Informative Cheap Talk in Elections

Navin Kartik Richard Van Weelden

September 2014

Cheap Talk in Elections

Motivation

Candidates talk a lot during major elections

- generally not concrete policy proposals
- rather, broad statements about policy orientation
- Voters listen, even though talk is non-binding
 - hard to hold candidates accountable
- Why? If announcements are (largely) cheap talk:
 - 1 Can campaigns convey meaningful information?
 - 2 Wouldn't politicians just say whatever gets them elected?
 - **3** Why might politicians admit non-congruent or minority views?

This Paper

- Reputation concerns ⇒ elected policymakers pander
 - re-election, post-political life, or legacy motives
- Pandering ↑ in voter uncertainty about PM's preferences
 - sufficient pandering bad for voter welfare
 - "known devil better that unknown angel"
- Under suitable conditions, informative cheap-talk campaigns
 - · claims of non-congruence believed; credible commitment to not pander
 - claims of congruence are only partially believed; anticipate pandering
- Welfare and comparative statics
 - greater reputation concerns \uparrow scope for informative cheap talk
 - informative campaigns can \uparrow or \downarrow voter welfare
 - informative campaigns can "protect" voter welfare

Relevance

- Pronouncing non-congruence in elections
 - Frequent slogan: "You may not always agree with me, but you will always know where I stand"
 - in practice, invoked to defend non-congruence
 - in our eqm, candidates effectively say this or "I share your values"
 - Evidence that candidates are not punished for appearing non-centrist

e.g. Stone and Simas (2010)

- John McCain and straight talk; John Kerry and flip-flopping in 2004
- Pandering mechanism: candidates with known, even non-centrist preferences, willing to take policy actions others wouldn't
 - Nixon goes to China
 - Russ Feingold on Patriot act, Iraq war, Clinton impeachment

Related Literature: Reputational Distortions

Bad Reputation

• Scharfstein and Stein 1990, Morris 2001, Ely and Välimäki 2003

Pandering in politics

- Cukierman and Tommasi 1998, Canes-Wrone et al. 2001, Maskin and Tirole 2004
- Over-pandering: Acemoglu et al. 2013, Fox and Stephenson 2014, Morelli and Van Weelden 2014

Our work emphasizes

- voter welfare as a function of prior
 - known devil better than unknown angel
- 2 implications for and interaction with preceding electoral campaigns

Related Literature: Non-binding Campaigns

Cheap-talk campaigns

- Complete info: Alesina 1998, Aragones et al. 2007
- Incomplete info: Harrington 1992/93, Panova 2014, Kartik and McAfee 2007 (extension), Schnackenberg 2014

Costly signaling

• Banks 1990, Callander and Wilkie 2007, Huang 2010

Our work

- different mechanism why voters value certainty about candidate's type
- post-election behavior affected by non-binding and costless campaign

2 Policymaking Stage

3 Campaign Stage

Outline

- Representative voter
- Two candidates compete for office by making cheap-talk announcements of their policy preferences/orientation
- Elected official (PM) chooses policy after privately observing some state of the world
- Voter wants policy to match state
- Candidates care about
 - being elected
 - 2 policy: may have congruent or non-congruent policy preferences
 - **3** reputation for being congruent

Model Electoral Campaigns

- Two candidates, $i \in \{A, B\}$
- Candidates have policy types (private info): either congruent or non-congruent, θ_i ∈ {0, b}
- Independent types; each candidate is congruent with prob. $p \in (0,1)$
- Simultaenous non-binding and costless messages, $m_i \in \{0, b\}$
- Voter updates belief about each candidate to $p_i(m_i)$; then elects one

Policymaking

- Elected candidate, PM, privately observes a state $s \in \mathbb{R}$
- $s \sim F$ with density f and support $[\underline{s}, \infty)$
 - allow for $\underline{s} = -\infty$ or $\underline{s} > -\infty$
 - on interior of support, f is differentiable and strictly positive
- PM chooses action $a \in \{\underline{a}, \overline{a}\} \subset \mathbb{R}$, where $\underline{a} < \overline{a}$
- Voter observes a (but not s), updates her belief about PM's type

$$\hat{p}(a, p_i) \equiv \Pr(\theta = 0|a, p_i),$$

where $p_i \in [0, 1]$ is prob. of congruence when elected

Model Voter's payoff

• Voter only cares about policy-state match:

$$u(a,s) = -(a-s)^2$$

- Welfare = voter's (ex-ante) expected utility
- Welfare maximizing rule: choose \overline{a} if and only if

$$s > s_{FB} := \frac{\bar{a} + \underline{a}}{2}$$

• Let $U(\tau)$ be exp. utility when \overline{a} chosen if and only if $s > \tau$

