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Abstract

Centrality in a network is highly valuable. This paper investigates the idea that the timing of
entry into the network is a crucial determinant of a node's �nal centrality. We propose a model
of strategic network growth which makes novel predictions about the forward-looking behaviors of
players. In particular, the model predicts that agents entering the network at speci�c times will
"vie for dominance"; that is, they will make more connections than is myopically optimal in hopes
of receiving additional connections from future players and thereby becoming dominant. The
occurrence of these opportunities varies non-monotonically with the parameters of the game. In a
laboratory experiment, we �nd that players do exhibit �vying for dominance� behavior, but do not
always do so at the predicted critical times. We �nd that a model of heterogeneous risk aversion
best �ts the observed deviations from initial predictions. Timing determines whether players have
the opportunity to become dominant, but individual characteristics determine whether players
exploit that opportunity.

1 Introduction

Network structures play a vital role in determining the behavior of many economic systems.1 This
makes it important to understand how networks form and, in particular, how some nodes end up as
central (i.e. how a node ends up being �close� to many other nodes). In many settings, being close to
other nodes is pro�table�it means having more information, more opportunities for exchange, or more
power2�but why are some nodes (�rms, individuals, politicians) more central than others?

We hypothesize that the timing of entry into a network plays a critical role in determining which
nodes are the most central in the eventual network. It is common wisdom in the technology industry
that startup timing, that is when a new �rm joins the market, is critical to eventual success. In general,
it is neither the �rst �rm to enter an industry nor the last that ends up being the most successful.3 It
is not just fundamental di�erences between nodes or equilibrium selection that determines whether a
node becomes well connected; when the node joins the network can also have a large impact.

The following example illustrates how the order of entry may impact which nodes become central.
Figure 1 shows the formation of a network where connections represent compatibilities between pieces
of animation software. At the start the network contained Photoshop and Poser, which were not
connected. Maya entered the network and connected to both of the existing softwares. Later, additional
animation softwares joined the network, and they all connected to Maya. By 2017, Maya has become
the dominant �rm in the animation software market, with more compatibilities than any other software
in the network.

One possible hypothesis is that Maya became dominant in the network because it joined at a critical
time. By connecting to both Photoshop and Poser, Maya became central, meaning that subsequent

1For theoretical evidence see: Corominas-Bosch (2004); Kranton and Minehart (2001); Allouch (2015); Apt et al.
(2016); McCubbins and Weller (2012); Carpenter et al. (2012). For reviews of the empirical evidence see: Bala and
Goyal (2000); Jackson (2003); Jackson and Wolinsky (1996); Carrillo and Gaduh (2012). For experimental evidence see:
Charness et al. (2007); Charness et al. (2014); Kittel and Luhan (2013); McCubbins and Weller (2012); Kos�eld (2003).

2Theoretical Evidence: Kranton and Minehart (2001); Blume et al. (2009); Apt et al. (2016); Chen and Teng (2016)
Empirical Evidence: Pollack et al. (2015); Sarigöl et al. (2014); Powell et al. (1996); Rossi et al. (2015)
3See Lilien and Yoon (1990).
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Figure 1: The formation of a network of compatibilities in animation software starting at the top left
and going clock-wise.

players wanted to connect to it. Earlier players could not achieve high enough centrality to dominate
the network because there were not enough players to connect to. For later players it was too expensive
to challenge Maya's position of dominance.

In order to better understand how opportunities to vie for dominance arise in this type of system,
we construct a dynamic model of network formation with forward looking strategic agents. In the
model, players form a network by joining one at a time. As they join, players unilaterally decide which
existing nodes to connect with. Centrality is bene�cial, but connections are costly.4

Having a dynamic model of this type is essential in exploring the impact of entry timing on central-
ity, because entry timing is an inherently dynamic feature: players make decision taking into account
their expectation of future moves. According to our hypothesis, Maya is willing to sustain the cost of
connecting to both Photoshop and Poser, because it expects that this action will generate connections
from other softwares in the future. As we discuss in Section 1.1, previous models of network formation
have either ignored dynamics entirely, had agents who are not strategic and forward looking, or are
constructed in such a way that equilibrium depends only on static features of the network.

In Section 3 we discuss the basic features of the model. When the cost of connections is high
relative to the bene�ts of centrality, the minimally connected network is e�cient, and players will form
the minimally connected network in equilibrium. When the reverse is true, the maximally connected
network is e�cient and players will form the maximally connected network. However, we �nd a
potentially large intermediate parameter region where players form non-degenerate networks, and
behavior can be strategically rich. Two intuitively plausible moves that occur in many equilibria are a
myopic action or vying for dominance.

De�nition: A myopic move is a move which would be optimal if the game ended immediately
after that move. In the games we discuss in this paper, this means making one connection to one of
the most central (or dominant) nodes.

4See Neligh (2017) for more detail on the theory and an exploration of what happens when we relax some of these
assumptions.
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De�nition: Vying for dominance is a move causing the player to become one of the dominant
nodes immediately after his move.

Solving the unconstrained version of the game can be di�cult for large networks. We focus on two
approaches which simplify the game so that equilibrium behavior can be exhaustively characterized as
either vying for dominance or taking a myopic action.5

One approach�summarized here, and covered in more depth in Neligh (2017)�involves restricting
the game so that each player must connect to one of the most central nodes. Surprisingly, this simple,
plausible restriction is powerful enough to limit the set of possible networks and thus keep the game
solvable. In this game we �nd that vying for dominance happens periodically; the time between vying
moves increasing exponentially as the game progresses in response to the increasing cost of vying.
This result highlights a general property: players who vie for dominance do so because they expect
connections from future players taking myopic actions. As the network becomes larger, and vying for
dominance increasingly costly, more myopic players are needed to justify the investment made by each
new vying player. The timing between vying moves must therefore increase.

In this paper we focus on a scenario that is both theoretically tractable and easily amenable to
experimental testing: we restrict the maximal size of the network by limiting the number of nodes.
If the network is small enough, then the only equilibrium moves are myopic or vying for dominance.
This restriction, is natural for our study, since it would be impractical to study much larger network
in an experimental laboratory.

We begin by solving a game with �ve players, the setting used in the lab. Player 5's move is simple;
he should play a myopic move. The interesting behavior is that of the intermediate players, 3 and 4.
Their incentives to vie for dominance naturally depend on the cost of connections, essentially creating
four parameter regions. Player 4 can pro�tably vie for dominance in the two lower cost regions but not
in the higher two. The logic is not trivial, however: a player's incentives depend also on the number of
competing central nodes they face when they enter the network and, crucially, on their expectation of
future nodes' behavior. There is a parameter region where Player 4 will not vie for dominance if there
are too many competing central nodes. Player 3 wants Player 4 to vie, however, so he chooses not
to vie in that cost region when he otherwise might have. This leads to an interesting non-monotonic
relationship between the cost of connections and vying behavior for Player 3.

Section 4 describes the experiment we used to test the model of the �ve-node game. We ran two
treatments with di�erent costs for connections, corresponding to the second lowest and the second
highest of the parameter regions previously mentioned. Using our solution to the �ve-node game, we
predict that in the low cost treatment Player 3 should choose a myopic move and Player 4 should vie
for dominance, and in the high cost treatment we should see the reverse.

In Section 5 we present the data, and compare it to the predictions of the model. In general, most
players either vied for dominance or chose myopic moves as predicted. However, players often did not
always vie for dominance at the predicted critical times. Broadly speaking, the model does better
in predicting the play for later movers. The prediction that player 5 always plays myopically is well
supported. For player 4, the comparative statics were right, but the levels were sometimes wrong.
Player 4 is predicted to vie most often when costs are low, and when Player 3 did not vie, and this
is the case in our data. However, Player 4s only vied 22% of the time in that scenario, far di�erent
from the 100% predicted by the theory. For Player 3 even the comparative static was wrong: Player
3s were found to vie more when costs were low.

Overall, players vied for dominance less often than expected, but when they did vie, they did so
more often in conditions where the average gain from vying was higher. One possible explanation for
the di�erence from the equilibrium prediction is that players have some aversion to vying for dominance
which could be overcome with high enough payo�s. Because vying is a risky option relative to playing
myopically, risk aversion is a natural candidate. In Section 6 we explore the possibility that risk
aversion is in�uencing subjects' choices. We elicit risk preferences and �nd that they have signi�cant
power in predicting when players vie for dominance. On the basis of this �nding we develop a version
of the model with heterogeneous risk preferences. We �nd that this model does a good job of matching
the aggregate moments in the data.

5With some caveats regarding the exact de�nition of myopic in the case of the �rst approach. See Neligh (2017) for
more details.
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Our conclusion then is that timing does play a strong role in whether nodes have the opportunity
to become central However, whether nodes (individuals, managers, �rms) are able to exploit the
opportunity that the right timing gives them depends on individual characteristics as well.

1.1 Literature: Theory and Experiments on Network Formation

Before we present the model, we review the literature concerning theories and experiments on networks
and network formation.

Previous models of network formation are not well suited to studying the role of vying for dominance
and entry timing in determining network structure. These models generally attribute node centrality
to either luck6 or some combination of fundamentals and equilibrium selection7 rather than the timing
of node entry. For example, because any pairwise stable network can be a solution in Jackson and
Wolinsky (1996), whether node is central depends only on whether there exists a pairwise stable
network where that node is central (fundamentals) and whether that pairwise stable network happens
to be the one that is chosen (equilibrium selection). Existing models of network formation usually lack
at least one of the critical elements for exploring the impact of entry timing on centrality: either the
agents are not forward looking, the nodes do not enter the network sequentially, or the set of solutions
depends only on static features of the network.

The earliest models of network formation, such as the preferential attachment model of Yule (1925)
and the small world model of Erdös and Rényi (1960) did not include any optimizing agents or strategic
behavior.

Network formation models were introduced to economics by Jackson and Wolinsky (1996) and their
model of cooperative network formation. In this model, a network is stable if no two unconnected
players want to form a connection, and no player who is party to a connection wishes to break that
connection. This network formation process is called cooperative, because two players must agree on
a connection for it to persist. This model has no dynamic aspect.

Bala and Goyal (2000) propose a similar stability based network formation model, but they allowed
players to generate connections unilaterally. As such, their model is referred to as non-cooperative
network formation. Bala and Goyal (2000) also introduces dynamics to their models, but as in many
dynamic models of network formation players were not strategically forward looking.8 Players are
assumed to best respond to the strategies of players from the previous period. In a similar vein, the
model of Watts (2001) assumes that players myopically update their connections, and in the model of
Kim and Jo (2009) connections only provide an immediate bene�t.

There are several papers that do include dynamics as well as forward looking strategic agents. In
many of these models, payo�s or game structures are chosen such that the set of possible outcomes de-
pends on some static feature of the network. For example Currarini and Morelli (2000) and Mutuswami
and Winter (2002) both �nd that only e�cient networks can be supported in equilibria of their game.
Song and van der Schaar (2015) �nd that the dynamic network formation process can converge to
any network which satis�es a static individual rationality constraint requiring that each player make
a payo� of at least zero. These papers either lack strong history dependence or use specialized payo�
functions which simplify strategic considerations.

While dynamics do not drop out of the network formation model of Aumann and Myerson (1988),
the payo� function used guarantees that only complete connected components can form. In other
words, all nodes in a �group� must be connected to all other nodes in that group. Only the number
of nodes in a particular group matters, because only one structure is possible for a given group size.
This allows the network formation model to be reduced to a more standard model of dynamic coalition
formation where players are picking their groups.

The model of Chowdhury (2008) is one of the most similar to our own. Both models include
sequential link formation and forward-looking strategic agents. In addition, there is the possibility in
Chowdhury (2008) for early movers to make myopically sub-optimal moves in hopes of gaining future
connections, which can be thought of as loosely similar to the vying for dominance behavior of our

6Kim and Jo (2009)
7Watts (2001); Currarini and Morelli (2000); Jackson and Wolinsky (1996); Bala and Goyal (2000)
8Watts (2001) and Kim and Jo (2009)
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model. However, Chowdhury (2008) assumes that each node can only sponsor one connection, and
thus rules out by assumption the possibility of competing for centrality by making multiple connections
that is the center of the present paper.

Our experiment is designed with a more de�ned temporal structure than previous network formation
experiments.9 It is this rigid time structure that allows us to carefully study how entry order and move
order relate to the eventual centrality of nodes.

To our knowledge, there is only one other paper in the economics literature which has examined
network growth in with a similar structure. Celen and Hyndman (2006) have players form small three-
person networks using a fairly similar sequential process to the one used in this experiment. In their
experiment, new players can pay to gain information about the state of the world from older nodes.
The informational �ows form a directed network.

Our experiment di�ers from Celen and Hyndman (2006) in that players care about the behavior
of later nodes and the network is larger, which makes the space of possible behavior much richer. In
Celen and Hyndman (2006), the behavior of future players is irrelevant. Players are instead concerned
with inferring the behavior of previous players. As such, we need to conduct a new experiment to test
the vying for dominance prediction of Neligh (2017) and to examine the importance of entry timing
in determining node centrality.

Several experiments have found that network structure can have large impacts on behavior. Exper-
imentalists have studied the impact of network structure on trading games,10 public goods games,11

and group decision making games.12 A good review of older experiments examining the role of network
structure in determining economic outcomes can be found in Kos�eld (2003).

Experiments have been conducted testing various network formation models. In examining these
studies, we �nd two consistent important �ndings which are potentially relevant to our own experiment.
First, is the competition for centrality. Players want to be central, because it is often bene�cial to
be so in many experimental setups. As such, there are often several players all attempting to become
central in these experiments. Second, is the role of heterogeneity. Player di�erences, whether inherent
or exogenously given, have a large impact on the behavior of players in network formation games.

Kearns et al. (2012), van Leeuwen et al. (2013), and Goeree et al. (2007) all �nd evidence that
competition for centrality plays a role in determining whether and how players converge to a stable
solution. In all experiments, players were slow in converging to stable networks, at least in part
because multiple players consistently tried to become the most central in the network. Players can be
heterogeneous in how much they compete for centrality. Kearns et al. (2012) found a very bimodal
distribution of connections made. Players either made a lot of connections or very few. In Section 6 we
examine how heterogeneity in players can in�uence the competition for centrality in our experiment.

