A new model for nurse practitioner utilization in primary care: Increased efficiency and implications

Nan Liu
Stacey R. Finkelstein
Lusine Poghosyan

Background: Nurse practitioners (NPs) play an important role in providing quality primary care. However, little is known about organizational processes that best utilize NPs in care delivery and what kind of resources and support NPs need to deliver quality care within their organizations. In primary care settings, NPs often receive little support from ancillary personnel compared with physicians.

Purpose: The aim of this article was to compare the productivity and cost efficiency of NP utilization models implemented in primary care sites with and without medical assistant (MA) support.

Methodology/Approach: We develop queueing models for these NP utilization models, of which the parameters are extracted from literature or government reports. Appropriate analyses are conducted to generate formulas and values for the productivity and cost efficiency. Sensitivity analyses are conducted to investigate different scenarios and to verify the robustness of findings.

Findings: The productivity and cost efficiency of these models improve significantly if NPs have access to MA support in serving patients. On the basis of the model parameters we use, the average cost of serving a patient can be reduced by 9%–12% if MAs are hired to support NPs. Such improvements are robust across practice environments with different variability in provider service times. Improving provider service rate is a much more effective strategy to increase productivity compared with reducing the variability in provider service times.

Practice Implications: To contain costs and improve the utilization of NPs in primary care settings, MA assistance for NPs is necessary.

Policy makers and many other stakeholders are constantly searching for ways to reduce the cost of health care delivery while increasing timely access and providing high-quality patient care. The U.S. health care system does not rank highly among the health care systems of developed countries, mainly because of its high cost and poor outcomes (Murray & Frenk, 2010; Schoen, Osborn, How, Doty, & Peugh, 2009). Although costs are steadily increasing, delays in receiving high-quality care continue to be a challenge in the United States. For example, 32% of Medicare beneficiaries and 31% of privately insured patients had an unwanted delay in obtaining an appointment for routine care in 2008 (Medicare Payment Advisory Commission, 2009). In addition, the average wait time for a new patient to obtain an appointment to see an internist was 31 days in 2008 in Massachusetts (Massachusetts Medical Society, 2008). Finally, a 2009 survey shows that...
the average wait time to an appointment for a routine physical in Los Angeles area is 59 days (Merritt Hawkins & Associates, 2009).

Delays in access to primary care pose a significant threat to patients, providers, and the health care system. Long lead time to get an appointment disrupts the patient–provider relationship and breaks continuity of care, ultimately reducing the quality of care (Ulmer & Troxler, 2006). In addition, it can upset patients and result in a higher rate of missed appointments (Green & Savin, 2008), which pose administrative inconvenience, scheduling difficulties, and financial loss (Moore, Wilson-Witherspoon, & Probst, 2001). Also, poor access to primary care is associated with more visits to the emergency department and worse health outcomes (Moore, Wilson-Witherspoon, & Probst, 2001).

There is a significant public debate about challenges to primary care delivery, including the severe shortage of internal and family medicine physicians (Rittenhouse, Shortell, & Fisher, 2009) and increased demand. The volume of patients will increase with the recent health care reform bill (Patient Protection and Affordable Care Act, 2010) when more than 30 million Americans are expected to be included in health plans. Also, the epidemic of chronic diseases and an increase in the aging population present a challenge for the health care system (Boult, Counsell, Leipzig, & Berenson, 2010). The demand for quality primary care is expected to surge in the near future, but a limited primary care workforce constitutes a capacity bottleneck in providing timely and quality care.

During the past 4 decades, in addition to physicians, other health care providers have delivered primary care, including physician assistants and nurse practitioners (NPs). Currently, NPs are the fastest growing group of practitioners (Auerbach, 2012). They are formally and rigorously trained to coordinate and deliver comprehensive primary care (Kotthoff, 1981). Many studies show that NPs provide high-quality care and that clinical outcomes do not differ for patients receiving services from NPs compared with physicians (Mundinger et al., 2000; Newhouse et al., 2011).

Recognizing the significant role that NPs play in providing primary care, the Patient Protection and Affordable Health Care Act (2010) authorized a $50-million grant program for the development and operation of nurse-managed health centers. These centers are community-based primary care clinics in which NPs are the main service providers. Also, the Institute of Medicine (2010) released a report on the future of nursing, which calls for an expansion of the NP workforce in primary care as the key to provide timely high-quality care.