Cheap Talk in Elections

Politicians' payoffs

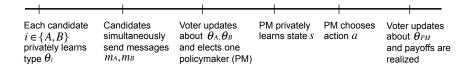
- \blacksquare If a candidate is not elected, constant payoff normalized to 0
- If elected, a candidate of type $\theta \in \{0, b\}$ receives utility

$$c - (a - s - \theta)^2 + kV(\hat{p}) + v_{\theta}$$

• c > 0, k > 0

• $V(\cdot)$ is cont. differentiable, strictly \uparrow ; normalize V(0) = 0 and V(1) = 1

• Were k = 0, a PM's cutoff would be


$$s_{\theta} := \frac{\bar{a} + \underline{a}}{2} - \theta$$

So non-congruent type, $\theta = b$, biased toward action \overline{a}

• v_{θ} chosen to equate both types' payoff from holding office were k=0

Interpreting reputational concern

- Reputational concern: legacy concerns or post-political-life benefits
- But also re-election motive
- One micro-foundation:
 - · Second-period election between incumbent and random challenger
 - Voter's belief about challenger, q_{r} is drawn from a cdf $V(\cdot)$
 - after incumbent has chosen his policy a
 - Game ends after second period, so 2nd period PM uses cutoff $s_{ heta}$
 - Hence, voter re-elects incumbent if and only if $\hat{p} \ge q$ \implies prob. of re-election is $V(\hat{p})$
 - k is the value to being re-elected (e.g. k = c, perhaps discounted)

Solution concept: Perfect Bayesian Equilibrium

Assumptions

• The state distribution F and the bias b jointly satisfy:

$$\begin{array}{l} \underline{s} < \frac{\overline{a} + \underline{a}}{2} - b; \\ \hline & \textbf{2} \end{array} \\ \text{On the domain } \left[\frac{\overline{a} + \underline{a}}{2} - b, \infty \right), \ f(\cdot) \text{ is log-convex;} \\ \hline & \mathbb{E} \left[s \middle| s \geq \frac{\overline{a} + \underline{a}}{2} - b \right] > \frac{\overline{a} + \underline{a}}{2}, \text{ or equiv, } U(\infty) < U(s_b). \end{array}$$

• Office-holding is important relative to reputation: $c \ge k$.

Policymaking Stage

Policymaking Equilibrium

PM is congruent with pr. $p \in [0,1]$; will be endogenized

 \blacksquare PM observes s and then (ignoring constants) chooses a to maximize

$$-(a-s-\theta)^2 + kV(\hat{p}(a))$$

Any eqm is in cutoffs: PM of type θ chooses \overline{a} if and only if $s > s^*_{\theta}$

- necessarily, $s_0^* < \infty$ and $s_b^* < \infty$
- we focus on interior eqa: either $s_0^* > \underline{s}$ or $s_b^* > \underline{s}$

Voter updates belief by Bayes' rule:

$$\hat{p}(\underline{a}) = \Pr(\theta = 0|\underline{a}) = \frac{pF(s_0^*)}{pF(s_0^*) + (1 - p)F(s_b^*)}$$
$$\hat{p}(\bar{a}) = \Pr(\theta = 0|\overline{a}) = \frac{p(1 - F(s_0^*))}{p(1 - F(s_0^*)) + (1 - p)(1 - F(s_b^*))}$$

Cheap Talk in Elections

Pandering

• Cutoff s_{θ}^* is solution to

$$-(\bar{a} - s_{\theta}^* - \theta)^2 + kV(\hat{p}(\bar{a})) = -(\underline{a} - s_{\theta}^* - \theta)^2 + kV(\hat{p}(\underline{a}))$$

Eqm reduces to following equations:

$$s_0^* - \underbrace{\frac{\overline{a} + \underline{a}}{2}}_{s_0} = \frac{k \left[V(\hat{p}(\underline{a})) - V(\hat{p}(\overline{a})) \right]}{2 \left(\overline{a} - \underline{a} \right)}$$

Proposition

The policymaking stage has a unique equilibrium.