Competition for centrality is a very important feature of our model as well. Players vie for domi-
nance by making multiple connections in hopes of being highly central and receiving many connections
as the game progresses. However, while this competition for centrality has been a confounding factor
in previous studies, it is a direct prediction in our model. As such, it will allow us to discuss the
phenomenon with more rigor and detail than in previous studies.

2 The Game

We now present the general concept of the network formation model. There is a set of players, each
one represented by a node. New players/nodes join the network one at a time. As players join the
network, they choose which existing nodes to connect to. They must connect to at least one existing
node. Once the last player has joined the network and made their choice the game ends, and players
receive points based on the number of connections they made and their position in the �nal network.
Centrality is bene�cial but making connections is costly.

9Carrillo and Gaduh (2012); Bernasconi and Galizzi (2005); Carrillo and Gaduh (2012); Kearns et al. (2012); van
Leeuwen et al. (2013)

10Charness et al. (2007)
11Charness et al. (2014); Carpenter et al. (2012)
12Kittel and Luhan (2013);McCubbins and Weller (2012)

5



We now present the model formally. There is a set of players represented by nodes indexed j ∈
{1, ..., J}. Networks are represented as G = {n(G);x(G)} where n(G) is a set of nodes, and x(G)
is a set of edges represents by pairs of nodes. The networks are also indexed by time as Gt where
t ∈ {1, 2, ...J}. Note that there is one time period for every player/node, so indices are largely
interchangeable. The game begins with the initial network containing only Node 1 G1 = {1; ∅}.

A strategy for player j maps every possible network state they can face, Gt−1, to a distribution
over sets of connections. Each set of connections ht must be non-empty and contain only connections
between Node t and existing nodes in Gt−1. Player t is choosing which existing nodes to connect to.

After player t makes their move, the network evolves according to the following rule:

Gt = Gt−1 ∪ {t;ht}

In other words, the new network is created by adding a node representing the new player and all
of the connections made by that player to the existing network.

The game concludes after Player J makes his choice, generating the �nal network GJ .
Once the game has concluded, each player gets a payo� according to the following utility function.

ui(hi, GJ) = Y − C|hi|+Bζi(GJ , δ) (1)

Y ∈ IR is a constant base payo�. C|hi| is the cost of connections by individual i who purchased
the set of connections hi. C ∈ IR+ is the constant cost of connections. Bζi(GJ , δ) is the bene�t from
centrality. B ∈ IR+ is a constant multiplier, and ζ(GJ , δ) =

∑
j 6=i δ

dij(GJ )−1 is a standard measure of

closeness centrality. Decomposing
∑
j 6=i δ

dij(GJ )−1, δ ∈ (0, 1) is a geometric discount factor. dij(Gt) is
the minimum distance between Node i and Node j in edges under network Gt. The minus one in the
exponent adjusts the term such that we do not have to normalize B and C with respect to δ.

This type of payo� function is common in the network formation literature. It is very similar to the
payo� function used in Watts (2001) and Jackson and Wolinsky (1996).13 This type of network payo�
is most relevant for systems in which some bene�cial opportunity or information lands at a random
node and then disseminates throughout the network with value decaying over time. It can, however,
be applied as a useful approximation in any system where more central nodes gain more bene�ts, as
this measure of centrality is highly correlated with other measures of centrality, especially in networks
with low diameter.14

2.1 Solutions

We take Subgame Perfect Equilibria (SPE) as our solution concept of choice, because it captures
the idea of fully forwards looking strategic agents. A SPE is de�ned in the standard manner, as a
strategy pro�le in which players only choose moves after a given action history which are optimal for the
subgame resulting from that action history. Existence is guaranteed by the fact that we are considering
a �nite game of perfect information. The solution to the game is not always unique. Because this
is a �nite game of perfect information, multiplicity of equilibria derives from the manner in which
players resolve indi�erences. As such it is useful to address the way players resolve indi�erences in a
systematic manner.

De�nition. Tie-Breaking Rule: a tie-breaking rule refers to some rule by which players resolve
indi�erences in the construction of a SPE.

A player's tie-breaking rule can be thought of as a mapping from action histories to strict orderings
over moves. Whichever strict ordering is drawn after a given action history is used to transform the
current actor's weak preference ordering on moves into a strict one (thereby determining that player's
move). Note that the indi�erences in this game are due to structural symmetries and similarities

13Their payo� function is has Y = 0 and B = δ, but otherwise is identical.
14For an examination of correlation in measures of centrality in real world networks, see Valente et al. (2008)
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inherent in network formation and are not related to o� path behavior. As such the indi�erences
cannot be easily dealt with using equilibrium re�nements or payo� perturbations. 15

Note that because indi�erence resolution is the only source of multiplicity in this game, a solution
to the game can be fully characterized by the set of parameters and the tie-breaking rules employed
by all players.

3 Results

3.1 E�ciency Results

We �rst explore the structure of the e�cient network. This depends on the parameters of the problem
and in particular the ratio C

B . When C
B > (1− δ) most of the outcomes are not Pareto ranked, but we

can productively consider whether networks are e�cient in the following sense.
De�nition: We say an outcome network GJ is e�cient if it generates the highest possible sum

of utilities of all feasible outcome networks for given parameters. This is equivalent to the �strong
e�ciency� of Jackson and Wolinsky (1996).

The following proposition characterizes e�cient networks for several parameter regions.

Proposition 1:

• If CB < 2(1− δ), then the e�cient network is the complete network.

• If CB > 2(1− δ), then the e�cient network is the star network (on Node 1 or Node 2)

• If CB = 2(1− δ), then all feasible networks which contain stars are e�cient

For proofs, see Neligh (2017).
This result is similar to that of Jackson and Wolinsky (1996) with a few key di�erences. First, the

empty network is never e�cient, because it is never feasible in this game. Second, the threshold below
which the complete network is e�cient in Jackson and Wolinsky (1996) is C/B = 1−δ. This di�erence
comes from the fact that, in our model, the cost of each connection is only paid once by the player
who makes it. In the cooperative game, the connection is costly to both parties. As such connections
must be twice as costly in our game before they become socially ine�cient.

Note that, while the sequential nature of the game does impose limits on the set of feasible networks,
it does not impose strong limits on the structure of the networks other than connectedness. Given any
connected network of un-indexed nodes, we can �nd a sequence of actions which generates a network
of that same shape.

3.2 Subgame Perfect Equilibria

Having established e�ciency, we now examine the types of networks that can form in di�erent param-
eter regions.

Proposition 2:

• If CB < (1− δ) then the complete network is the unique network which can form in SPE's of the
game.

• If CB > (1− δ), then the complete network is no longer a possible outcome of any SPE at all. To
see this consider the move of Player J .

• If C
B > (J − 1) − 1−δJ−3

1−δ , then the star networks centered on Node 1 and Node 2 are the only
networks which can be formed in SPE's of the game.

15In face, tie-breaking rules behave much like small move dependent bonus payment perturbations which are drawn
randomly from a distribution which depends on the move history of the game, assuming that the payments are small
enough never to change the relationship of two moves between which the player is not indi�erent.
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Figure 2: Visualization of parameter regions of interest. Threshold locations imply low δ. f(J, δ) = δ−δJ−3

1−δ .

For proofs, see Neligh (2017).
As in Jackson and Wolinsky (1996), when C < 1 − δ the complete network forms as the possible

only outcome of subgame perfect equilibria, and when C > 1 − δ. That is where the similarities
end, however. The ability of earlier moves to a�ect the incentives of later players means that the
potential bene�ts of additional connections are much higher than in a one shot model; recall the vying
for dominance discussed in the introduction. As such, we cannot guarantee a minimally connected
network unless costs are relatively very high.

Also, note that the right hand side of the condition, CB > (J − 1) − 1−δJ−3

1−δ , is increasing in J , so
the condition is more restrictive in large networks. Intuitively, this means that it is easier to generate
non-star networks when the number of players is large and when the geometric discount factor is large.

Proposition SPE 2 is tight as long as δ is small in a weaker sense than for Proposition SPE 1. If
C
B < J − 2 and δ is su�ciently small such that there exist a SPE of the game parameterized by C

B and
δ which does not always generate a star network.16

3.3 Summary of Results

These results are intuitive and are generally quite robust to small changes in the assumptions of the
model.17 These results also provide a basis for some of the more novel results such as those discussed
in Section3.5 and tested in the experiment. The results of the previous sections are summarized in
Figure 2.

There are parameter regions where the star network and complete network are formed as the unique
SPE outcome and regions where they e�cient. There are also regions where both networks are e�cient.
In addition, there is an interesting region, where we cannot guarantee either the star or the complete
network. In the yellow region, the complete network cannot form. The star network can form, but
it is not guaranteed to be a solution, and it is never the unique SPE outcome as long as δ is small.
Instead, we often see more complex strategic behaviors in the yellow region, like vying for dominance.

The above results are comparable to those found in Jackson and Wolinsky (1996) and Watts (2001)
with several major di�erences. First, the fact that we are using non-cooperative network formation
shifts the e�ciency threshold, Since the region where the complete network is guaranteed does not
shift, this change allows for the possibility of ine�cient under-connection.

Second, the nature of the non-degenerate networks that can form is very di�erent. The stable
networks in Jackson and Wolinsky (1996) are always locally e�cient in the sense that changing them
by adding or removing one connection will decrease the overall sum of payo�s generated by the network.
Ine�ciency in their model is driven by the di�erence between global and local optimum. In our model,
on the other hand, local optimality is not guaranteed. Ine�ciency is instead driven by the existence
of positive and negative externalities. The positive externalities are easy to see, because players are
bene�ting from connections that other players pay for, but the negative externalities are somewhat
subtler. Players can vie for dominance in order to gain connections from future players, but vying

16See Neligh (2017) for proof
17See Neligh (2017) for examples of ways that the results can be generalized. In that paper we loosen assumption on

the timing of entry, the homogeneity of nodes, and when nodes can make connection. We also examine what happens
when players can own multiple nodes and when the end of the game is not deterministic.

8



Figure 3: An unattached Player 3 (top) may choose to make a myopic move (lower right) or vie for

dominance (lower left).

for dominance can produce negative externalities by crowding out players who would otherwise be
dominant. An example of this is shown in Section 3.5.

It is interesting to note that, unlike in previous literature, when J is high and δ is low it is possible to
generate both ine�ciently under-connected networks and ine�ciently over-connected networks through
SPE's. Ine�cient under-connection arises when (1− δ) < C

B < 2(1− δ), and ine�cient over-connection

can arise when (J − 1)− 1−δJ−3

1−δ > C
B > 2(1− δ).

3.4 Vying for Dominance

The question naturally arises of what happens in the non-degenerate region (yellow) region. Behavior
in this region is rich and can include a lot of strategically interesting move such as vying for dominance
and taking myopic actions. As discussed in the introduction, a myopic move is a move which would
be optimal if the game ended immediately after that move

In all of the cases we discuss in this paper, a myopic move involves making a single connection to
one of the most central (dominant) nodes, and vying for dominance corresponds to connecting to all
existing nodes. See Figure 3 for examples of these behaviors. It is important to note that when we
say players take a myopic action, we do not mean that they are not forward looking and strategic. As
we will show, the myopic action is often optimal in the subgame perfect sense. Players can also vie for
dominance.

In general, even more complex types of behavior exist in this parameter region than just these
two, making it hard to solve see Neligh (2017) for an example of a six node network in which a
player makes a more strategically sophisticated move: setting up a later player to vie for dominance
by making a sub-optimal one connection move. As we increase the size of the network, the possible
strategic complexity increases further. In addition, brute force backwards induction rapidly becomes
unfeasible. In a J node network would require looking at the payo�s associated with (J − 1)!2J

2−J

possible networks.
In order to make things solvable we focus on cases in which vying and myopia are the only moves.

18 In one case we restrict the game such that players are always required to connect to at least one of
the most central nodes in the network. This is called the Dominant Node Restricted Game, and it is
tractable even for large networks. We can also focus on smaller simple networks such as when J = 5
and C/B > 1. We cover the Dominant Node Restricted Game in detail in Neligh (2017), while in this
paper we focus on the �ve-node game.

18With some caveats discussed in detail in Neligh (2017)
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3.4.1 Preview of Results from the Dominant Node Restricted Game

Before moving on to discuss the �ve-node game, we preview two of the results from the Dominant Node
Restricted Game. First, in all Markov Perfect Equilibria of the Dominant Node Restricted Game every
player will either connect to all nodes or connect to a subset of the most connected existing nodes.19

This is a very useful result, as it allows us to eliminate a large number of possible moves for each
player. If there are n players tied for most central, then Player t has n2t−2 possible moves. This result
eliminates all but 2n of them (unless all nodes are tied for most central in which case it eliminates no
moves). This result is also interesting because it predicts a very two-tiered distribution of centralities.
There are players who just do what is myopically optimal without expecting many future connections,
and there are players who vie for dominance in order to get connections from those players who make
myopic moves.

The second result is: when players break ties in favor of connecting to newer nodes, the solu-
tion is characterized by periods of players playing myopic actions punctuated by individuals vying
for dominance. Furthermore, the amount of time between players who vie for dominance increases
exponentially as the game progresses. This result highlights two general the properties of vying for
dominance: expected myopic moves increase the appeal of vying and expected vying moves decrease
the appeal.

Players who vie for dominance do so because they want connections from the players taking myopic
actions, but these connections are scarce. Only one vying player will receive the connection from a
myopic player. Once another player vies for dominance, that new dominant node will be receiving
those connections, due the assumed tie-breaking rule which favors newer nodes. The tie-breaking rule
exaggerates the crowding out, but it is still a concern in other cases. Players who vie for dominance,
therefore, need a period of non-vying nodes after their move to make up for the cost of vying. Note that
this cost is increasing over time, because the network is getting larger; Vying for dominance requires
connecting to all existing nodes. As such, the number of dedicated myopic actions needed to make a
vying move pro�table is increasing over time.