Integrating NPs into primary care practices appears to be a promising way of removing the capacity bottleneck in primary care delivery and improving access to quality primary care. However, NPs face many challenges affecting their successful practice. Recognized barriers include legislation of physician involvement, lack of uniform state scope of practice regulations, and inconsistent utilization of NPs (Christian, Dower, & O’Neil, 2007; Pohl, Hanson, Newland, & Cronenwett, 2010). In addition, there are many organizational barriers affecting NP practice and utilization, which may vary from practice site to practice site. For example, in some settings, NPs are part of the first line of contact for urgent problems, and in other settings, they are responsible for managing chronic diseases and/or providing ongoing care (Laurant et al., 2009). Very little is known about organizational processes that best utilize NPs, and administrators lack evidence regarding how to best integrate NPs into primary care teams.

Primary care delivery has shifted from solo practitioners to teams of providers (Liebhaber & Grossman, 2007). In a primary care team, work is divided among team members according to their scope of practice and expertise, and the best care is provided by a cohesive team of care providers (Walsh et al., 2006). In multidisciplinary primary care teams, the team functioning and support to deliver care varies for NPs and physicians. NPs do not receive the same administrative and clinical support as physicians to deliver care (Bryant-Lukosius, DiCenso, Browne, & Pinelli, 2004; Martin, 1999). In primary care settings staffed with physicians, various staffing configurations exist (Taché & Hill-Sakurai, 2010). But physicians always have support from medical assistants (MAs), and the ratios for MA-to-physician staffing ranged from .75 to 1.25. However, in some settings, NPs do not receive the same MA support as physicians when ordering laboratory work or drawing blood (Brown, 2003). This was also shown in a recent qualitative study, which found that NPs working in primary care settings did not have access to the same resources, including help from MAs, as physicians to provide the same care. Most NPs reported that, while physicians had assigned MAs, NPs did not (Poghosyan, Nannini, Stone, & Smaldone, 2012). NPs explained this discrepancy in support by the misconception that NPs are registered nurses and therefore are capable of carrying out basic tasks such as taking a patient’s weight, height, and vital signs. However, it may no longer be efficient for NPs to carry out such basic tasks, especially when the literature shows that MAs have sufficient expertise on these to assure efficient clinic flow and promote patient satisfaction (Taché & Hill-Sakurai, 2010). The underutilization of NP workforce and inefficient use of NP time and skills may have a concomitant negative impact on organizational performance that could lead to increased time for patient processing, wasted costs, and reduced employee morale.

A common finding in the literature that examines NP practices is that NPs typically have longer consultation length and lower service rates compared with physicians (Laurant et al., 2009). Although not rigorously stated or investigated in the literature, there could be two possible explanations. One is that NPs provide more information on illness and more advice to patients on self-management during the consultation (Kinnersley et al., 2000; Shum et al.,
The second is that NPs need to spend more time in processing tasks that would have been delegated to MAs if the patient were seen by physicians. Kinnersley et al. (2000) show that NP consultation time drops, on average, to 17% if excluding breaks in their service because of tasks like getting prescription authorized but is still, on average, 40% longer than physician consultation times. Thus, NP consultation time can be reduced if they get more support, but they are still likely to have longer consultation times than physicians.

Because the demand for primary care will increase in the near future, a more efficient model of NP utilization that optimizes the allocation of time and resources NPs have available to deliver quality care is essential. We recognize that providing NPs with additional support, including MA assistance, will improve their service rate and, thus, overall productivity; however, it may also increase staffing costs. Hence, the cost efficiency of hiring additional MAs to assist NPs may not be immediately visible. In this article, we will quantify the productivity and cost impact of hiring additional MAs to assist NPs. In particular, this article seeks to answer the question of whether supporting NPs with MAs to assist NPs allows NPs to be more productive to a degree that confers a net financial benefit in saving staffing costs.