1 Pandering: If $p \in (0,1)$, then $s_0^*(p,k) > s_0 = s_0^*(0,k) = s_0^*(1,k)$.

2 Comp stats: $\forall p \in (0,1)$, $s_0^*(p,k)$ is strictly \uparrow in k, with

$$\lim_{k\to 0} s_0^*(p,k) = s_0 \text{ and } \lim_{k\to\infty} s_0^*(p,k) = \infty.$$

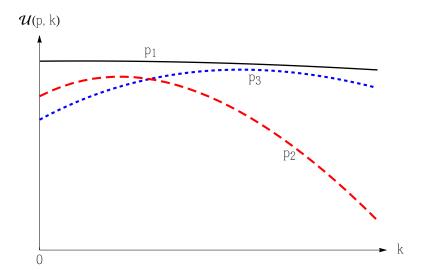
Welfare Effects of Changes in Reputation Concern

 \blacksquare Voter's welfare when PM is congruent is with prob. p is

$$\mathcal{U}(p,k) = pU(s_0^*(p,k)) + (1-p)U(s_b^*(p,k))$$

 \blacksquare For any $p\in(0,1),$ small amount of reputation concern helps:

$$\frac{\partial \mathcal{U}(p,0)}{\partial k} > 0$$


• small k induces pandering by both types \implies 1st-order benefit from $\theta = b$, 2nd-order loss from $\theta = 0$

But eventually, \uparrow k is harmful: eventually, $s^*_{\theta} > s_{FB}$ for both types

Lemma

 $\forall p \in (0,1)$, $\mathcal{U}(p,k)$ str. quasi-concave in k, and so has unique maximizer.

Voter Welfare as a Function of k

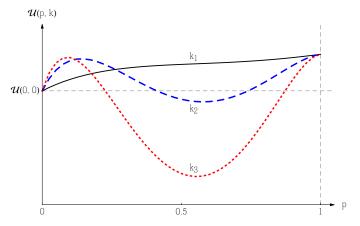
Welfare Effects of PM's Congruence Probabability

For any k, $\mathcal{U}(p,k)$ maximized when p=1

• For any k, a little uncertainty is beneficial when p is low:

$$\frac{\partial \mathcal{U}(0,k)}{\partial p} > 0$$

- However, if k sufficiently large, p = 0 is not global minimizer
- For any $p \in (0,1)$, $\mathcal{U}(p,k) < \mathcal{U}(0,0)$ when k sufficiently large
 - because for both $\theta,\ s^*_\theta(p,k)\to\infty$ as $k\to\infty$
 - uses asm. that $U(\infty) < U(s_b)$


Welfare Non-Monotonicity

Proposition

The voter's welfare, $\mathcal{U}(\cdot)$, has the following properties:

- **1** For all k > 0, $\mathcal{U}_p(0,k) > 0$ and $\mathcal{U}(1,k) > \mathcal{U}(p,k)$ for all $p \in [0,1)$.
- 2 $\forall p \in (0,1)$, there is a unique $\hat{k}(p) > 0$ s.t. $\mathcal{U}(p, \hat{k}(p)) = \mathcal{U}(0,0)$, and (a) $\mathcal{U}(p,k) < \mathcal{U}(0,0)$ if and only if $k > \hat{k}(p)$, and (b) $\hat{k}(p) \to \infty$ as either $p \to 0$ or $p \to 1$.
- $\label{eq:consequently, if } \textbf{k} > \textbf{k}^* := \min_{p \in (0,1)} \hat{k}(p) \text{ then } \mathcal{U}(p,k) = \mathcal{U}(0,0) \text{ for at least two values of } p \in (0,1); \text{ while if } k < k^* \text{ then } \mathcal{U}(p,k) > \mathcal{U}(0,0) \text{ for all } p > 0.$

Welfare as a Function of the Prior

- better pool can harm voter
- $\blacksquare \ \mathcal{U}(p,k) < \mathcal{U}(0,0) \implies$ eqm preference reversal over types

Cheap Talk in Elections

PM's Expected Utility

• Let $W(\theta, p, k)$ be expected utility of type θ (not incl. c)