It is also interesting that very small di�erences in when players join the network can have very
large impacts on the eventual centrality of nodes. The last node to vie for dominance ends up with
a connection to every node in the network. The node who joins immediately after ends up with one
connection only. Timing is critical in determining which nodes are dominant.

3.5 The Five-Node Game

In this section we will solve the game with �ve nodes and C/B > 1. 20 Recall that solutions to
the game are characterized by the parameters and the tie-breaking rule. We will use the random tie-
breaking rule in which each optimal move is picked with equal chance. This tie-breaking rule is chosen
for two reasons. First, it doesn't ex-ante favor any node. Second, it matches well with experimental
data as we show in Section 5.1. We discuss other tie breaking approaches in the Appendix Section 8.5.

We solve the game by backwards induction.

3.5.1 Player 5

Regardless of network con�guration, Player 5 will always connect to a single dominant node. Player 5
will take an action that is myopically optimal: connecting to a single dominant node. This is the best
one connection move, and the bene�t of multiple connection moves is never worth the additional cost.

When there are multiple dominant nodes, Player 5 will connect to one at random due to the
assumed tie-breaking rule. For examples of possible moves from Player 5 see Figure 4.

19Note that, connecting to a non-singleton subset of the current most connected nodes is not myopically optimal.
Generally, however, players will connect to a singleton subset of the most connected node, which is myopically optimal,
so it is best to think of this move type as myopic for comparison with later results.

20The game is solvable when C/B < 1, but the behaviors are very di�erent from that used for other regions, so that
case is covered in the Appendix Section 8.1.
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Figure 4: Several examples of possible move by Player 5. In cases with dotted lines, Player 5 picks
one connection at random.

3.5.2 Player 4

Player 4's move can depend on the type of network he is facing. He can face two networks, ignoring the
symmetric case. We say that two networks are symmetric if the nodes of one network can be relabeled
to create the other. Because our tie-breaking rule does not depend on node labels, symmetric networks
generate e�ectively identical behavior. The network after Player 3 connects only to Node 1 is symmetric
to the network after Player 3 connects only to Node 2 If Player 3 made one connection, Player 4 faces
a network with one dominant node. If Player 3 made two connections, Player 4 faces a network with
three dominant nodes. See Figure 5 for examples of the networks Player 4 can face.

Player 4 Facing One Dominant Node: We �rst consider the case where Player 4 is facing one
dominant node. There are a number of moves that Player 4 can make, but we will focus on two moves
which will serve as bases for comparison: the myopic move (connecting to a single dominant node)
and vying for dominance by connecting to all existing nodes.

When Player 4 plays a myopic move, he connects to a single dominant node. His single connection

Figure 5: Possible networks faced by Player 4
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Move Cost
Immediate

Bene�t

Prob P5

Connection

Expected

Connection Bene�t

Expected

Utility

Myopic C B + 2δB 0 δB B + 3δB − C
Vie (3 Con) 3C 3B 0.5 0.5B + 0.5δB 3.5B + 0.5δB − 3C

Vie (2 Con) 2C 2B + δB 0.25 0.25B + 0.5δB + 0.25δ2B 2.25B + 1.5δB + 0.25δ2B − 2C

Other (2 con) 2C 2B + δB 0 δB 2B + 2δB − C
Other (1 Con) C B + δB + δ2B 0 0.5δB + 0.5δ2 B + 1.5δB + 1.5δ2B − C

Table 1: Move costs and bene�ts for Player 4 facing three dominant nodes. Moves listed: Myopic�as
de�ned previously; Vie (3 Con)�Becoming dominant by making three connections; Vie (2
Con)�Becoming dominant by making two connections to the non-dominant nodes; Other (2

Con)�Making two connections without becoming dominant; Other (1 Con)�Making one connection
to a non-dominant node.

has a cost of C, and he makes an immediate bene�t of B + 2δB (B from one directly connected node
and 2δB from two second degree connected nodes). Because player 4 is not a core there is no chance
that player 5 will connect to them. Player 4 will then only expect to gain δB from his second degree
connection with Player 5.

Player 4 can also vie for dominance by connecting to all existing nodes. Making 3 connections
incurs a cost of 3C, and gains Player 4 an immediate bene�t of 3B. After this move, Player 4 becomes
one of two dominant nodes, so he will have a 50% chance of receiving a connection from Player 5.
Therefore, he will have an expected bene�t of 0.5B + 0.5δB from his connection with Player 5.

Table 1 summarizes the costs and bene�ts for these moves and others available to Player 4 facing
one dominant node.

We can immediately see that the one connection non-myopic move is dominated by the myopic
move. In addition, vying for dominance by making two connections is always worse than either vying
for dominance by making three connections or worse than the myopic move.21 The remaining three
possible optimal moves are Myopic, Three Connections Vie, and Two Connections Not Vie. The payo�s
from all three of these options can be normalized by as functions of one summary parameter C

B(1−δ) .

Figure 6 shows the normalized payo�s as a function of C
B(1−δ) . We can see from the �gure that

vying for dominance is optimal up until some threshold, after which the myopic move is optimal which
gives us the following

Lemma 1: In the �ve node game with random tie-breaking and C
B > 1

• If C
B(1−δ) < 1.25, Player 4 facing one dominant node will connect to all existing nodes (Vying)

• If C
B(1−δ) > 1.25, Player 4 facing one dominant node will connect to one dominant node (Myopic)

See Figure 7 for visualizations of the optimal moves of Player 4 facing one dominant node.
This gives us a threshold of interest, whether C

B(1−δ) is above or below 1.25. If we divide our regions

graph from earlier through by 1− δ.
Player 4 Facing Three Dominant Nodes: We now consider Player 4's move when facing three

dominant nodes. In this situation, Player 4 only has three real moves due to symmetry. He can make
one connect (myopic), two connections, or three connections (vying). The results of each move are
reported in Table 2.

The payo�s are very similar to the one dominant node case, but now Player 4 only gets a one
quarter chance of receiving a connection from Player 5 if he vies for dominance, because there will be
four dominant nodes. See Figure 8 for the new normalized payo�s as functions of C

B(1−δ) .

Vying and myopic moves are again the only optimal moves with vying being optimal up to some
threshold, but the threshold decreased, because the payo�s from vying for dominance have decreased.

Lemma 2: In the �ve-node game with random tie-breaking and C
B > 1

21To see this, note two connection vie better than three connection vie implies C > 1.25B − 1δB − 0.25δ2B. Two
connection vie better than myopic implies 1.25B− 1.5δB+0.25δ2B > C. It is impossible for both statements to be true
at the same time. Therefore, vying by making two connections can never be optimal.
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Figure 6: Normalized payo�s for Player 4 facing one dominant node. Payo�s normalized by subtracting

B + 3δB − C and dividing by B(1− δ). Due to the di�erent structure of the payo�s, some moves (two

connection vying and one connections other) cannot be normalized this way. These moves are always worse

than three connection vying or the myopic move.

Figure 7: Visual representations of the possible moves of Player 4 facing one dominant node: vying
for dominance (left) and myopic (right).

Move Cost
Direct

Bene�t

Prob P5

Connection

Expected

Bene�t

Expected

Utility

Myopic C B + 2δB 0 δB B + 3δB − C
Vie 3C 3B 0.25 0.25B + 0.75δB 3.25B + 0.75δB − 3C

Two Connections 2C 2B + δB 0 δB 2B + 2δB − C

Table 2: Move results for Player 4 facing one dominant node
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Figure 8: Normalized payo�s for Player 4 facing three dominant nodes. Payo�s normalized by
subtracting B + 3δB − C and dividing by B(1− δ)

Figure 9: Visual representations of the possible moves of Player 4 facing three dominant nodes

• If C
B(1−δ) < 1.125, Player 4 will connect to all existing nodes when facing three dominant nodes

(Vying)

• If C
B(1−δ) > 1.125, Player 4 will connect to one dominant node when facing three dominant nodes

(Myopic)

See Figure 9 for visualizations of the optimal moves of Player 4 facing three dominant nodes. This
adds a second threshold of interest, whether C

B(1−δ) is above or below 1.125.

3.5.3 Player 3

Player 3 always faces the same network: Nodes 1 and 2 connected. As such, he does not have to
condition his move on network faced.

Player 3 also only has two moves (disregarding the symmetric case). He can make one connection
(myopic) or two connections (vying for dominance). Player 3 does have to consider, however, how his
own choice e�ect Player 4's choice to vie for dominance. Table 3 re�ects the choices and trade-o�s
faced by Player 3.

When C
B(1−δ) > 1 2

3 , vying is not worth the cost for Player 3. When C
B(1−δ) drops to the (1.25, 1 2

3 )

range, vying becomes pro�table. If C
B(1−δ) drops further into the (1.125, 1.25) range, something in-

teresting happens. When C
B(1−δ) ∈ (1.125, 1.25), whether Player 4 vies for dominance depends on

14



C
B(1−δ)

P4 Vie
Given
P3 Vie

P4 Vie
Given

P3 Myopic

Vie
Expected

Connections

Myopic
Expected

Connections
Pref

(1− δ, 1.125) Yes Yes 1.25 1 Vie
(1.125, 1.25) No Yes 2/3 1 Myopic

(1.25, 1 2
3 ) No No 2/3 0 Vie

(1 2
3 ,∞) No No 2/3 0 Myopic

Table 3: Player 3 trade-o�s

Figure 10: Possible moves for Player 3. Vying (left) and myopic(right). In the case with the dotted
line, one connection is picked at random.

whether Player 3 vies for dominance. Player 3 wants Player 4 to vie, because Player 4 vying provides
a connection to Player 3 with probability one.

When C
B(1−δ) ∈ (1−δ, 1.125), Player 4's decision no longer depends on behavior from Player 3, and

vying for dominance is again pro�table. We can summarize results in the following lemma.
Lemma 3: In the �ve-node game with random tie-breaking and C

B > 1

• C
B(1−δ) ∈ (1− δ, 1.125), Player 3 makes two connections

• C
B(1−δ) > (1.125, 1.25), Player 3 makes one connection randomly

• C
B(1−δ) ∈ (1.25, 53 ), Player 3 makes two connections

• C
B(1−δ) >

5
3 , Player 3 makes one connection randomly

See Figure 10 for a visualization of the moves Player 3 makes
Notice that there is now one more threshold we need to keep track of, whether C

B(1−δ) is above or

below 1 2
3 . Players 1 and 2 have no decisions to make.

3.5.4 Summary

We can then compile the behaviors into solutions for each parameter region discussed.
Proposition 3: The solution to the �ve-node game with C/B > 1 can be characterized by the

following table:

C
B(1−δ) Range Player 3 Player 4 Player 5

( 1
1−δ , 1.125) Vie Vie (Three Connections) Myopic

(1.125, 1.25) Myopic Vie (Three Connections) Myopic
(1.25, 1 2

3 ) Vie Myopic Myopic
(1 2

3 ,∞) Myopic Myopic Myopic

For visualizations of what typical networks in each region look like see Figure 11.
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Figure 11: Typical outcome networks by region.

4 The Experiment

4.1 The Experimental Game

The experimental game uses a slightly modi�ed payo� in order to simplify the problem for participants:

πi(hi, GJ) = Y − C|hi|+B
∑
j 6=i

(dij = 1) + b
∑
j 6=i

(dij = 2)

Players receive B points for each directly connected node in the �nal network and b points for every
node at a distance of two.22 Nodes which are farther than two away provide no bene�t. We conducted
experiments using the following parameters:J = 5, Y = 160, B = 100, b = 10. The value of C varied
between treatments with high cost treatments using C = 140 and low cost treatments using C = 110

The modi�ed game with these parameters produces the same solution as the base game with J = 5,
Y = 160, B = 100, δ = 0.1, C = 110, 140. The cost levels 110 and 140 correspond to solution regions
2 ( C

B(1−δ) ∈ (1.125, 1.25)) and 3 discussed above ( C
B(1−δ) ∈ (1.25, 53 )) with typical networks like those

represented in Figure 12.

4.2 Setup

In this experiment, each round corresponded to the creation of one network for each group. Players
were grouped in sets of three representing Nodes 3 through 523 and were randomly regrouped and
reordered for each round. Each session had 28 rounds, including three practice rounds and 25 paying
rounds. There was only one cost level (110 or 140) per treatment. At the end of the experiment players
were paid $1 for every 200 points earned.

Figure 13 presents an example of what players might see during the network formation process.
The viewer's own node always appears in blue when it is present in the network. Potential connections
appear in blue. They can be created or destroyed by clicking on existing nodes in the network. Once

22Note that dij in the above refers to dij(GJ )
23Nodes 1 and 2 have no choices and so no players were assigned to those roles.

16



Figure 12: Typical networks formed in the experimental treatments

Session C Questions Subject Male Female Engineer Econ Grad

1 110 No 15 10 5 7 2 2

2 140 No 15 7 8 3 1 4

3 140 No 12 4 8 3 1 0

4 110 No 15 5 9 3 1 1

5 140 No 12 5 6 4 1 0

6 110 No 15 7 8 3 2 0

7 110 Yes 15 9 5 3 3 0

8 110 Yes 15 8 7 5 1 0

Total 114 55 56 31 12 7

Table 4: Sessions Summary

a player is satis�ed with the set of connections they have chosen, they can click �Con�rm� to �nalize
their connections, adding them to the network. The next player then uses the newly expanded network
as the basis for their own move.

Several of the later C = 110 treatments included question batteries to the end of the experiment.
We included sets of questions designed to risk references, elicit beliefs, and personality characteristics.

The �rst battery of questions consisted of a series of binary choices between gambles in a multiple
price list, a la Holt and Laury (2002). The second battery elicited beliefs about the moves of successive
players, incentivized via a quadratic probability scoring rule. Finally, the third battery consisted of non-
incentivized Big Five personality questions, aimed at detecting subject's entrepreneurial inclinations.24

We describe the three series of questions in more detail later in the paper. The relevant screenshots
and additional details are reported in Appendix Section 10. Screenshots of the BFI questions were not
included as the questions were identical to those in John and Srivastava (1999).