NP Workforce Utilization Models

NPs provide comprehensive primary care, which includes preventive, chronic, and episodic care (McClellan, Hansen-Turton, & Ware, 2010), to millions of patients in various primary care settings including private physicians’ offices, large primary care networks, retail clinics, and nurse-managed centers. In some of these settings, NPs work with physicians in the same site (e.g., physician office, academic centers); whereas in other settings, NPs work alone and are solely responsible for all primary care (e.g., retail clinics, nurse-managed centers). When NPs work with physicians in the same practice site, they can either collaboratively manage the same panel of patients or manage a different group of patients and can be recognized as primary care providers for that particular group (Commonwealth of Massachusetts, 2008). In the latter case, NPs manage their own panel of patients. Thus, NP utilization models can largely be categorized into two types where (a) NPs practice without physicians (for brevity, we will call them MDs, i.e., medical doctors) and (b) NPs work together with MDs and they collaboratively manage the same panel of patients.

To operationalize these conceptual models, we consider two models with specific staffing configurations shown in Figure 1. The first model is a group practice model of two NPs. The second model comprises of two NPs and one MD. We call these two models “dual NP model” and “NP–MD model,” respectively. In each of the two models, providers manage the same panel of patients. When patients arrive at the clinic, they will see the provider who is available. In the NP–MD model, we assume that the MD always has one MA to support them as the typical MA-to-MD ratio is between 0.75 and 1.25 (Taché & Hill-Sakurai, 2010).

Regardless of the NP utilization model in the organization, NPs have varying degrees of MA support to deliver care. To analyze the impact of having additional MAs to assist NPs, we will compare the dual NP model without MA support to the same model where NPs operate with MA support. Similarly, we will compare the NP–MD models with and without MAs to assist NPs. By doing so, we will be able to quantify the productivity and cost impact of hiring additional MAs to assist NPs in a given NP utilization model. In our comparisons, we will test whether adding even one MA to a two-NP team is cost effective. Ratios for NP-to-MA are not available in the literature. But given that, in many primary care sites, NPs provide care without MA support, a 0.5 MA-to-NP ratio may seem more acceptable to these organizations at start.

Clearly, not every clinic practices like the two models in Figure 1. They may have different staffing configurations and organizational plans. However, our models seem reasonable representations of typical staffing configurations. In large practices, especially those with part-time employees, providers usually form small groups, say 2- to 3-person units, to provide care (White, 1999). Thus, we analyzed such small group practices individually. Our modeling method, however, can be easily adapted to model other organizational structures.

Methods

For a given NP utilization model, we will compare its productivity and cost efficiency under the setups with and without MAs to support NPs’ work. Here, NP utilization model refers to either the dual NP model or the NP–MD model, whereas model setup relates to whether NPs receive support from MAs within a given NP utilization model. Following the work of Liu and D’Aunno (2012), we measure the productivity of a model of a given setup using two equivalent metrics: (a) the average number of patients that a model setup can serve per day and (b) the panel size (i.e., the total number of patients) a model setup can be held accountable for.

To compare the productivity of a given NP utilization model under different setups (with and without MAs’ support to NPs), we ensure that the average appointment delays that patients experience in both setups are equal. Appointment delay, a direct measure for timeliness to care, is defined as the time lapse from when a patient makes an appointment to her actual appointment date. For a given model setup, an increase in panel size leads to more patients seeking care per day and longer average appointment delays for all patients. Thus, it is not straightforward to conclude...
that a model setup serving a larger panel size but with longer appointment delays is more productive than a model setup serving a smaller panel size but with shorter appointment delays, because the former setup may still have longer appointment delays if its panel size were to shrink to the same level of the latter setup. To ensure a fair comparison, we keep a same level of average appointment delay experienced by patients across different setups within a model. If we hold average patient appointment delay constant across our model setups, then a more productive setup is able to (a) serve more patients a day and (b) be held accountable for a larger panel size.

