$.

Nb : a single information structure implements entire payoff set

Proof of All-Info Theorem

Assume, for simplicity, $\underline{v} \geq \mathbb{E}[c(v)]$.
■ Neither player receives any information

- Seller randomizes between $p_{l} \in[\underline{v}, \mathbb{E}[v]]$ and $p_{h}=\mathbb{E}[v]$
\rightarrow two parameters: p_{l} and $\sigma\left(p_{l}\right)$
Buyer accepts p_{l} but randomizes after p_{h} to make Seller indifferent

$$
\pi_{s}=p_{l}-\mathbb{E}[c(v)], \pi_{b}=\sigma\left(p_{l}\right)\left(\mathbb{E}[v]-p_{l}\right)
$$

- As $p_{l} \uparrow, \pi_{s}$ traverses $\left[\underline{\pi}_{s}(\Gamma), S(\Gamma)\right]$

As $\sigma\left(p_{l}\right) \uparrow, \pi_{b}$ traverses $\left[0, S(\Gamma)-\pi_{s}\right]$
■ Off path Buyer belief is $v=\underline{v}$, so Buyer rejects all off-path $p \geq \underline{v}$

- Violates NSWYDK (consider monopoly pricing) $)^{-}$ But can be modified: e.g., if $\operatorname{Pr}(\underline{v})>0$, Seller occasionally learns \underline{v} In fact, get sequential eqm-even "D1"-in discretizations

More-informed Buyer

$$
\underline{\pi}_{s}^{u s}(\Gamma) \equiv \inf \left\{\pi_{s}: \exists\left(\pi_{b}, \pi_{s}\right) \in \mathbf{\Pi}_{u s}^{*}(\Gamma)\right\}
$$

Theorem (Equilibria with price-independent beliefs.)
(1) $\Pi^{*}(\Gamma)=\Pi_{m b}^{*}(\Gamma)=\Pi_{u s}^{*}(\Gamma)$.
(2) $\Pi_{u s}^{*}(\Gamma)=\left\{\left(\pi_{b}, \pi_{s}\right) \in \boldsymbol{\Pi}(\Gamma): \pi_{s} \geq \underline{\pi}_{s}^{u s}(\Gamma)\right\}$.
(3) $\forall\left(\pi_{b}, \pi_{s}\right) \in \Pi_{u s}^{*}(\Gamma)$ with $\pi_{s}>\underline{\pi}_{s}^{u s}(\Gamma)$, $\exists \tau \in \mathbf{T}_{u s}$ s.t. all equilibria have payoffs $\left(\pi_{b}, \pi_{s}\right)$.

- Given price-indep beliefs, uninformed Seller is sufficient
- Only additional constraint now is $\underline{\pi}_{s}^{u s}(\Gamma) \geq \underline{\pi}_{s}(\Gamma)$. Inequality is strict if $\underline{v} \leq \mathbb{E}[c(v)]$ and $c(v)<v \forall v$.
- Unique implementation

Price-indep Beliefs Theorem: Proof Sketch

- With price-indep beliefs, $\pi_{s} \geq \underline{\pi}_{s}^{u s}(\Gamma)$
- price-indep beliefs \Longrightarrow info cannot hurt Seller

■ Show $\underline{\pi}_{s}^{u s}(\Gamma)$ is implementable with some $\tau^{*} \in \mathbf{T}_{u s}$ (i.e., $\inf =\min$)

Lemma

$\forall\left(\pi_{b}, \pi_{s}\right) \in \Pi(\Gamma)$ with $\pi_{s}>\underline{\pi}_{s}^{u s}(\Gamma)$,
\exists garbling of τ^{*} s.t. all equilibria have payoffs $\left(\pi_{b}, \pi_{s}\right)$.
Suppose τ^{*} has fully-informed Buyer and prior μ has density:

Identify z^{*} and $p^{*} \in\left[z^{*}, \mathbb{E}\left[v \mid v>z^{*}\right]\right]$:

- $z^{*} \leftarrow$ Surplus: $\pi_{s}+\pi_{b}=\operatorname{Pr}\left(v>z^{*}\right) \mathbb{E}\left[v-c(v) \mid v>z^{*}\right]$
- $p^{*} \leftarrow$ Seller payoff: $\pi_{s}=\operatorname{Pr}\left(v>z^{*}\right) \mathbb{E}\left[p^{*}-c(v) \mid v>z^{*}\right]$

Fully-Informed Buyer

$$
\underline{\pi}_{s}^{f b}(\Gamma) \equiv \sup _{p} \int_{p}^{\bar{v}}(p-c(v)) \mu(\mathrm{d} v)
$$

Theorem (Fully-informed Buyer, w/ price-indep beliefs.)
(1) $\boldsymbol{\Pi}_{f b}^{*}(\Gamma)=\left\{\left(\pi_{b}, \pi_{s}\right) \in \boldsymbol{\Pi}(\Gamma): \pi_{s} \geq \underline{\pi}_{s}^{f b}(\Gamma)\right\}$.
(2) $\forall\left(\pi_{b}, \pi_{s}\right) \in \Pi_{f b}^{*}(\Gamma)$ and $\varepsilon>0$,
$\exists \tau \in \mathbf{T}_{f b}$ with all eqm payoffs in ε-ngbhd of $\left(\pi_{b}, \pi_{s}\right)$.

- Of course, $\underline{\pi}_{s}^{f b}(\Gamma) \geq \underline{\pi}_{s}^{u s}(\Gamma)$; strictly if $\underline{\pi}_{s}^{f b}(\Gamma)>\underline{\pi}_{s}(\Gamma)$
- Proof via "incentive compatible distributons", generalizing Bergemann, Brooks \& Morris' (2015) "extreme markets"
- Approx. unique implementation

In Sum

Extensions/other issues:

- characterizing uninformed-Seller bound $\pi_{s}^{u s}(\checkmark$ linear v)
- more general correlation in $c, v(\checkmark$ if $c \leq v)$

■ negative trading surplus (\checkmark for all info structures; nonlinear frontier)

- other mechanisms
- if $\underline{v}-\mathbb{E}[c(v)] \leq 0$, cannot implement any more s.t. participation
- if $\underline{v}-\mathbb{E}[c(v)]>0$, mech design is useful

Thank you!