4.3 Sessions

We conducted all sessions at the Columbia Experimental Laboratory for the Social Sciences (CELSS).
The experiment was implemented using the zTree experimental platform,25 and participants were
recruited from the CELSS subject pool which is managed using the Online Recruitment System for
Economic Experiments (ORSEE).26

Table 4 summarizes information about the sessions that were run. The questions column refers to
whether or not the question batteries were included at the end of the session. The C column refers to
the cost level for the session. All other columns report demographic information of potential interest.

24Zhao and Seibert (2006)
25Fischbacher (2007)
26Greiner (2015)
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Figure 13: Examples of what players see during the network formation process. Beginning from the
top left we have: (1) what Player 4 sees while making a decision; (2) what Player 3 sees while Player

4 makes a decision; and (3) what Player 5 sees after Player 4 made a decision.
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Cost Player 3
Player 4

(Facing Three Dominant Nodes)
Player 4

(Facing One Dominant Node)
Player5

110 No No Vie No
140 Vie No No No

Table 5: Node Move Predictions

Cost\Player 1 2 3 4 5 Total

110 447.5 337.5 270 185 180 1420
140 440 300 160 150 150 1200

Table 6: Player Payo�s: Predictions

4.4 Predictions

4.4.1 Move Predictions

Using the results from Section 3.5 we can make several predictions about the behavior of players in
the experimental game.

• Prediction 1: All players in both treatments will either play a myopic move or vie for dominance.

• Prediction 2: Player 5

� Player 5 will play a myopic move

• Prediction 3: Player 4

� 3a: Player 4 will vie more often when there is one dominant node and C = 110 than in any
other cost/state combination

� 3b: Player 4 will play a myopic move when C = 140 or when C = 110 facing three dominant
nodes

� 3c: Player 4 will vie when there is one dominant node and C = 110

• Prediction 4: Player 3

� 4a: Player 3 will vie more in the C = 140 treatment than in the C = 110 treatment

� 4b: Player 3 will vie in the C = 140 treatment

� 4c: Player 3 will Play a myopic move in the C = 110 treatment

Table 5 summarizes the predictions on when players should vie for dominance

4.4.2 Payo�s

Table 6 summarizes the expected number of points made by each player
At both cost levels there is a substantial early mover advantage when it comes to pro�t. Predictable

there is a drop in payo� for all players as we move from low to high cost. This di�erence tends to hit
the middle players harder, because they either lose their future connections or have to pay large costs
if they wish to become dominant. Early players do not need to pay high costs to become dominant,
and later players will not receive future connections regardless of the cost.

There are two main e�ects from the increase in connection costs. First, the total number of
connections goes down, decreasing the e�ciency of the outcome network. The high cost treatment
will generate �ve connections while the low cost treatment will generate six. Second, the cost of each
connection increases. This means that the social welfare decrease can be attributed partly to the
increase in the cost of existing connections and partly to the shift to a less e�cient con�guration.
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Cost\Player 1 2 3 4 5

110 0.25 0.25 0 0.5 0
140 0.33 0.33 0.33 0 0

Table 7: Probability of Final Dominant Node: Predictions

Because the resulting networks always have a largest minimum distance (diameter) of two in the cases
we are examining, each new connection should increase welfare by 2(B − b)− C points.

It should be noted that the di�erence in con�guration e�ciency coupled with the predictability
of connections number provide an opportunity for a welfare improving taxation/subsidy scheme. A
planner could impose a �at tax mirrored by a subsidy on connections, thereby enforcing the network
structure associated with any cost level. Subsidizing connections in this manner in order to generate
a complete network is welfare increasing as long as C

B < 2(1− δ).
For example, consider what would happen if C = 140 and a planner were to impose a �at tax of

36 points on each player and then subsidize connections by 30 points. The tax and subsidy cancel,
leaving a balanced budget, and the e�ective cost of connections becomes 110 points. Welfare would
then go from 1200 points to 1420− 180 = 1240 points, a gain of 40 points.

Due to Proposition EF 1, as long as C < 180 it will always be optimal for the planner to impose
a subsidy on connections such that the e�ective C is less than 90, since the complete network is the
most e�cient possible network in this case. Whether this theoretical gain from planner intervention
can actually be practically achieved depends on whether the actual networks are responsive to changes
in connection cost.

4.4.3 Dominant Nodes

The theory also has predictions about which node will be dominant at the end of the game. Table 7
provides the probability that each player will end the game as the dominant node.

In the lower cost treatment, weight is shifted toward the later nodes being the �nal dominant node
more often. Lower costs mean more opportunities for later players to pro�tably vie for dominance.
More vying later in the game means more e�cient networks and a higher chance of newer nodes being
dominant at the end.

5 Results

In this section we go over the results use them to explore the relationship between centrality and entry
timing. We also discuss the relationship between costs and e�ciency. The primary unit of observation
is the network, although analysis is also performed at the move and subject level. In sessions with
C = 110, we observed a total of 1875 moves by 75 subjects, or 635 networks; in sessions with C=140
we observed a total of 975 moves by 39 subjects or 325 networks.

5.1 Justi�cation of Random Tie-Breaking Rule

Before we examine player behavior in depth, it is important to establish that the random tie-breaking
rule is a credible model for the way players resolve indi�erences.

The tie-breaking rule is a complex multidimensional object which would be di�cult to estimate,
but only some features of the tie-breaking rule actually a�ect optimal equilibrium play. The critical
feature of the random tie-breaking rule for determining incentives is the fact that a Player 3 or 4 who
vies for dominance will receive a connection from the next player with a probability equal to one over
the number of resulting dominant nodes.

Table 8 compares the observed frequency of receiving a connection after vying for dominance to
the probability predicted by random tie-breaking in di�erent conditions.

While there are many signi�cant deviations from the predicted values, they are not large enough
to alter the predicted SPE strategies of the players in any situation. If we were to substitute those
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Player C Predicted Data Pval Obs

Player 3 110 0.333 0.554 0 372
Player 4, 1 Dominant 110 0.500 0.486 0 37
Player 4, 3 Dominant 110 0.250 0.312 0.003 32

Player 3 140 0.333 0.468 0 111
Player 4, 1 Dominant 140 0.500 1 1 2
Player 4, 3 Dominant 140 0.250 1 0.564 1

Table 8: Probability of Receiving a Connection from the Next Node After Vying for Dominance

Random One Multiple
Treatment Vie Myopic Total Benchmark Connections Connections

Total Other Other
C = 110 0.25 0.61 0.86 0.54 0.05 0.09
C = 140 0.13 0.78 0.91 0.54 0.07 0.03

Table 9: Aggregate Move Proportions

observed frequencies which are signi�cantly di�erent from the predicted values at the 5% level into the
model, it would not change the predicted moves of any player in any situation.

For example, if Player 4 facing one dominant node in the C = 110 treatment had a 48.6% chance
of receiving a connection from Player 5 after vying for dominance rather than the 50% predicted by
uniform random tie-breaking, it would still be optimal for him to do so. Similarly, if Player 4 facing
three dominant nodes in the C = 110 treatment had a 31.2% chance of receiving a connection after
vying, it would still be optimal for him to choose a myopic move.

5.2 Aggregate Data and Prediction 1

In this section we examine the aggregate data and consider whether the data is consistent with pre-
diction 1: all moves should be either myopic or vying for dominance. Table 9 reports the aggregate
proportion of each move type.

The second and third column report the fractions of myopic and vying moves respectively. Total
is the sum of the two. The random benchmark shows what proportion of moves would be myopic
actions or vying for dominance if all players were to mix uniformly randomly over moves.27 The Other
category refers to all moves which are neither myopic actions nor vying for dominance. This category is
subdivided into moves which involve one connection to a non-dominant node and moves which involve
multiple connections without vying for dominance. As we can see, the proportion of vying and myopic
moves is quite large, and very few players are choosing moves of other types. We can then say that
Prediction 1 seems to generally hold in the data.

5.3 Player 5 and Prediction 2

In this section we look at the behavior of Player 5. Prediction 2 states that Player 5 should always
connect to a single dominant node, which is the myopic move. Figure 14 shows the move proportions
of Player 5.

Moves are categorized as myopic (as de�ned above), multiple connections, or one connection not
myopic. One connection not myopic moves involve making one connection to a non-dominant node.
These moves can be thought of as small errors, because they are not optimal, but the amount of points
lost by choosing them is fairly small. Multiple connection moves include any move that corresponds

27Note, we mean each of a Player i's (i− 1) ∗ 2i−2 = toti feasible moves gets equal probability. As a consequence, the

probability of Player i making j connections is
BinomCoef(i−1,j)

toti
for j ∈ {1, 2, ..., i− 1}.
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Figure 14: Player 5 move proportions

Estimate Std. Error Pr(>|t|)

(Intercept) 0.220 0.043 0
C=110 3 Dominant -0.128 0.040 0.001
C=140 1 Dominant -0.173 0.046 0.0002
C=140 3 Dominant -0.211 0.044 0

Table 10: Regression of Player 4 Vie Dummy on Cost/State Combination. Intercept Corresponds to
C=110, One Dominant Node. Errors are clustered at the subject level.

to making more than one connection. These moves can be thought of as larger errors, because making
multiple connections can be fairly costly relative to the optimal move.

The three colored dots represent the predicted move proportions (in red), the observed move
proportions (in blue), and the move proportions of a hypothetical player who chose their move in a
uniform random way (in green).28 As we can see, the data is fairly close to the theoretical predictions,
with most players making myopic moves. The data is also quite di�erent from the random benchmark,
so we can conclude that players are generally adhering to Prediction 2.

5.4 Player 4 and Prediction 3

We now look at the behavior of Player 4. Recall that Player 4's move can depend on the network
he faces. Prediction 3 has three components. Prediction 3a is comparative, stating that Player 4
should vie for dominance more often when facing one dominant node in the low cost treatment than in
any other cost/state combination. Prediction 3b states that Player 4 should play myopic moves when
C = 140 or when C = 110 and facing three dominant nodes. Prediction 3a states that Player 4 should
vie for dominance when facing one dominant node if C = 110.

Figure 15 shows the move proportions for Player 4 under di�erent conditions. Moves are categorized
di�erently here than in the discussion of Player 5 actions, because Player 4 may sometimes optimally
choose another move: three connection vying for dominance. We must specify three connection vying,
because when facing two one dominant node, Player 4 can vie for dominance by making two connections
to the non-dominant nodes. In equilibrium, however, vying by making two connections is always worse
than vying or making a myopic move. As before, dots of di�erent colors are included on the �gure
representing the predicted move proportions, the observed move proportions, and the move proportions
of a hypothetical player who chose their move in a uniform random way.

28Given the empirical distribution of network states faced by Player 5.
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Figure 15: Player 4 move proportions
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Figure 16: Move proportions for Player 3

As we can see in Figure 15 , the proportion of three connection vies is higher for Player 4 facing
one dominant node in the C = 110 treatment than for any other situation Player 4 can face. Table
10 tests whether this di�erence is signi�cant. We regressed a dummy for vying for dominance on
each state/cost combination using only Player 4 data. The default situation is C = 110, facing one
dominant node. The coe�cients on every other state/cost combination are signi�cant and negative,
meaning that Player 4 vied for dominance more when C = 110, facing one dominant node than in
any other cost/state combination. As such we can say that the comparative static of Prediction 3a is
supported by the data.

We can also see by inspecting Figure 15 that Player 4 data matches the theoretical predictions
fairly well in the cases where myopic actions are predicted, so we can say that prediction 3b is also
generally supported. However, the data clearly contradict prediction 3c. When facing C=110, one
dominant node, we see more myopic actions and more "Other" than vying, although it is vying the
theory predicts in equilibrium.

One question that immediately springs to mind is whether, given the small deviations we saw
earlier on the part of Player 5, it is no longer optimal for Player 4 to vie for dominance in the C = 110
one dominant node condition. However, Player 4's who make the three-connection vying move make
an average of 1.4 more points than those making myopic moves.29 The di�erence is small and not
signi�cant at the 5% level, but we can at least say that myopic moves are not better on average than
vying for dominance. As such, the high number of myopic moves is still unexplained.

5.5 Player 3 and Prediction 4

Consider now the behavior of Player 3. Player 3 only has two possible actions:30 they can either
choose the myopic move or they can vie for dominance. Recall, Prediction 4a states that Player 4
should vie for dominance more in the C = 110 treatment than in the C = 140 treatment. Prediction
4b states that Player 3 should vie in the high cost treatment, and Prediction 4c states that he should
play myopic moves in the low cost treatment.

Figure 16 reports the move proportions for Player 3. As before, dots represent the predicted move
proportion, the actual move proportion, and the move proportion of a hypothetical player choosing an
action in a uniform random manner. We can immediately see that Player 3 is actually vying more in
the low cost treatment than in the high cost treatment. Furthermore, Player 3 is vying the majority
of the time when C = 110 and not vying the majority of the time when C = 140. Predictions 4a, 4b,
and 4c do not hold well in the data.

29Note that when there are multiple dominant nodes, there are multiple possible myopic moves, one corresponding to
each dominant node.

30Ignoring the symmetric case.
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Figure 17: Observed payo�s by situation for players making the predicted move and players not
making the predicted move

Figure 18: Average payo� by position, data and prediction. Note that payo�s for position 1 and 2 are
hypothetical as no real players were associated.

Examining the payo�s of players helps reveal a possible reason for Player 3's deviation from pre-
dictions, at least in the C = 110 case.

Figure 17 shows the average observed payo� made by players in each position when they made the
move predicted by theory vs average payo� when making all other moves. As we would expect, players
generally make fewer points when making moves other than the predicted ones. Those moves should
be sub-optimal in equilibrium. The one exception is Player 3 for in the C = 110 treatment. Because
Player 4 is not vying for dominance when predicted, Player 3 is actually receiving a lower payo� for
playing myopically, making vying more appealing. Player 4's deviation has changed Player 3's optimal
move.

5.6 E�ciency and Dominance

This subsection examines the consequences of the observed behaviors in terms of e�ciency and domi-
nant nodes.