To evaluate the productivity and cost efficiency of an NP utilization model setup while controlling for average patient appointment delay, we need methods that can estimate patient appointment delay based on patient demand and each model’s service capacity. Queueing theory, an advanced mathematical modeling technique that can estimate waiting times in a system (Green, 2006; Gross & Harris, 1985), is an ideal analysis tool for this task. To illustrate how queueing theory functions in primary care settings, imagine a primary clinic that serves a patient population. Patients make appointment requests throughout the day, and their names are registered on the appointment schedule, which is considered as the queue. This queue is for scheduled appointments and can be regarded as a virtual list of scheduled patients yet to be seen by providers. The waiting time measured in such a queue is related to the number of patients registered in the appointment schedule and thus corresponds to the appointment delay. During the day, providers in the clinic serve the patients on the schedule and make the queue shorter. When the clinic is closed, no patients call in to join the queue and no patients are served or leave the queue either; the queue remains unchanged. Observing this, we can “drop” the nonoffice hours of the clinic and “connect” the office hours together.
to consider a continuous queueing process. The length of the queue varies over time. It increases when new appointments arrive and decreases when patients are served. The variability of the queue length thus comes from two sources that can involve randomness: patient arrival and provider service. To analyze such a queueing process, we need to specify these two sources: how patients arrive (i.e., arrival process) and how providers see patients (i.e., service process). These will be the topics of the next section.

Queueing Models

Arrival Process

We assume that the appointment request (demand) from each patient in the panel can be modeled as a Poisson process (Gross & Harris, 1985) with the rate of \(\lambda_0 \) requests per day. If the panel size is \(N \) and we assume that each patient raises her appointment request independently of others, then, the overall arrival of appointment requests faced by the system is also a Poisson process with the rate of \(N \lambda_0 \) requests per day. The Poisson process is a widely used, empirically validated customer arrival model, especially in situations where customers arrive one at a time and where each arrival is independent of others (Gross & Harris, 1985). These assumptions hold well in our outpatient appointment settings, and several previous studies have used this process to model the arrival of outpatient appointment requests (Green & Savin, 2008; Liu & D'Aunno, 2012).

Using properties of the Poisson process, we know that the mean daily arrival is \(N \lambda_0 \) requests. Recall that the panel size and the average daily appointment arrival (i.e., the average number of patients the practice team will see) are the two measures for the productivity of an NP utilization model. Given the individual request rate \(\lambda_0 \), the average daily arrival rate \(N \lambda_0 \) is proportional to panel size \(N \). Hence, these two measures are equivalent to each other, meaning that one directly implies the other and vice versa.

Service Process

We assume that the appointment requests in the queue are served in a first-come-first-served (FCFS) order. This implies that each appointment request is registered immediately after its predecessor. We acknowledge that this is a simplification of real appointment scheduling practice, as not all patients may take the next available appointment slot. Queueing studies often make such simplifications to make models tractable; more importantly, a previous study shows that queueing models with the FCFS assumption lead to relatively accurate estimates for panel sizes by comparing the estimates from queueing models with those generated by simulation models, which consider patient preference and other daily scheduling details (Green & Savin, 2008). Recall that panel size is the measure for productivity in our study, thus assuming that FCFS service order would not lead to notable bias in estimating the productivity and cost efficiency of our models.

In practice, appointments are usually set in advance. However, there may still be some variation in the number of patients seen every day. One important reason is that different patients may demand different amounts of service time. For example, appointment slots for new patients are usually longer than those of established ones (Harper & Gamlin, 2003). If more new patients are scheduled in a day, then fewer patients can be seen on that day. Such variability in service duration can depend on the mix of patients served by the clinic. To model such variability in provider service duration, we consider the following two cases.

1) **Random service time case:** We consider that a provider's service time for each patient is random and follows an exponential distribution. Under this assumption, the number of patients that can be seen in a day is a Poisson random variable, of which the mean equals the variance. This suggests that, (a) if the number of patients that a provider sees fluctuates over days and (b) if the mean of this random number is close to its variance, then the exponential assumption for service times could be reasonable. One advantage of considering such service times is that it makes the analysis of queueing models more tractable; closed-form formulas exist for systems performance measures, which can easily be evaluated in a spreadsheet tool like Excel.

2) **Deterministic service time case:** We also consider a case where a provider's service time for each patient is the same and deterministic, for example, 15 minutes. This corresponds to the situation where the time allotted to each appointment slot is fixed hence the number of patients seen by a provider is the same throughout days. This assumption may appear more realistic in practices that are well established and face a more homogeneous patient population. Queueing models under such an assumption do not lead to closed-form representations of system performances.