Lemma

1 For any $\theta \in \{0, b\}$, $p \in (0, 1)$, and k > 0,

 $0=W(\theta,0,k) < W(\theta,p,k) < W(\theta,1,k)=k.$

2 Moreover, for all $p \in (0,1)$ and k > 0, W(0,p,k) > W(b,p,k), and hence

$$W(0, p, k) - W(0, 0, k) > W(b, p, k) - W(b, 0, k).$$

A limited single-crossing condition

• for any $p \in (0,1)$, congruent type expects to end with higher reputation

Similar condition doesn't hold for arbitrary increase in prior

•
$$p \in (0,1) \implies W(0,1,k) - W(0,p,k) < W(b,1,k) - W(b,p,k)$$

Cheap Talk in Elections

Campaign Stage

Cheap-Talk Campaigns

Preliminaries

- Each candidate i knows $\theta_i \in \{0, b\}$ and picks $m_i \in \{0, b\}$
 - play in policymaking stage will be as characterized earlier
- Uniformative eqa exist. Do informative eqa?
- A candidate's payoff if elected with belief p_i is

 $c + W(\theta_i, p_i, k)$

Focus on symmetric eqa. For each $i \in \{1, 2\}$ and $\theta \in \{0, b\}$,

$$\mu^{\theta} := \Pr(m_i = 0 | \theta_i = \theta)$$

and, for voter,

$$\sigma := \Pr(\text{electing } i \text{ with } m_i = 0 | m_1 \neq m_2).$$

• Let $p^m := \Pr(\theta_i = 0 | m_i = m)$ denote voter belief

• WLOG, $\mu^0 \ge \mu^b$. An eqm is informative if $\mu^0 > \mu^b$ ($\iff p^0 > p^b$).

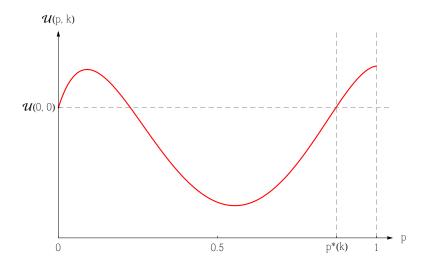
Cheap Talk in Elections

Voter Indifference in Informative Equilibria

- If voter not indifferent between candidates who announce different messages, one message will lead to "much larger" winning prob.
- When c sufficiently large, this cannot be the case
 - recall assumption $c \ge k$

Lemma

In any informative equilibrium, $\mathcal{U}(p^0, k) = \mathcal{U}(p^b, k)$.


A separating equilibrium does not exist

• A semi-separating equilibrium (either $p^0 = 1$ or $p^b = 0$) must have

$$1 = \mu^0 > \mu^b > 0$$
 and hence $1 > p^0 > p > p^b = 0$

Cheap Talk in Elections

The Main Idea

Cheap Talk in Elections

Existence of Semi-Separating Equilibrium (1)

• A semi-separating eqm exists if and only if there is $p^0 > p$ s.t.

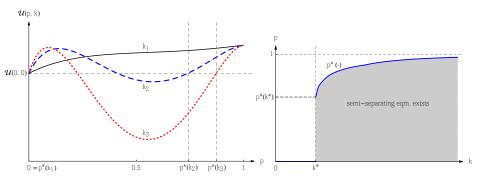
 $\mathcal{U}(p^0,k) = \mathcal{U}(0,0)$

- m = b is a credible commitment to not pander
- m = 0 increases prob. of being congruent, but will entail pandering
- Non-congruent type made indifferent by voter's randomization, σ $\implies \sigma < 1/2$ because $W(b,0,k) < W(b,p^0,k)$
- Congruent type strictly prefers m = 0 by limited single-crossing result
- Necessary and sufficient that $p < p^*(k)$, where

 $p^*(k) \in [0,1)$ is the largest solution to $\mathcal{U}(p,k) = \mathcal{U}(0,0)$

• There is $k^* > 0$ s.t. $k \ge k^* \iff p^*(k) > 0$

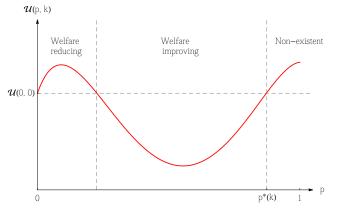
Cheap Talk in Elections


Existence of Semi-Separating Equilibrium (2)

Proposition

Semi-sep eqm exists if and only if $k \ge k^*$ and $p \in (0, p^*(k))$. Moreover:

1 $k \uparrow \Longrightarrow$ set of priors for which a semi-sep eqm exists \uparrow .