Figure 18 shows the predicted and actual payo�s for players in each position in both treatments. In
general, payo�s were quite close to the prediction. Overall, players earned fewer points than predicted
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Figure 19: Cumulative frequency of �nal most dominant node.

with the exception of Players 2 and 3 in the high cost treatment who likely bene�ted from a small
bias away from connecting to Node 1. Overall each network generated an average of 1357 points in
the C = 110 treatment and 1171 points in the C = 140 treatment, a loss of 4.4% compared to the
predicted 1420 points with C=110, and of 2.4% percent compared to the predicted 1200 points with
C=140.

On average players made 5.15 connections per network in the low cost treatment vs 4.47 connections
per network in the high cost treatment, suggesting that a tax/subsidy scheme may still be welfare
improving, though less than predicted.

Figure 19 shows the cumulative frequencies of each node being the dominant node in the �nal
network.31 In the C = 110 case there is a de�nite shift back relative to predictions with earlier nodes
being dominant more often than the theory would suggest. Joining the network as the third player
is more conducive to becoming dominant than joining as the fourth player. The frequencies are more
similar to predictions in the C = 140 case, except Node 2 is the �nal dominant node much more often
than predicted, taking weight from both Player 3 and Player 1. We examine the data on �nal dominant
nodes in more detail in Appendix Section 9.1

5.7 Summary of Results

We can summarize the results of the experiment with regards to the predictions as follows with (T)
indicating mostly true or true and (F) indicating mostly false or false.

• (T) Prediction 1: All players play myopic moves or vie for dominance.

• (T) Prediction 2: Player 5

� Player 5 will play myopic moves

• Prediction 3: Player 4

� (T) 3a: Vie more often when one dominant node and C = 110

� (T) 3b: Play myopic moves when C = 140 or when C = 110 and three dominant nodes

� (F) 3c: Vie when one dominant node and C = 110

• Prediction 4: Player 3

� (F) 4a: Vie more when C = 140 than when C = 110

31In the rare occurrence when multiple nodes are dominant in the �nal network it counts as one observation for each
of them.
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Treatment Prediction Observed

C = 110 0.333 0.248
C = 140 0.333 0.126

Table 11: Fraction of Players Vying for Dominance

Estimate Pr(>|z|)

(Intercept) -1.234 0.000
Expected Gain from Vying (Vs Myopic) 0.053 0.000

AIC 1808.96

Table 12: Logit regression of vying by connecting to all nodes against expected gain vs myopic.
Errors clustered at the subject level.

� (F) 4b: Vie when C = 140

� (F) 4b: Myopic move when C = 110

In order to better understand how the reasons behind the behavioral deviations we can highlight
two noticeable features of the experimental results. First as summarized in Table 11, players vie for
dominance less often than predicted.

Second, players vie for dominance more in situations where the reward is higher. For each of eight
possible role/conditions,32 we calculated the average observed payo� for playing myopic moves and
the average observed payo� for vying for dominance by connecting to all existing nodes.33 These
values were used to calculate the empirical average gain from vying, relative to the myopic moves. In
Table 12 we show the results of a logit regression of vying for dominance against this average gain
from vying. As expected, the e�ect is both positive and signi�cant.

It seems plausible that players might have some aversion to vying for dominance which can be
overcome by higher expected gains.

6 Risk Aversion

Vying for dominance is an inherently risky move, because players must invest in connections now in
hopes of receiving future connections which, may not arrive. As such, it is plausible that risk aversion
might be driving the deviations that we see in the data. We explore that possibility in the next section.

6.1 Risk Aversion Data

As described earlier, we concluded two of the session with additional questions. The �rst battery of
questions was used to elicit risk aversion via multiple price lists (MPLs) in the spirit of Holt and Laury
(2002). Each list had ten questions, with each question comparing a risky option on the left (option
A) and a safe option or less risky option on the right (option B). Option A was a �xed gamble, while
option B improved moving down the page. Figure 20 shows screenshots of the MPLs.

Each of the MPLs was designed to mimic the trade-o� between vying for dominance and playing
myopic moves in one of the situations where players frequently vied for dominance in earlier sessions.
The left hand side of each list was a gamble mimicking the equilibrium payo�s from vying for dominance

32Player 3, Player 4 facing one dominant node, Player 4 facing three dominant nodes, and Player 5 for both cost levels
33

Regressions showing the average impact of vying for dominance on payo�s are located in Appendix Section ??.
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Figure 20: Screenshots of the multiple price lists used in eliciting risk preferences

in a particular situation, while the right hand contained gambles which improve going from top to
bottom, including one gamble that provides the same payo�s as a myopic action in equilibrium and
gambles which more closely match the observed payo�s from myopic actions The point at which the
player switches gives us information about whether that player is likely to choose a myopic move or
vie for dominance in each situation.

MPL 1 mimics the trade-o� faced by Player 4 facing one dominant node in the C = 110 treatment.
MPL 2 mimics the trade-o� faced by Player 3 in the C = 110 treatment.34 Note that while MPL 1
is comparing risky options with certain options, MPL 2 is comparing two risky options. The myopic
outcome for Player 3 in the C = 110 treatment has an uncertain outcome, because Player 4 might vie
for dominance afterwards. Appendix Section 10 contains screenshots and a more detailed discussion
of list construction.

Previous experiments suggest that risk aversion measured by comparing safe options to risky op-
tions will often be very di�erent from the risk aversion measured by comparing risky options to risky
options.35 This could lead to some di�erences in observed risk preferences between MPL 2 and MPL
1.

The data from the MPLs was used in two ways. First, the data was used to categorize players
based on their risk preference type in each list. Based on whether each player's switch point was
above or below the risk neutral switch point, the players were categorized as risk loving, risk neutral,
or risk averse.36 Players who switched the wrong way, switched multiple times, or chose �rst order
stochastically dominated options were categorized as �unde�ned.� We use these characterizations to
provide a sene of the distribution of risk aversion and the regularity of player choices, but they are not
used in further analysis.

Second, the data was used to estimate a risk aversion parameter from a CRRA model using the
same stochastic model as Holt and Laury (2002).37 Note that because we are only using the CRRA,
so we assume

ui(π) =


π1−ηi

1− ηi
ηi 6= 1

ln(π) ηi = 1

In their paper, Holt and Laury (2002) use a power utility function with two parameters which
nests both CARA and CRRA, but we are using situation speci�c measure of risk aversion estimated
from one list, so only need a one-dimensional measure of risk aversion. Let's focus on subjects that

34There was also an MPL 3 which mimics the trade-o� faced by Player 3 in the C = 140 treatment, but that data was
not used, because only sessions with C = 110 included question batteries. See 10 for details.

35This di�erence can be attributed to the certainty e�ect found by Kahneman and Tversky (1979) or to the implicit
framing of gamble as buying or selling gambles as found by Hershey and Schoemaker (1985) and Sprenger (2015).

36We were fairly generous with our de�nition of risk neutral, classifying players with switch points immediately on
either side of the risk neutral switch point as risk neutral. In the case of MPL 2 this means three Switch points were
classi�ed as risk neutral, because the risk neutral switch point fell exactly on one option. In MPLs 1 and 3, two switch
points were classi�ed as risk neutral.

37de�ned as Pr(ChooseOptionA) =
U(OptionA)1/µ

U(OptionA)1/µ+U(OptionB)1/µ
where µ is a responsiveness parameter.
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Mean η SDev η

MPL 1 0.401 0.429
MPL 2 1.314 1.847

Table 13: Summary Statistics Estimated ηis

Risk Averse Risk Neutral Risk Loving Undef

Panel 1 8 7 3 12
Panel 3 1 12 3 14

Table 14: Estimated Risk Preference Type

are consistent - then the only information in MPL is the switch point. Any standard measure of risk
aversion should be able to �t the data perfectly, with the estimated risk aversion parameter being some
monotone transformation of the switch point.

There is no theoretical reason to believe one utility function is better or to believe that given the
correct speci�cation there should be a linear relationship between the estimated risk parameter and
vying behavior. As such, to show that the results are not dependent on functional form, we will use
the CRRA form in the main text and repeat the analysis with the CARA form in Appendix Section
9.2. Note, there are some empirical reasons we might prefer CRRA to CARA, which are discussed in
that section.

Tables 13 and 14 include information about the estimated risk aversion parameters and risk pref-
erences types for players in each MPL.

In general, players look very di�erent in MPL 1 with MPL 2 having substantially di�erent risk
aversion estimates. This is not surprising given the di�erence in the type of choices made. A large
number of people have unde�ned risk types, and those with unde�ned risk types generally have multiple
switch points. As such, the risk aversion measure may also contain some information about how much
e�ort and attention players are devoting to the game.

6.2 Other Elicited Values

We also elicited beliefs and personality characteristics for each subject. This allows us to determine
whether deviations from baseline predictions are due primarily to non-equilibrium beliefs or non stan-
dard preferences. the personality characteristics were included as a potential control for preference
heterogeneity not captured by risk aversion. There is evidence that the Big Five personality character-
istics are related to entrepreneurial activity, which can be thought analogous to vying for dominance
in our game.38

Belief elicitation took the form of hypothetical questions placing the player in positions 3 or 4,
facing speci�c hypothetical networks and asking the player to estimate the probability that they would
receive a connection from a later node. See Appendix Section 10 for screenshots of belief elicitation
questions. The questions were rewarded in a manner that made revealing one's true predicted average
frequency incentive compatible for expected utility maximizing players (following Schotter and Trevino
(2014)). The elicited beliefs were used to construct an expected number of connections gained from
vying. Table 15 reports the additional number of connections expected after vying relative to the
myopic move (on average).

We also elicited personality characteristics using the Big Five Inventory of John and Srivastava
(1999). This test asks people to score their agreement with various statements on a scale of 1 to 5.
These responses are then summed to create metrics of Conscientiousness, Agreeableness, Neuroticism,

38See Zhao and Seibert (2006)
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Avg Expected Connections Gain from Vying SDev

Player 3 0.337 0.439
Player 4: One Dominant 0.594 0.252
Player 4: Three Dominant 0.276 0.177

Table 15: Beliefs About the Expected Number of Connections Gained of Vying for Dominance

Openness Neuroticism Conscientiousness Agreeableness Extroversion

Mean 37 23.9 31.1 34.2 24.5
Out of 50 40 45 45 40
St Dev 5.2 5.5 6.2 5.5 6.1

Table 16: Summary of Big Five Personality Metrics. Each measure is the sum of scores from related
responses (with scores reversed where appropriate). .

Openness, and Extroversion. Table 16 summarizes the mean and the standard deviation for each
category among our subjects.

6.3 Risk Preference and Vying

We now look at whether risk aversion can help to explain vying behavior when controlling for other
elicited characteristics in two situations: Player 3 in the C = 110 treatment and Player 4 facing one
dominant node in the C = 110 treatment. We look at these scenarios in particular, because these
are the only two scenarios in which players can potentially vie for dominance in an equilibrium with
heterogeneous risk aversion. In all other situations, players should play myopic moves regardless of
risk aversion (See next section).

In Tables 17 we regress a dummy for vying for dominance against player characteristics using
data from Player 4 facing one dominant node. In all speci�cations, the coe�cient for MPL 1 η was
negative and signi�cant. In addition, no other coe�cients other than the intercept are signi�cant in
any speci�cation.

Table 17 also shows results of similar regressions, this time predicting the vying behavior of Player
3. The Player 3 regression looks similar, although here we �nd that the coe�cient on neuroticism is
also signi�cant and negative. It is possible that this is an artifact due to the large number of variables
we are considering, but it is also possible that the neuroticism measure is capturing some features
related to entrepreneurial tendency such as the ability to easily deal with new situations. Zhao and
Seibert (2006) found that neuroticism is negatively correlated with entrepreneurial tendency.

In general, risk aversion appears to be in�uencing vying for dominance behavior. For contrast in
Appendix Section9.4, we report the results of similar looking at the relationship between risk aversion
as estimated from MPL 1 and the vying behavior of Player 4 facing three dominant nodes when
C = 110. As predicted, there is not a signi�cant impact. In addition, the coe�cients on the risk
aversion are substantially smaller. Some readers may be concerned that our risk aversion measures
are picking up confusion or attention due to the large number of unde�ned subject. As we show in
Appendix Section9.3, the players with unde�ned risk types do not have a signi�cant impact on results.

6.4 Equilibrium

So far we have only looked at the individual choice data without considering the equilibrium e�ects of
introducing heterogeneous risk aversion into the model. In this section we introduce a model for risk
aversion and compare the equilibrium predictions of that model to the data.

The model we use is a very general model of heterogeneous risk aversion:
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Variable Player 4 Facing One Dominant Node Player 3

Corresponding η
−0.280∗∗

(0.019)

−0.286∗∗

(0.035)

−0.259∗∗

(0.040)

−0.060∗∗

(0.033)

−0.071∗

(0.082)

−0.077∗∗

(0.032)

Intercept
1.340

(0.279)

0.376∗∗

(0.016)

0.308∗∗∗

(0.000)

1.233∗

(0.067)

0.685∗∗∗

(0.000)

0.709∗∗∗

(0.000)

Expected Vie Gain
−0.019

(0.928)

−0.099

(0.599)

0.141

(0.313)

0.050

(0.743)

Openness
−0.010

(0.296)

0.011

(0.278)

Extroversion
0.001

(0.945)

0.001

(0.904)

Conscientiousness
−0.002

(0.867)

−0.007

(0.424)

Agreeableness
−0.018∗

(0.100)

−0.007

(0.422)

Neuroticism
−0.001

(0.946)

−0.023∗∗∗

(0.008)

Adj R2 0.058 0.055 0.062 0.153 0.063 0.065

Obs 94 94 94 250 250 250

Table 17: Predicting Vying for Dominance for Player 4 Facing One Dominant Node and Player 3
C = 110. The Player 4 regressions use ηs estimated from MPL 1, while the Player 3 regressions use η

estimated from MPL 2. Errors clustered at the individual level. (≤ 0.1∗,≤ 0.1∗∗,≤ 0.01∗∗∗)

Cost 3 4 (Three Dominant) 4 (One Dominant) 5

110 Yes (β) No Yes (α) No

140 Yes (κ) No No No

Table 18: Potential for Vying in the General Model with Risk Aversion

Ui(hi, GJ) = gi(x(hi, GJ))

where g(x) is a concave function of x. We assume that players know the population distribution of
gi but not precise gi of other players. Further, we assume that the population is su�ciently large
that seeing an action does not in�uence a players beliefs about conditional distribution of gi in the
remaining players. We are ruling out are risk seeking behavior and behavior inconsistent with expected
utility maximization.