Following conventional terminology in queueing theory, we call models with deterministic service time as non-Markovian models and those with exponential service times as Markovian models. Markovian models involve larger variability in service times compared with non-Markovian models and lead to more conservative estimates for systems performance. For example, given the same requirement on average appointment delay, the productivity under Markovian models is typically smaller than that under non-Markovian models. These two types of models enable us to investigate the impact of variability in provider
service times on system productivity and cost efficiency. Such variability in the service process might be driven by practice environment, for example, patient mix. If the results are consistent under these two types of models, it implies that our findings are robust across practice environments with different variability in provider service times.

Model Configurations

For each NP utilization model (i.e., dual NP model and NP–MD model), we will compare the situations where NPs receive assistance from MAs and where NPs do not have such support. We capture the differences between these two situations by using different NP service rates. Clearly, NPs can provide care to more patients per day if they receive support from MAs (see more discussions below). Crossing with the two service time distributions we will use, we will consider four scenarios for each NP utilization model (with or without support from MAs × two service time assumptions).

Model Analysis

For each NP utilization model, we develop either analytical or numerical methods to evaluate patient average appointment delay given the demand rate of \(\lambda = N \lambda_0 \). Using these methods, we can recover the productivity, that is, the largest panel size \(N \) under which patient average appointment delay is not exceeding a given threshold. The cost efficiency is then simply the average staffing costs with respect to the panel size \(N \). We defer these technical details to the Appendix.

Model Parameters

We exact model parameters based on a review of literature. We focus on primary care NP practices and consider visits to general and family practice, internal medicine, and pediatrics as primary care visits. The 2006 National Ambulatory Medical Care Survey data (Cherry, Hing, Woodwell, & Rechtsteiner, 2008) suggest that the annual number of such visits made per person in the United States is 2.9. This is translated to 0.012 visit per person per business day, which we use as the daily rate of appointment requests per patient, that is, \(\lambda_0 \).

Another study using the National Ambulatory Medical Care Survey data and American Medical Association’s Socioeconomic Monitoring Systems data showed that the mean length of office visits to primary care physicians was around 16–18 minutes in the United States (Mechanic, McAlpine, & Rosenthal, 2001). Accordingly, we set the service rate of MDs to be \(\mu_2 = 32 \) patients a day, that is, 15 minutes per visit. Although NPs spend longer consultation time than MDs, how much they differ can vary (Kinnersley et al., 2000; Shum et al., 2000). However, no literature seems to report how NP consultation length would change if NPs were supported by MAs. The only relevant study we are aware of is Kinnersley et al. (2000), which reported that the ratio of MDs’ consultation times to NPs’ ranged from 0.46 to 0.90 with a mean of 0.61 (including breaks in NP consultation to get prescriptions authorized or for other similar reasons) and from 0.57 to 0.94 with a mean 0.74 (excluding breaks). NPs’ consultation times are reduced excluding breaks but are still longer than MDs’. In this study, we use the ratio of excluding breaks as a proxy for the one if NPs were supported by MAs. Accordingly, we suppose that NPs see 18 patients a day without help from MAs (corresponding to the mean consultation time ratio including breaks), and they see 25 patients a day with help from MAs (corresponding to the mean ratio excluding breaks). In a typical primary care site, each MD has an assigned full-time MA (Taché & Hill-Sakurai, 2010), and we suppose that one full-time MA can assist two NPs on a daily basis for reasons discussed above. Regarding salary, we use the national median wage reported by the U.S. Bureau of Labor Statistics (2012) and set NP, MA, and MD annual salaries to be $65,000, $30,000, and $160,000, respectively.

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual patient demand rate (requests per person per business day)</td>
<td>0.012</td>
<td>Cherry et al. (2008)</td>
</tr>
<tr>
<td>MD service rate (patients per day)</td>
<td>32</td>
<td>Mechanic et al. (2001)</td>
</tr>
<tr>
<td>NP service rate (without MA support; patients per day)</td>
<td>18</td>
<td>Kinnersley et al. (2000)</td>
</tr>
<tr>
<td>NP service rate (with MA support; patients per day)</td>
<td>25</td>
<td>Kinnersley et al. (2000)</td>
</tr>
<tr>
<td>NP annual salary ($)</td>
<td>65,000</td>
<td>U.S. Bureau of Labor Statistics (2012)</td>
</tr>
</tbody>
</table>

Note. NP = nurse practitioner; MD = medical doctor; MA = medical assistant.
On the basis of our interaction with many clinics that use NPs, these parameters are consistent with their practice. Table 1 lists the key parameters we use to populate our models and their references. We set the service level requirement so that the average appointment delay should not exceed 1 day when evaluating and comparing different NP utilization model setups. Although we use the parameters specified above, other values of these parameters, if deemed appropriate for a given practice, can also be used.