2 For any p, there is a semi-sep eqm if and only if k is sufficiently large.

Cheap Talk in Elections

Campaign Welfare (1)

- Semi-sep eqm may not be unique, but welfare in any is $\mathcal{U}(0,0)$
- In uninformative eqm, welfare is $\mathcal{U}(p,k)$
- Inf. campaigns not always good: affect policymaking incentives

Campaign Welfare (2)

$$P^k := \{ p : \mathcal{U}(p,k) < \mathcal{U}(0,0) \}$$

• semi-sep eqm benefits welfare $\iff p \in P(k)$

Proposition

1 For any
$$k$$
 and p , there is an eqm in which welfare $\geq \mathcal{U}(0,0)$.

2 Above
$$k^*$$
, $P^k \uparrow$ in k, and $P^k \to (0,1)$ as $k \to \infty$.

3 If
$$p \in P^k$$
, then $\frac{\partial}{\partial k} \left[\mathcal{U}(0,0) - \mathcal{U}(p,k) \right] > 0.$

campaigns protect voters from too much policy pandering

• greater $k \uparrow$ scope for beneficial inf. campaigns

• greater
$$k \uparrow$$
 benefits from inf. campaigns

Frequency of Non-Congruent Announcements

Focus on most-informative semi-sep eqm, i.e. $p^0 = p^*(k)$.

• $\Pr(m = b)$ is

- decreasing in p
 - direct and indirect channel, as μ^b increases
- increasing in k
 - \blacktriangleright \uparrow pandering distortions \uparrow benefit from no-pandering commitment
- Effects on heterogeneity of announcements can go either way

Other informative equilibria

• A limiting case

More types and/or policy actions

The reputation function

Recap

Politicians' reputation concerns create non-monotonic prefs for voter

- known devil can be better than unknown angel
- Allows for informative cheap-talk campaigns about policy orientation
- Candidates can reveal themselves to be non-congruent in election
 - credible commitment to not pander in office
- Informative campaigns can increase or decrease voter welfare
- Greater reputation concerns increase scope for and welfare benefits from informative campaigns

Extensions

Equilibria in which Both Types Randomize

Any non-semi-sep but inform eqm must have both types randomizing

Cannot rule out because no global single-crossing property:

$$W(0, p', k) - W(0, p'', k) - [W(b, p', k) - W(b, p'', k)]$$

is not necessarily positive for $p^\prime > p^{\prime\prime}$

- Yet, main themes hold for any informative equilibrium
 - Let Π^k be set of priors for which some inform eqm exists:

$$\forall k, \; \exists k' > k : \Pi^k \subsetneq \Pi^{k'}$$

· Best inform eqm can yield higher or lower welfare than uninform eqm

✓ Return

A limiting case

Suppose candidates solely max electoral probability

• if elected into office, policy behavior as before

• As if $c = \infty$

Proposition

In this limiting case,

$$\textbf{1} \text{ Inform eqm } \iff \exists p', p'' \text{ s.t. } p \in (p', p'') \text{ and } \mathcal{U}(p', k) = \mathcal{U}(p'', k).$$

2 For any p, as $k \to \infty$ there are inform eqa with welfare $\to \mathcal{U}(1,0)$.

More Types and/or Actions

- Consider arbitrary finite number of types and actions
 - and more general preferences than quadratic loss
- Sufficient for non-monotonic voter preference in belief about PM:
 - sufficiently asymmetric prior on types
 - sufficiently symmetric prior on types
- Informative communication with three types ($\theta \in \{-b_1, 0, b_2\}$):
 - Two actions, asymmetric prior $(p(b_2) \gg p(b_1))$: two-message eqm in which $\{-b_1, 0\}$ announce one message, b_2 randomizes over that message and revealing itself.
 - Three actions, symmetric setting: three-message eqm in which 0 announces 0, types $-b_1$ and b_2 randomize between announcing 0 and revealing.

Endogenizing Reputation Function

- Have assumed politicians want to signal congruence when in office
 - micro-found via a second term that is unaccountable due to term limits
- If second term not free from reputational pressure, voter welfare from re-election can be non-monotonic in belief
- In 1st term, politician may even have an incentive to engage in "anti-pandering", analogous to current cheap-talk campaign
- Can illustrate in a simple two-period model in which the politician receives reputational payoff at the end of second period
- Ongoing work: "functional fixed point" of politicians' reputational value and voter's welfare