While the model is very general, it has fairly speci�c predictions for behavior in this game using
backwards induction. Under this model, players can only vie in a subset of situations. In all other
situations they play myopic moves.

Risk Aversion Myopic Prediction 110: When C = 110, Player 5 will play a myopic move, and
Player 4 will play a myopic move when facing three dominant nodes. Player 3 can vie, as can Player
4 when facing one dominant node.

Risk Aversion Myopic Prediction 140: When C = 140, Player 5 will play a myopic move, and
Player 4 will play a myopic move. Player 3 can vie.

Proof in Appendix Section 8.3. Table 18 summarizes in which situations vying may be possible.

6.4.1 Aggregate Evidence for the Risk Aversion Model

We now examine how well these aggregate predictions match the data. In Table 19 we show the vying
probability in each situation, ordered from most observed vying to least. The three highest proportions
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Vie Prob RA Prediction RN Prediction

C=110, Node 3 0.576 > 0 0
C=140, Node 3 0.342 > 0 1

C=110, Node 4: 1 Dominant 0.151 > 0 1
C=110, Node 4: 3 Dominant 0.093 0 0

C=110, Node 5 0.011 0 0
C=140, Node 4: 1 Dominant 0.009 0 0
C=140, Node 4: 3 Dominant 0.009 0 0

C=140, Node 5 0.003 0 0

Table 19: Vying Proportions: Data and predictions from the Risk Averse Model

of vying for dominance behavior occur in the three situations where the risk averse model predicts
vying might occur.

We refer to Player 4's probability of vying for dominance facing one dominant node when C = 110
as α ∈ [0, 1], Player 3's probability of vying for dominance when C = 110 as β ∈ [0, 1]), and Player 3's
probability of vying for dominance when C = 140 as κ ∈ [0, 1]. The risk neutral version of the model
corresponds to α = 1, β = 0, and κ = 1.

Not all possible combinations of α, β, and κ can be supported by subgame perfect equilibria of given
some population of utility functions. For example if α = 1, then we must have β = 0, because then
the myopic move for Player 3 in the C = 110 treatment would second order stochastically dominate
vying.

From the data, we estimate very di�erent values: α̃ = 0.151, β̃ = 0.576, and κ̃ = 0.342. While it
is in general di�cult to know exactly which combinations can be supported in equilibrium by some
population of utility functions, we do �nd that these moments can be supported by a population of
Modi�ed CRRA utility functions. See Appendix Section8.4 for details and construction.

39

The predictions of the risk averse model are able to �t all the major moments of the data to a
�rst approximation. Risk aversion helps explain the data both on an individual choice level and in
the aggregate data through equilibrium predictions. We do consider alternative behavioral models in
Appendix Section 9.5, but we do not �nd any of them to be promising as alternative explanations of
the data.

7 Conclusion

In this paper, we presented a new network formation model that uses dynamics and forward looking
strategic agents to explore novel behaviors such as vying for dominance. Here vying for dominance
refers to a behavior whereby players make many connections in the present, even when doing so is
myopically detrimental, in order to potentially gain connections from nodes joining in the future. The
model predicts that the dominant players in the market are not dominant only because of a di�erence
in fundamentals or equilibrium selection; the timing of a node's entry into the network is a critical
factor.

We previewed some general theoretical results from the model, �nding parameter regions where the
star network and complete network are e�cient and regions where these networks form with certainty.
We also found parameter regions where such outcomes cannot be guaranteed. In general, �nding
solutions for the game can be di�cult, but we �nd two ways of simplifying the game for greater
tractability: restricting player moves and focusing on small networks.

In the Dominant Node Restricted Game, players are required to connect to at least one dominant

39Note that the shape of the utility function does matter a great deal. For example, if we only allowed unmodi�ed
CRRA utility functions in the population, we would only be able to �t data where β > α > κ. As a consequence, we
would never be able to �t our data using our estimated risk parameters, regardless of what those parameters were. This
would not be useful to us, because in our data β > κ > α.
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node as they enter the network. Under this restricted model, we predict that players should vie for
dominance periodically with the time intervals between vying players increasing exponentially over
time. See Neligh (2017) for more details regarding the restricted game.

In the latter part of the paper we focus on the unrestricted game with �ve nodes. We solve the
game and use that solution to make predictions about player behavior in an experimental test of the
model. In equilibrium, Player 4 should vie for dominance in the low cost treatment and take a myopic
action in the high cost treatment. Player 3, on the other hand, should take a myopic action in the low
cost treatment and vie for dominance in the high cost treatment.

In the experiment, the predictions of subgame perfect equilibrium generally �t best for later moves.
Player 5 chose myopic moves most of the time, as predicted. The comparative statics held for Player
4, but vying did not occur in large amounts even when predicted to do so. The predictions for Player
3 were very far o� in both the comparative and absolute sense.

In order to explain the observed behavioral deviations from theory, we examined the possibility
that players may have been risk averse. We elicited player risk preferences (as well as player beliefs and
personality characteristics). Risk preferences were found to have a signi�cant relationship with vying
behavior while other characteristics did not, in general, have such a relationship in general. We also
examined the equilibrium predictions of a general model of risk averse expected utility maximization.
This �exible risk aversion model predicts that vying for dominance should occur in only three situations.
In the data, players vied for dominance in those three predicted situations more than in any others.

Other explanations for the behavioral deviations were considered. QRE and Level-K models were
discussed qualitatively and found to miss certain key features of the data. Learning appears to have
very little impact on outcomes with no discernible time trends in behavior.

The results suggest that success and dominance in many systems can result from the combination
of entry timing and decision making characteristics. Entry timing can provide a player an opportunity.
Risk aversion determines whether the player takes it.

This conclusion suggests a natural next step: explore the role of entry timing and risk aversion
in a context of immediate economic interest. In both social networks within the �rm and production
networks between �rms we should see that the combination of good timing and low risk aversion is
essential to achieving network dominance.

In addition, there are several questions about this network formation model left to explore in the
lab. The applicability of the heterogeneous risk aversion model to larger networks remains to be
tested. While testing the baseline model in larger networks may prove computationally di�cult. The
Dominant Node Restricted Game provides an appealing way to apply the lessons from this model to
larger groups.

Theoretically, Neligh (2017) covers many extensions and modi�cations to the baseline game but
sometimes not in great depth. Additional work may uncover surprising and useful �ndings in these
di�erent contexts.

Overall, the study of network growth with history dependence and forward looking strategic agents
provides a rich avenue for research with the potential to better understand and predict many economic
structures of importance. This paper serves to provide an example for future work, showing how by
taking the dynamic and strategic elements of network formation serious, we can generate intuitive and
novel predictions about the evolution of important systems in our world.
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8 Appendix A: Additional Mathematical Details

8.1 5 Node Game When C/B < 1

This section assumes you have already read Section 3.5. Note that when C/B < 1 − δ we know the
complete network forms by Proposition SPE 1. However, we still have not covered the solution to the
5 node game when C/B ∈ (1 − δ, 1). In the region, the behavior of Player 5 changes. While Player
5 will still connect to a single node when facing most con�gurations, when facing a chain,40 he will
connect to any pair of nodes other than the �rst two nodes or the last two nodes on the chain.

This means that Player 4 when faced by a chain can either choose to vie for dominance by making
3 connections (payo� 3.5B+ 0.5δB− 3C), play myopic moves (payo� B+ 3δB−C), or connect to one
end and lengthen the chain (payo� 1.5B + 1.5δB + δ2B − C). No other moves can be optimal

Lengthening the chain is preferred to a myopic move when 0.5 + δ2 > 1.5δ or when δ ∈ (0, 0.5).
Lengthening the chain is preferred to three connection vying when C/B > 1− δ/2− δ2/2. Therefore
Player 4 will choose to lengthen the chain if δ ∈ (0, 0.5) and C

B(1−δ) > 1.25 or when 1.25 > C
B(1−δ) >

1 + δ−δ2
2(1−δ) .

If Player 4 chooses to extend the chain, after Player 3 plays a myopic move, Player 3 receives
2B + 13

8 δB + 3
8δ

2B − C which is preferred to vying when C/B > 2
3 −

7
24δ −

3
8δ

2.

Therefore, if either δ ∈ (0, 0.5) and C
B(1−δ) > 1.25 or 1.25 > C

B(1−δ) > 1 + δ−δ2
2(1−δ) , then if C/B >

2
3 −

7
24δ −

3
8δ

2, Player 3 will play a myopic move, and C/B < 2
3 −

7
24δ −

3
8δ

2, he will vie. Player 4 will
then lengthen the chain, and Player 5 will connect to a random pair of nodes that is not the �rst or

last two nodes on the chain. If neither δ ∈ (0, 0.5) and C
B(1−δ) > 1.25 nor 1.25 > C

B(1−δ) > 1 + δ−δ2
2(1−δ)

holds, then outcomes are as reported in Section 3.5.

8.2 Prediction 1 Robustness

Robustness Result: Prediction 1 is robust to the inclusion of behavioral noise in the following sense.
Assume C > B, J < 5, and players have a utility function u(x, η).We assume that u(x, η) satis�es we
could be using any functional form which satis�es (1) u(..., η) is strictly more risk averse than u(..., η′)
as long as η > η′ (2) u(x, 0) is linear in x, and (3) u(..., η) becomes arbitrarily risk averse as η goes to
in�nity. We also assume that η ≥ 0, so players are risk neutral or risk averse, not risk seeking.

In addition, assume players have a ρ ∈ [0, 1] probability of randomly mixing over moves and a 1−ρ
probability of selecting their optimally in a subgame perfect manner, then it still always optimal for
each player to either connect to a single dominant node or vie for dominance.

This is primarily a statement about Player 4 as Player 5's optimal choice does not depend on his
beliefs about the behavior of others, and Player 3 must satisfy the prediction trivially.

40A chain is a network wherein all but two nodes in the are connected to precisely two other nodes with no other
connections. The last two nodes are each connected to precisely one node. This type of network is the most �spread
out� a network can be while remaining connected.
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Proof of Robustness: To start, note that Player 5's optimal move is risk free in the no-risk
aversion model, so introducing risk aversion will not change it.

In this proof all of the conditional and unconditional probabilities of move types by Player 5 were
found by brute force counting. If Player 4 does not vie for dominance then his maximum chance
of receiving a direct connection from Player 5 is ρ 8

15 . Assuming that he made k connections, his
maximum chance of receiving a second degree bene�t from Player 5 is ρ 7

15f(k) + (1− ρ) . Here f(k)
is the probability that Player 5 will connect to at least one of the k nodes that Player 4 is connected
to without connecting directly to Player 4, conditional on Player 5 acting randomly.

Note that f(1) = 4
7 , f(2) = 6

7 , f(3) = 7
7 . Therefore, if Player 4 connects to a single dominant node,

he gets a utility of ρ
(

8
15u(2B + 2b−C, η) + 7

15f(1)u(B + 3b−C, η) + 7
15 (1− f(1))u(B + 2b−C, η)

)
+

(1− ρ)u(B + 3b− C, η)
. Connecting to a single non-dominant node will get him strictly less. By connecting to three nodes,

Player 4 will automatically vie for dominance, so it su�ces to show that connecting to two nodes is
always worse than connecting to a single dominant node. By connecting to two nodes without vying
for dominance, Player 4 makes at most ρ

(
8
15u(3B + b − 2C, η) + 7

15f(2)u(2B + 2b − 2C, η) + 7
15 (1 −

f(2))u(2B + b− 2C, η)
)

+ (1− ρ)u(2B + 2b− 2C, η).
The gain from the second connection is maximized when ρ = 1, since u(B + 3b − C, η) > u(2B +

2b− 2C, η).
We then compare 8

15u(2B + 2b−C, η) + 7
15f(1)u(B + 3b−C, η) + 7

15 (1− f(1))u(B + 2b−C, η) to
8
15u(3B+b−2C, η)+ 7

15f(2)u(2B+2b−2C, η)+ 7
15 (1−f(2))u(2B+b−2C, η). Note thatu(2B+2b−C, η) >

u(3B + b − 2C, η), so if we can show that f(1)u(B + 3b − C, η) + (1 − f(1))u(B + 2b − C, η) >
f(2)u(2B + 2b− 2C, η) + (1− f(2))u(2B + b− 2C, η). This must be the case, because B + 3b− C >
B + 2b− C > 2B + 2b− 2C > 2B + b− 2C.

8.3 Risk Aversion Solution

In this section we provide detailed predictions of the 5 node game when players have risk aversion as
described in Section 6.4.

Risk Aversion Prediction 1: In the SPE of the game with heterogeneous risk averse utilities
in which players adopt a random tie-breaking approach, if C = 110, then the equilibrium has the
following features: Player 5 will connect to a single dominant node. Player 4 may. Otherwise, Player
4 will connect to a single dominant node. Player 3 may vie for dominance or choose a myopic move
depending on the behavior of Player 4 and his own utility function.

Proof of Risk Aversion Prediction 1: Player 5's behavior follows from the proof of SPE
Prediction 1. Player 4, knowing this, is willing to become a dominant node in order to gain a potential
connection from Player 5 as long as the cost is low and the probability of the connection is high.
Consider �rst what happens if Player 4 is facing a chain (which implies one dominant node).

If Player 4 faces a complete network he will either connect to one node or all nodes. Connecting
to two nodes is strictly worse than connecting to one, because it has higher costs with no bene�t.
Connecting to one node he again receives gi(Y +B−C+3b) = gi(180) points. Connecting to all nodes
gives 0.25gi(Y + 4B− 3C) + 0.75gi(Y + 3B− 3C + b) = 0.25gi(230) + 0.75gi(140) points. In this case,
Player 4 will connect to one node, because that is the dominant option.