Findings

The productivity (measured by average daily throughput) and cost efficiency (measured by annual staffing cost per patient) of dual NP models with and without support from MAs is plotted in Figure 2 and detailed comparison statistics are tabulated in Table 2. The productivity of the dual NP model is improved by 40% when hiring an MA to support the work of two NPs. This improvement is because of the fact that MA assistance reduces the time that NPs need to spend with every patient. Because the improvement in productivity is significantly higher than the 23% increase in annual staffing costs because of hiring an additional MA, the cost efficiency of the model improves. More specifically, the annual staffing cost per patient drops by 12%, reducing the staffing cost per patient from about $44 to $39 after hiring an MA (see Table 2). The percentage improvements in both productivity and cost efficiency are consistent across both Markovian and non-Markovian models, suggesting that clinics can get similar percentage improvements in their productivity and cost efficiency by hiring MAs to support NPs, regardless of the variability in their provider service times. In other words, improvements resulted from supporting NPs with MAs are robust across practice environments with different variability in provider service times.

Under the same service level requirement on average patient appointment delay, the non-Markovian model, as expected, provides a slightly larger estimate for productivity compared with the Markovian model. However, estimates from both models are close, indicating that variability in provider service rate does not seem to have a significant impact on the model’s productivity in the long run, as long as the mean provider service rates are the same. This is in accordance with previous findings (Liu & D’Aunno, 2012) and suggests that improving provider service rate is a much more effective strategy to increase productivity compared with reducing the variability in provider service times. Having MAs to support NPs can be one of such effective strategies.
In addition, because the estimates from Markovian and non-Markovian cases are close to each other, these estimates provide robust information for managers to use. For example, the estimated panel sizes of a dual NP model after hiring an MA are 4,083 and 4,125 for Markovian and non-Markovian cases, respectively, compared with 2,917 and 2,958 without MAs. Then, the manager would know that the target panel size for a dual NP model can be raised to about 4,083 to 4,125, if she decides to hire a new MA to support NPs.

Results for the NP–MD model are presented in Table 2 and Figure 2. Similarly, we see that Markovian and non-Markovian models provide consistent estimates for the productivity and cost efficiency. In both setups, the productivity of the model improves by 21% after hiring an additional MA. Despite a 9% increase in annual staffing costs, a much stronger gain in productivity leads to a 10% improvement in cost efficiency. Thus, providing MA support to NPs can also significantly improve productivity and cost efficiency when NPs and MDs work in the same care team.

Discussion

Health care providers need adequate support to deliver high-quality care and achieve better outcomes. Unequal distribution of organizational resources among providers that carry out similar responsibilities and lack of support may challenge the quality and cost-effectiveness of care. This study uses an innovative methodology, widely applied in other disciplines, to estimate the productivity and cost efficiency of primary care delivery models using NPs as care providers and finds that hiring additional MAs to support NPs significantly improves the productivity of care delivery in primary care practices where NPs manage their own panel of patients or collaboratively manage the same panel of patients with physicians. In either model of NP utilization, productivity increases if NPs have access to MA support to carry out patient care tasks that they usually carry out for the physicians’ patients. More importantly, the inclusion of MAs to assist NPs significantly improves the cost efficiency of the organization, implying that this is a promising way to expand primary care service capacity while also achieving cost savings. This is a significant finding as administrators and policy makers are searching for ways to assure access to high-quality and cost-effective primary care.

Our study focuses on salaried practices and internal costs; future research can consider the revenue side and possible savings recovered by payers as well. We only discuss one organizational barrier that hinders NPs’ abilities...
to practice in clinical settings: access to support. More research is needed to better understand what factors contribute to productive NP–MA work relationships and how to best integrate NPs in primary care teams and assure patient-centered care.

Practice Implications

To contain costs and improve access to care, organizations should focus on better utilizing the NP workforce and developing innovative models to more efficiently utilize the skill set of their employees. As the number of NP providers will significantly increase in the near future, organizations should find better ways to improve their productivity as primary care providers. New models aimed at improving efficiency need to consider the entire organizational system. Specifically, organizations should consider patient outcomes and the optimal workforce mix as well as maintain a focus on containing costs given the increased demand placed on the health care system. We propose that, if NPs are given the appropriate resources that harness their advanced skill sets, as is the case when NPs are assisted by MAs, then clinics will operate at a more cost-efficient and productive level. In this case, NPs are no longer underused to conduct basic tasks in primary care settings but rather can provide a high level of care that draws on their advanced knowledge and experience. To achieve this, organizations need to play an active role in opening lines of communication and reducing status differentials between NPs and other health care providers. In organizations that foster open communications, NPs will have an increased ability to communicate when their skills are being underused for basic tasks and can delegate these tasks to other health care providers whose function is more appropriate to carry out these types of tasks.

Given that, in many primary care sites, NPs provide care without MA support and organizations may resist in providing NPs with equal MA support as physicians, we suggest that, as a starting point, one MA can be shared between two NPs to improve the productivity of two health care providers and that larger MA to NP ratios can be used if deemed helpful and appropriate in the future. The distribution of organizational resources should be conducted based on the best ways of delivering care. If NPs deliver the same high-quality care independently, then they should have access to comparable resources as physicians. Lack of access to organizational resources might affect NPs’ perceptions on how they are valued by their organizations and may lead to poor NP outcomes such as job dissatisfaction and high turnover rates.

In conclusion, this study investigates the productivity and cost efficiency of possible primary care models utilizing NPs and shows that primary care organizations will benefit from providing NPs with necessary MA support to deliver care. To our knowledge, this is the first study that specifically looks at the lack of MA support for NPs and the potential impact on cost and productivity. To expand the NP workforce in primary care to meet the increased demand, more research is needed to better understand the sources and organizational support that NPs need to deliver high-quality care.

References

Appendix: Analysis of Queueing Models

Non-Markovian Models

Under the deterministic service time assumption, dual NP model becomes an M/D/c model where c represents the number of servers. The readers may refer to Gross and Harris (1985) for notations used in queueing theory. Here, c = 2 because two NPs work in the model. We can use generating function methods to analyze this system, and many existing queueing analysis software (e.g., QtsPlus) are equipped with such methods (Gross & Harris, 1985).

For NP–MD model, if the NP service rate is the same as the MD service rate, then this model is also an M/D/c model with c = 3 and can be analyzed in the same way as above. However, NP and MD typically have different service rates (Laurant et al., 2009). In this case, the M/D/c queueing analysis does not work. We develop discrete-event simulation programs to analyze such a queueing model. The readers may refer to Kelton and Law (2000) for more detailed information on such techniques.

Markovian Models

If service times follow exponential distributions, we can obtain closed-form formulas to evaluate the productivity and cost efficiency of an NP utilization model. These formulas can be easily implemented in spreadsheet tools. To start, let μ_1 and μ_2 represent the average number of patients that can be seen by an NP and an MD in a day, respectively.

Dual NP Model. This model becomes a classic M/M/c queueing model (Gross & Harris, 1985) with $c = 2$. For a
fixed individual appointment request rate \(\lambda_0 \) and panel size \(N \), we define \(r = \frac{N \lambda_0}{2} \) and \(\rho = \frac{r}{\mu_1} \). The system is stable only if \(\rho < 1 \). We use \(W_q \) to represent the average patient appointment delay, and it can be shown to have the following form:

\[
W_q = \left(\frac{r^2}{4 \mu_1 (1 - \rho)^2} \right) p_0,
\]

where \(p_0 \) is the percentage of patients who sees an empty appointment schedule and is calculated as:

\[
p_0 = \left(\frac{r^2}{2(1 - \rho)} + r + 1 \right)^{-1}.
\]