If Player 4 faces a chain, he can either connect to the dominant node earning gi(Y +B+ 3b−C) =
gi(180);41 connect to the ends of the chain becoming one of four dominant nodes and earning 0.25gi(Y +
3B−2C+b)+0.5gi(Y +2B−2C+2b)0.25gi(Y +2B−2C+b) = 0.25gi(250)+0.5gi(160)+0.25gi(150);
or connect to all three nodes nodes becoming one of two dominant nodes earning 0.5gi(Y +4B−3C)+
0.5gi(Y + 3B − 3C + b) = 0.5gi(230) + 0.5gi(140), where the 0.5's come from a one half chance that
Player 5 will connect to node 4 and a one half chance Player 5 will connect to the other dominant
node.

Making one connection second order stochastically dominates making two, so Player 4 will always
either make one connection to a dominant node or three connections when facing a chain, depending
on the shape of ui(). Say that the probability of Player 4 having a gi() such that vying for dominance
is optimal is α.

41connecting to one non-dominant node is strictly worse
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Player 3 can either connect to one node or two. By connecting to a single node, Player 3 gets

αgi(Y + 2B + 2b− C) + (1− α)gi(Y +B + 3b− C) = αgi(270) + (1− α)gi(180)

By making two connections, Player 3 gets

1
3gi(Y + 4B − 2C) + 2

3gi(Y + 2B + 2b− 2C) = 1
3gi(340) + 2

3gi(160)

.
Note that if α > 5/9 making one connection second order stochastically dominates making two

connections. This can be shown by examining the area under the cumulative distribution functions
for each distribution. One can also see that when Player 3 is su�ciently risk averse, he will make one
connection, because the minimum payment for that choice is higher. If Player 3 is risk neutral, he will
prefer to make two connections if α < 4/9 and he will make one connection if the reverse is true.

Now we consider the equilibrium when C = 140.
Risk Aversion Prediction 2: In the SPE of the game with heterogeneous risk averse utilities

in which players adopt a random tie-breaking approach, if C = 140, then the equilibrium has the
following features: Players 4 and 5 will choose myopic moves. Player 3 may choose a myopic move or
may vie for dominance depending on the shape of his utility function.

Proof of Risk Aversion Prediction 2: Player 5 will connect only to a single dominant node as
before for the reasons given in previous proofs. Additional connections cannot provide Player 5 enough
bene�ts to make up the costs.

If Player 4 faces a complete network he will either connect to one node or all nodes. Connecting
to two nodes is strictly worse than connecting to one, because it has higher costs with no bene�t.
Connecting to one node he again receives gi(Y +B−C+3b) = gi(150) points. Connecting to all nodes
gives 0.25gi(Y + 4B − 3C) + 0.75gi(Y + 3B − 3C + b) = 0.25gi(140) + 0.75gi(90) points. In this case,
Player 4 will connect to one node, because that is the dominant option.

If Player 4 faces a chain, he can either connect to the dominant node earning gi(Y +B+ 3b−C) =
gi(150);42 connect to the ends of the chain becoming one of four dominant nodes and earning 0.25gi(Y +
3B−2C+b)+0.5gi(Y +2B−2C+2b)0.25gi(Y +2B−2C+b) = 0.25gi(190)+0.5gi(100)+0.25gi(90);
or connect to all three nodes nodes becoming one of two dominant nodes earning 0.5gi(Y +4B−3C)+
0.5gi(Y + 3B − 3C + b) = 0.5gi(140) + 0.5gi(50), where the 0.5's come from a one half chance that
Player 5 will connect to node 4 and a one half chance Player 5 will connect to the other dominant
node. Connecting to one dominant node second order stochastically dominates all other options.

Player 3 can then make one connection receiving gi(Y + B − C + 3b) = u(150) or make two
connections earning

1
3gi(Y + 4B − 2C) + 2

3gi(Y + 2B + 2b− 2C) = 1
3gi(280) + 2

3gi(100)

If 1
3gi(280) + 2

3ui(100) > ui(150) Player 3 will make two connections. If the reverse is true, he will
make one connection.

8.4 Finding a Population of Utility Functions that Support the Data

Here we examine whether the moments α̃ = 0.151, β̃ = 0.576, and κ̃ = 0.342 can be supported be a
subgame perfect equilibrium of the game with heterogeneous risk aversion.

Empirical Risk Aversion Proposition: There exists a population of utility function which can
generate the observed vying proportions (α̃, β̃, and κ̃) as outcomes of a subgame perfect equilibrium
of the game with heterogeneous expected utilities.

Proof of Empirical Risk Aversion Proposition: For convenience we will refer to the situations
in which players may vie by their corresponding Greek letters (For example Player 3 in the C = 110
treatment is situation β). Given that we have observed β > κ > α and estimate the population α, we
are going to want a set of four utility {g1, g2, g3, g4} functions with the following properties:

• Players will vie in situations α, β, and κ if they have g1 as their utility function.

42connecting to one non-dominant node is strictly worse
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• Players will vie in situations β and κ if they have g2 as their utility function but not in situation
α.

• Players will vie in situations β if they have g3 as their utility function but not in situations α
and κ.

• Players will never vie if they have g4 as their utility function.

Note that what constitutes a valid set of utility functions will change based on α, because Player
3's incentives change based on the behavior of Player 4 in the C = 110 treatment. Similarly, if one
observed a di�erent ordering over vying proportions, one would need to switch the situations for which
each utility function predicts vying in the corresponding manner.

If we can �nd this set, we can easily construct a population which generates the observed values
for α, β, and κ. Simply say α̃ of the population has utility function g1, κ̃ − α̃ of the population has
utility function g2, ˜beta− κ̃ of the population has utility function g3, and everyone else has g4. Using
the equilibrium characterization from Appendix Section 8.3, this gives us our result.

Now all that remains to be seen is whether such a set of function exists that can �t our observed.
Consider utility functions of the following type:

g(x, b, η) =
(b+ x)1−η

1− η

We can satisfy all the requirement by picking g1 = g(x, 2000, 5), g2 = g(x, 2000, 5.5), g3 =
g(x, 2000, 5.7), g4 = g(x, 2000, 10).

8.5 Comparison of Tie Breaking Approaches

We use random tie-breaking as our primary benchmark, because it seems to be most plausible in the
data, but other tie-breaking approaches can lead to other subgame perfect equilibria.

It can be illustrative to compare the random tie-breaking results to those derived from other
tie-breaking approaches. This comparison can provide the reader with a better understanding of the
range of behaviors that are possible under SPE. We will be comparing the uniform random tie-breaking
approach to two other tie-breaking approaches which are opposite extremes. Under the stability seeking
tie-breaking approach, players resolve indi�erences in favor of connecting to the oldest node. 43 Under
the novelty seeking tie-breaking approach players resolve indi�erences by connecting to the newest
node.44 For the sake of simplicity we will assume risk neutrality throughout this section.

Figure 21 shows how the total connectivity of the resulting network under each tie-breaking ap-
proach changes with C. It is important to note that the tie-breaking approach which yields the most
connections changes as C increases. Furthermore, we can immediately determine which tie-breaking
outcomes are more e�cient. To the left of the purple line, more connected outcomes are more e�cient,
while to the right of the line they are less so. Stable, random, and novel tie-breaking all have parameter
regions where they yield the most e�cient outcome.

Figure 22 shows the payo�s made by each player in expectation in each of the discussed equilibria.
Payo�s for all players other that Player 1 tend to decrease as C increases, since these players must
make at least one connection. The payo�s for Players 3-5 converge as C increases, because for high C
they each make one connection resulting in a star network.

Under the random tie-breaking approach, there is a very thin spike around C = 100 indicating the
changeover from the mode wherein Player 5 sometimes makes two connections to the mode wherein
Player 5 makes exactly one connection. Player 2 does better than the other connection making players
under both the random and stability seeking tie-breaking approaches, because he can be the center

43When choosing between nodes with multiple connections, look �rst at the oldest node in each move then going on
to the second oldest in each and so on until one is older. An absence of nodes is considered to have an age of 0. Most of
these caveats will not come into play in the experimental game, but they are important in order to make sure that the
tie-breaking approach always produces a unique well de�ned response.

44When choosing between nodes with multiple connections, look �rst at the newest node in each move then going on
to the second newest in each and so on until one is newer. An absence of nodes is considered to have an age of 0. Again,
most of these caveats will not come into play in the experimental game.
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Figure 21: Connectivity versus cost. Purple line indicates the changeover between connections being
more e�cient and connections being less e�cient.

of the resulting star. In is notable the, under the novelty seeking tie-breaking approach, when 135 <
C < 180 for Player 3 is greater than the payo� for Player 2. This is a rarity. In general earlier players
have more opportunities to receive future connections and hence they have higher payo�. The early
mover almost always has the advantage as far as payo�s are concerned.

Figure 23, provides a graph of gini coe�cient of expected payo�s for each tie-breaking approach
discussed. Looking at all nodes (Upper Left), it seems like the equality of the outcomes is well ranked
with tie-breaking approaches that favor to later nodes leading to a more equal outcomes. The inequality
is generally increasing with C except potentially at the mode change point of C = 90. This increase
is largely driven by two factors. First, Player 1 does not have to make a connection, and therefore
is una�ected by connection cost. Second, only Player 1 and Player 2 can be the center of the star
network for high C.

If we eliminate Player 1, the smoothness of the increase goes away for most tie-breaking approaches
(see Figure 23 Upper Right). If we eliminate both Player 1 and Player 2 then we see a non-monotonic
relationship between inequality and C as in Figure 23 (Lower), usually peaking at C = 90. In general,
decreasing C from 140 to 110 should decrease the inequality of the expected outcome regardless of
which of these tie-breaking approaches are employed. This result does not change if one eliminates
Player 1 and Player 2 from consideration.

9 Appendix B: Additional Data

9.1 Node Dominance in the Final Network

The theory gives us predictions about which nodes should be the most connected nodes at the end
of the network formation process. In the C = 110 treatment, Node 4 should be the most connected
node with frequency 0.5, and Nodes 1 and 2 will be the most connected �nal node the remainder of
the time, split evenly between them. In the C = 140 treatment, Node 3 should all have a 1/3 chance
of being the �nal dominant node, and Nodes 1 and 2 should each have a 1/3 chance. The histograms
of the frequency with which each node was one of the �nal most connected are presented in Figure 24.
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Vying for Dominance: An Experiment in Dynamic Network

Formation

Figure 22: Payo�s in the experimental for each player by cost under di�erent tie-breaking
approached.
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Figure 23: Graph of gini coe�cient of expected outcome against C (Upper Left), Graph of gini
coe�cient of expected outcome against C, no Player 1 (Upper Right), Graph of gini coe�cient of

expected outcome against C, no Player 1 or Player 2 (Lower)

Figure 24: Histogram of the frequency for most connected node at the end of the network formation
process C = 110 (Left) and C = 140 (right). Red bar show the observed proportion while blue bars

show the predictions. Error bars show a 95% CI for the observed proportion.
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MPL 1 MPL 2 MPL 3

CRRA -log like 101.049 114.771 84.121
CARA -log like 115.120 207.944 157.588

Table 20: Negative log likelihoods for observed choice behavior in each MPL using individual level
risk parameters estimated with CRRA and CARA utility functions.

Mean Eta SDev Eta Mean Mu SDev Mu

Panel 1 0.200 0 2 0
Panel 2 0.100 0.087 0.119 0.103
Panel 3 0.200 0 0.200 0
Overall 0.507 1.291 0.748 0.682

Table 21: Summary statistics on CARA model parameters

Note that, in addition to the deviations mentioned in the main body, we also see a strong bias
towards Node 2 in the C = 140 game, and a much milder bias in the C = 110 game. It is unclear why
this is the case, but it does not have a strong in�uence on incentives. Aside from the bias in favor of
Node 2, the distribution of �nal dominant nodes seems to be shifted earlier.

9.2 CARA vs CRRA Risk Aversion Estimates

While there are no theoretical reasons to pick one functional form over another in this paper when
dealing with consistent subjects, we can compare theories on how well they predict the actual data. We
estimated risk preferences using both CRRA and CARA utility functions. The negative log likelihoods
for �tting the MPL data are reported in Table20. The CRRA utility function �ts the choice data
better in all cases. It also produces more signi�cant results in later analysis. Results using estimates
from the CARA model are similar but slightly weaker. They are reported in Appendix Section 9.2.

Some readers may �nd it surprising that the CRRA utility function �ts better than the CARA
function given the role that wealth e�ects play in CRRA and the small size of the gambles relative to
the presumed true wealth of the subjects. If one looks at the original paper of Holt and Laury (2002),
however, one can see that the estimate coe�cient corresponding to CRRA risk aversion was more
signi�cant than the estimate corresponding to CARA utility (15.8 standard errors from zero versus
1.1, [-values not reported). It may be that players are treating each gamble as a separate prospect,
independent of wealth.

Still as a robustness check, we report the results of analysis as in Section 6 but instead of estimating
the CRRA risk aversion function, we estimate the CARA risk aversion function

ui(π) =
1− exp−ηπ

η

using Holt and Laury (2002) action probabilities as before
Note that we are again using η as the risk aversion coe�cient in order to economize on notation,

although the quantity being measured is not the same. Table 21 summarizes the estimated values for
η.

The values are very tightly clustered around 0.1, although there is variation. CARA does not
work well, largely because it is very sensitive to people displaying unde�ned risk types, which is quite
common in our data. As such µ is quite high, which may lead to a �at objective function and inaccurate
estimates of η.

The CARA estimates do still have some predictive power. Tables 22 present regressions of vying
behavior on player characteristics with the ηis estimated using the CARA utility function

Results for Player 4 facing one dominant node are similar to the CRRA case, but here the risk
aversion is not signi�cant. The coe�cients on risk aversion are still negative, and sometimes close to

43



Player 4 Facing One Dominant Node Player 3

MPL 1 η
−0.245∗

(0.059)
−0.168
(0.301)

−0.172
(0.243)

−0.053∗

(0.077)
−0.066
(0.107)

−0.073∗∗

(0.045)

Intercept
1.057
(0.455)

0.246
(0.113)

0.258∗∗∗

(0.001)
1.237∗

(0.074)
0.672∗∗∗

(0.000)
0.700∗∗∗

(0.000)

Expected Vie Gain
0.070
(0.740)

0.018
(0.925)

0.157
(0.267)

0.060
(0.691)

Openness
−0.006
(0.498)

0.012
(0.261)

Extroversion
0.004
(0.817)

0.0001
(0.994)

Conscientiousness
0.0001
(0.994)

0.008
(0.385)

Agreeableness
−0.022∗∗

(0.034)
−0.007
(0.427)

Neuroticism
0.002
(0.918)

.
−0.023∗∗∗

(0.008)
Adj R2 0.027 0.003 0.013 0.147 0.055 0.057
Obs 94 94 94 250 250 250

\

Table 22: Predicting Vying for Dominance for Player 4 Facing One Dominant Node and Player
3C = 110. Estimating η using a CARA utility function. The Player 4 regressions use ηs estimated
from MPL 1, while the Player 3 regressions use η estimated from MPL 2. Errors clustered at the

individual level. (≤ 0.1∗,≤ 0.1∗∗,≤ 0.01∗∗∗)

signi�cant, but they never reach signi�cance. The adjusted R2s are substantially reduced.
Again results for Player 3 are similar to CRRA results. Risk aversion is signi�cant in one speci�-

cation only, but the coe�cients are consistently negative.

9.3 Controlling for Unde�ned Risk Type

Table 23 repeats the analysis from 17 without the players who had unde�ned risk types on the MPL
corresponding to each situation. While signi�cance is impacted in some cases due to the large number
of dropped subjects, the coe�cients are very similar implying that the unde�ned subjects are not
driving the results.

We can also address the question of whether unde�ned risk types are driving resuls more directly
by regressing vying behavior against η, a dummy for unde�ned risk type in the corresponding MPL,
and an interaction term. If the impact of η on vying for dominance is signi�cantly di�erent for players
with unde�ned risk types, then the coe�cient on the interaction term should be signi�cant. Table
24 reports results of these regressions. In neither situation is the coe�cient on the interaction term
signi�cant.

9.4 Impact of Risk Aversion When Vying is Not Optimal

9.5 Alternative Behavioral Models

There are a number of of common behavioral models that one might consider as alternatives to risk
aversion for explaining the deviations from the base theory. In particular, many experiments �nd
predictive success with random utility models like the QRE model of McKelvey and Palfrey (1998)
and heterogeneous sophistication models like the Level-K model of Stahl and Wilson (1994). The risk
aversion model does not provide a full stochastic model of player behavior like these models do, so it
cannot be compared directly on AIC without imposing some error structure. There are, however, a
few qualitative reasons to think that these models will be unlikely to provide a good �t for the data
on their own.
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Variable Player 4 Facing One Dominant Node Player 3

MPL 1 η
−0.275

(0.268)

−0.289

(0.224)

−0.222

(0.298)

−0.089∗∗∗

(0.000)

−0.069

(0.120)

−0.048∗

(0.059)

Intercept
1.205

(0.574)

0.402∗

(0.050)

0.276∗

(0.015)

3.142∗∗∗

(0.000)

0.842∗∗∗

(0.000)

0.7626∗∗∗

(0.000)

Expected Vie Gain
−0.199

(0.559)

−0.191

(0.406)

−0.022

(0.899)

−0.150

(0.487)

Openness
−0.008

(0.722)

−0.014

(0.146)

Extroversion
−0.002

(0.898)

0.009

(0.161)

Conscientiousness
0.011

(0.460)

−0.009

(0.425)

Agreeableness
−0.017

(0.347

−0.031∗∗∗

(0.001)

Neuroticism
−0.011

(0.560)

−0.031∗∗∗

(0.000)
.

Adj R2 0.018 0.020 0.024 0.174 0.009 0.000

Obs 62 62 62 134 134 134

Table 23: All players with unde�ned risk types on the corresponding MPLs removed.
Predicting Vying for Dominance for Player 4 Facing One Dominant Node and Player 3 C = 110. The
Player 4 regressions use ηs estimated from MPL 1, while the Player 3 regressions use η estimated

from MPL 2. Errors clustered at the individual level. (≤ 0.1∗,≤ 0.1∗∗,≤ 0.01∗∗∗)

Variable
Player 4 Facing

One Dominant Node
Player 3

Corresponding η
−0.222

(0.014)

−0.048

(0.056)

Intercept
0.276

(0.296)

0.762

(0.000)

Unde�ned
0.113

(0.490)

−0.200

(0.092)

η*Unde�ned
−0.115

(0.648)

0.006

(0.921)

Adj R2 0.050 0.084

Obs 94 250

Table 24: Predicting Vying for Dominance for Player 4 Facing One Dominant Node and Player 3
C = 110 as a test of whether having an unde�ned risk type in�uences the e�ect of risk aversion on
vying for dominance. The Player 4 regressions use ηs estimated from MPL 1, while the Player 3

regressions use η estimated from MPL 2. Errors clustered at the individual level.
(≤ 0.1∗,≤ 0.1∗∗,≤ 0.01∗∗∗)
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Variable Player 4 Facing Three Dominant Nodes

MPL 1 η
−0.120

(0.130)

−0.100

(0.203)

−0.091

(0.161)

Intercept
0.393

(0.183)

0.140

(0.260)

0.115∗∗

(0.025)

Expected Vie Gain
−0.043

(0.756)

−0.033

(0.814)

Openness
−0.010∗∗

(0.042)

Extroversion
0.007

(0.131)

Conscientiousness
−0.002

(0.677)

Agreeableness
−0.001

(0.794)

Neuroticism
0.003

(0.429)

Adj R2 0.042 0.008 0.014

Obs 156 156 156

Table 25: Predicting Vying for Dominance for Player 4 Facing Three Domiant Nodes and Player 3
C = 110 using ηs estimated from MPL 1. Errors clustered at the individual level.

(≤ 0.1∗,≤ 0.1∗∗,≤ 0.01∗∗∗)

One of the moments of the data that we have devoted the most attention to is the proportion of
Player 4s in the C = 110 treatment facing one dominant node who vie for dominance by making three
connections. More players choose the myopic move in this case than vie for dominance. QRE and
other similar random utility models45 always predict that, in equilibrium, a player in a given state has
actions a1 and a2 such that E(ui|a1) ≥ E(ui|a2) it must be the case that action a1 is chosen weakly
more often than action a2.

Because Player 4s in the C = 110 treatment facing one dominant node make more points on
average by vying than playing the myopic move, they should vie at least as often as they play myopic
the myopic move.46 Instead they vie signi�cantly less. As such, the data does not seem to be consistent
with models of this type.

Level-K also fails to predict several key moments of the data, and similar models are also unlikely
to be more useful. Any player who is savvy enough to vie in position 3 should be savvy enough to vie
when conditions are right in position 4, since the backwards induction reasoning is easier when there
are fewer future players to consider.

For example, if level-0 is random behavior, then level-1 players would always play myopic moves.47

We can use data on Player 5 in the C = 110 treatment to estimate the number of level-0 and level-1
or higher players. Looking at Player 5, we see that approximately 28% of players are level-0 when
we account for the probability that a level-0 player might play a correct move by chance. Given that
estimate, it is actually not optimal for Player 4 to vie when facing one dominant node, which fails to
match payo� data, in which vying is better for Player 4 in that condition. If taking the myopic action
is optimal for Player 4 facing one dominant node when C = 110, then the behavior of Player 4 in that
case gives us an estimated 54% level-0 players, which is signi�cantly di�erent from the estimate we got
looking at Player 5.48

If we instead assume vying for dominance is optimal for player 4, accounting for accidental correct
moves by level-0 players, then from Player 4's data we estimate that the proportion of level-2 or higher

45those in the style of Block and Marschak (1960) RUM's in which the perceptual errors on utilities are drawn
independent of the choices and utilities.

46Note that in this condition there is only one dominant node, so there is only one myopic move.
47See Appendix Section 8.2
48P-value of 0.000 given a standard test of proportions.
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Figure 25: Connectivity plotted against round number. Data is perturbed to allow readers to see
density.

players is approximately 11%. If we extrapolate from that, we should only see 22% of players vying for
dominance as Player 3 in the C = 110 treatment. Instead we see 60% of Player 3s vying for dominance,
which is signi�cantly di�erent from the prediction.49 Models of heterogeneous sophistication fail to
account for the data as well as models of heterogeneous risk aversion.

Learning and experimentation models also o�er potential candidates for explaining behavioral
deviations from theory, but there is little evidence of learning in the experiment. See Appendix
Section 9.6 for data and learning.

9.6 Learning E�ects

The last major potential determinant of outcomes that we look at is learning e�ects. Do players
become more or less likely to take vie for dominance as the game progresses? Do they substantively
change their behavior with experience? The answer to both questions seems to be no. Figure 25 show
scatter plots of the round number against the connectivity of the network formed. Noise is added to
the points to allow visual representation of density.

In both treatments there is no discernible e�ect of round experience on the connectivity of networks
formed. There is a slight suggestion of a U-shaped e�ect in the C = 140 treatment, but this is primarily
caused by a few outliers with little change in the average network. To check more formally, we regress
the connectivity of networks on round number and �nd no signi�cant e�ects. Results are reported in
Tables 26 and 27.

Other summary values display a similar lack of pattern.

10 Appendix C: Batteries

In this appendix we provide screenshots of the question batteries used in some of the sessions. Figure
26 reproduces the screenshots from the belief elicitation question battery. We do not reproduce the
Big Five Inventory here, because the questions were taken directly from John and Srivastava (1999)

The �rst panel is designed to elicit the risk preferences of players. In this panel, players make binary
choices between gambles in a multiple price list in the manner of Holt and Laury (2002). Players are
presented with three sets of ten choices each. The gamble on the left hand side of the screen (gamble
A) is �xed while the gamble on the right hand side (gamble B) improves going down the page. At the
top of the screen gamble A second order stochastically dominates gamble B while at the bottom of the
screen the reverse is true. Players are paid the outcome of one gamble from among all risk elicitation
questions chosen at random.

49P-value of 0.000 given a standard test of proportions.
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Dependent variable:

connectivity

rep 0.009
(0.006)

Constant 4.944∗∗∗

(0.110)

Observations 375
R2 0.005
Adjusted R2 0.003
Residual Std. Error 0.873 (df = 373)
F Statistic 2.059 (df = 1; 373)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 26: Regression of Network Connectivity on Round Number, C = 110

Dependent variable:

connectivity

rep 0.006
(0.005)

Constant 4.374∗∗∗

(0.085)

Observations 325
R2 0.005
Adjusted R2 0.002
Residual Std. Error 0.630 (df = 323)
F Statistic 1.641 (df = 1; 323)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 27: Regression of Network Connectivity on Round Number, C = 140
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Figure 26: Screenshots from the belief elicitation question battery

Figure 27: Screenshots of MPL 3
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The gambles are adapted to be similar to those faced in the equilibrium with heterogeneous risk
aversion and uniform random tie-breaking of Section6.4. MPLs 1 and 3 were designed to mimic the
trade-o� of Player 4 facing one dominant node in the low cost treatment and Player 3 in the high
cost treatment. The left hand choice in both gambles has the same distribution of payo�s as vying
for dominance in the corresponding positions. The right hand side includes varying constant payo�s
with the expected payo� from a myopic move in the corresponding situation included on one row. See
Figure 27 for a screenshot of MPL 3

MPL 2 mimics the trade-o� faced by player 3 in the low cost treatment. The left hand gamble
again has the same distribution of payo�s as vying for dominance in the corresponding situation. The
right hand gambles all have the same distribution of payo�s as a myopic move for dominance in an
equilibrium where Player 4 vies for dominance when facing one dominant node with a frequency of α.
The frequency α is changes over the di�erent questions in the list.

The second panel elicits the beliefs players hold about the actions of actions of others. Players
are put into the position of Player 3 or Player 4 and given a hypothetical network. Players are then
asked to estimate the probability that later players will connect their node given the network structure
provided. These guesses were then compared to the actual observed sample probabilities from the �rst
six sessions. Players are rewarded for one question from the belief elicitation panel chosen at random.
Points were based on a quadratic probability scoring rule. A player who made a guess of p̃ for the
awarded question with a real observed probability of p̄ would receive an 800 point ($4) prize with a
probability of 1 − (p̃ − p̄)2. This payment rule should encourage subjects to truthfully reveal their
beliefs about average probability of receiving a connection under the assumption of expected utility.50

The last panel elicits personality traits of players. We administer a battery of questions taken
from the Big Five Inventory (BFI) of John and Srivastava (1999). The big �ve inventory is a common
personality assessment method which rates people on �ve di�erent personality characteristics: Ex-
troversion, Agreeableness, Neuroticism, Conscientiousness, and Openness. Extroversion is a person's
tendency to enjoy and be energized by social interaction. Agreeableness is the tendency to care about
and wish to please other people. Neuroticism is a measure of emotional instability. Conscientiousness
is a measure of how goal-oriented and organized one is. Openness is a tendency to be creative and try
new things. There is no performance incentive for this section. Instead players are awarded a prize of
800 points ($4) for completing this section.

The BFI was chosen for two reasons. First, the BFI is fairly common in the academic literature on
personality. Second, the BFI has been linked to entrepreneurial tendency, which is relevant to answering
the question of why some players vie for dominance and others do not. Vying for dominance can be
thought of as an entrepreneurial activity. Players make an investment in hopes of some uncertain future
payo�. Zhao and Seibert (2006) report that entrepreneurs tend to be less neurotic, more extroverted,
more open, less agreeable, and more conscientious than other managerial types. We will examine
whether any of these characteristics are linked to the tendency to vie for dominance.

50Schotter and Trevino (2014)
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