NP–MD Model. If the NP service rate \(\mu_1 \) is the same as the MD service rate \(\mu_2 \), then this model is an M/M/c model with \(c = 3 \) and can be analyzed in a similar way as above. Below, we focus the analysis on the case when \(\mu_1 \neq \mu_2 \). Let \(X(t) = i \) for \(i = 0, 3, 4, \ldots \), if there are totally \(i \) patients waiting in the queue (including those in service) at time \(t \). Let \(X(t) = (1, 0) \) if there is only one patient in the system being served by NPs at time \(t \), and let \(X(t) = (0, 1) \) if there is only one patient in the system being served by MD at time \(t \). Let \(X(t) = (2, 0) \) if there are two patients in the system and both of them are served by NPs at time \(t \); and let \(X(t) = (0, 2) \) if there are two patients in the system, one is served by NP and the other is served by MD at time \(t \). The system state of this model at time \(t \geq 0 \) is described by \(x(t) \), which evolves over time as a continuous time Markov chain with state space

\[
\Omega = \{(0,1,0),(0,1),(2,0),(0,2),3,4\ldots\}
\]

Because we are interested in studying an NP utilization model that operates or will operate for a long time, we will be investigating the steady state (i.e., long-run average) performance of the system. Let \(p_j = \lim_{t \to \infty} P[X(t) = j] \) represent the steady state probability that the system is in state \(j \) for \(j \in \Omega \). Equivalently, \(p_j \) can be thought of as the percentage of time that the system is in state \(j \), if the system has been running for a very long time. For example, \(p_{20} = 0.1 \) means that, for 10% of the time, the appointment schedule contains 20 patients. We can apply standard continuous time Markov chain analysis methods (Gross & Harris, 1985) to calculate \(p_j \) by solving the following balance equations for \(X(t), t \geq 0 \). To simplify the notation, we let \(\lambda = N \lambda_0 \) (the total appointment demand rate).

\[
\lambda p_j = \mu_1 p_{j+2} + \mu_2 p_j,
\]

\[
(\lambda + \mu_1) p_0 = 2 \mu_1 p_{20} + \mu_2 p_{20},
\]

\[
(\lambda + \mu_2) p_0 = \lambda p_0 + \mu_1 p_{20},
\]

\[
(2 \mu_1 + \lambda) p_{20} = \mu_1 p_{21},
\]

\[
(2 \mu_1 + \lambda) p_j = \lambda p_{j+1} + \lambda p_{j+2},
\]

\[
\lambda p_j = (2 \mu_1 + \mu_2) p_{j+1}, \quad j \geq 3.
\]

Solving the above linear equation system yields that \(p_0 = \alpha (a + b) p_0 / \gamma, p_{20} = \lambda \beta p_0 / \gamma, p_{20} = \lambda \gamma p_0 / \gamma, p_0 = \lambda (2 \mu_1 - \mu_2) p_0 / (\mu_2 - \mu_1) \) and \(p_{j+1} = p_{j} \) for \(j \geq 3 \) where

\[
\alpha = \frac{(2 \mu_1 + \mu_2)(2 \mu_1 + \lambda)}{\mu_2 \lambda} - 1,
\]

\[
\beta = \frac{(2 \mu_1 + \mu_2) \alpha}{\lambda + \mu_1},
\]

\[
\lambda = \mu_1 \beta + \mu_2 (a + b) / \lambda,
\]

\[
\rho = \frac{\lambda}{2 \mu_1 + \mu_2}.
\]

We can substitute \(p_j \) as a function of \(p_0 \) into the normalization condition that \(\sum_{j \in \Omega} p_j = 1 \) to calculate the value of \(p_0 \) and eventually solve all values of \(p_j \). Let \(L_q \) represent the long-run average number of patients registered in the appointment schedule yet to be seen by the providers. It then follows from Little’s Law (Gross & Harris, 1985) that

\[
W_q = \frac{L_q}{\lambda} = \frac{\sum_{j \in \Omega} (j - 3) p_j}{\lambda} = \frac{p_0 \rho}{\lambda(1 - \rho)^2}.
\]

We now have closed-form formulas to evaluate patient average appointment delay \(W_q \) given the demand rate \(\lambda = N \lambda_0 \) in both dual NP model and NP–MD model, for the Markovian cases. Then, we can back calculate the productivity, that is, the largest panel size \(N \) under which patient average appointment delay is not exceeding a given threshold. The cost efficiency is simply the average staffing cost with respect to the panel size \(N \).