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Abstract

In Neligh (2017) we explore a game of dynamic network formation with forward-looking strate-
gic agents. We �nd that SPEs of the game are not generally tractable for large networks, although
the game is tractable in small networks and in simpli�ed versions of the game. In this note, instead
of looking for SPNE's of the game, we look for NE in which players behave consistently across
network states. We establish necessary and su�cient conditions for the existence of such NE's and
provide an algorithm to determine if the conditions hold. The algorithm can also provide su�cient
conditions for the existence of certain classes of SPE's as well as fully characterizing the set of
SPE's when the geometric discount factor is zero.

1 Nash Equilibrium Without Subgame Perfection

If we are willing to drop the requirement of subgame perfection, then we can say a little bit more
about the solutions for the game. In this sections we will establish necessary and su�cient conditions
for an outcome to be consistent with play from a Nash Equilibrium (NE) satisfying several conditions.

Assume (J −2)−f(J, δ) >
C

B
> (1− δ) in this sections as the other cases have already been addressed

more thoroughly.
If we do not require subgame perfection, then we can employ strategies with unenforceable pun-

ishment strategies. Any strategy pro�le in which each player makes at least more than their min-max
utility at each decision node that is visited with positive probability can be supported by a NE of the
game. In this section, bold uppercase and bold Greek letters will be used to refer to matrices.

1.1 The Question

One fairly natural question is, can an observer determine whether a given network can be the result of
players employing strategy pro�les that constitute a NE? This question has both predictive and em-
pirical merit. Predicatively, we can determine which networks we should not see forming. Empirically,
we can observe a network and potentially reject the hypothesis that players are playing a NE.

It is di�cult to work with the general class of NE's in this game, because the set of strategy pro�les
is so large. We can, however, establish necessary and su�cient conditions for the observed network to
be consistent with play from a NE satisfying the following conditions.

Condition NE 1: Players do not mix between making di�erent numbers of connections when
indi�erent.

Condition NE 2: Players do not condition the number of moves they make on the current network
structure at any decision node that is visited with positive probability.

With these two conditions guarantee that players will always be making the same number of
connections every time the network formation process is run using the strategy pro�les from a given
NE.

Before we begin, we provide two de�nitions that are critical to the propositions and proofs in this
section.
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Punishment Utility: We de�ne Upuni(Gi−1) as the best possible utility that Player i can get
given Gi−1, knowing that all later players will connect as far as possible from them. In the case of
this game the most e�ective punishment that someone can su�er involves all remaining players making
connections as far from that player as possible.

Myopic Utility: We de�ne Omyopici(Gi) as the utility of Player i would have received if the
game had ended immediately after his move.

Note that both of these values are e�ectively observable, because they can be inferred from the
�nal network G

Proposition NE 1: Given that the randomization procedure is commonly known, a given outcome
network, G, can be supported by a NE satisfying Conditions NE 1 and NE 2 as long as there exists
a probabilistic allocation of connections between players such that each player makes the number of
connections that they made in the observed network and every player makes more than their min-max
payo� in expectation.

The existence of such an allocation is equivalent to an upper triangular JxJ matrix α with real
valued entries between 0 and 1 satisfying αt1 ≥ v2(G) and α1 = v1(G). If xi is the number of

connections Player i made in excess of one, then v1
i = xi(G) + 1 and v2

i =
Upuni(Gi−1)−Omyopici

B(1− δ)
.

We suppress the dependence of the v vectors on G to economize on notation.
Proof of Proposition NE 1:
From an outcome network we can deduce xi (the number of connections beyond the �rst made

by Player j), Upuni(Gi−1) (the maximum payo� achievable by Player i facing network Gi−1 given
that the punishment strategy will be in�icted on Player i), and Omyopici (the myopic payo� made by
Player i)

Say that we are trying to support a strategy pro�le which can be represented by the matrix a
where α(j, i) is the probability of Player j's connecting to node i at all decision nodes that are visited
with positive probability. Players do not condition their probabilities of making connections on current
network structure. Players make their decisions based on a previously determined outcome of the public
randomization. Whenever Player j does not connect according to the values α(j, i) he is subject to
the punishment strategy of other players.

It must be the case that α(j, i) ∈ [0, 1]. By the structure of the game it must be that if j ≤ i then
α(j, i) = 0. By Assumptions NE 1 and NE 2 we know that

∑J
i=1 a(j, i) = xj + 1 is �xed. Given these

constraints, any strategy pro�le in players make connections according to the prescribed probabilities
and each player makes at least Upuni(Gi−1) at every decision node visited with positive probability
can be supported as a NE.

Since every additional direct connection from a future player gives a player at least B(1− δ) addi-
tional points, and punished players receive no future connections, we can guarantee that every player
is making more than Upuni(Gi−1) in expectation if Omyopici +B(1− δ)

∑J
j=1 a(j, i) ≥ Upuni(Gi−1),

or
∑J

j=1 α(j, i) ≥ (Upuni(Gi−1)−Omyopici)/(B −Bδ).
In other words we just need to �nd α(j, i) satisfying the following requirements
Initial Requirements

1. 0 ≤ α(j, i) ≤ 1∀i by single connection property of the graph.

2. α(j, i) = 0∀i ≥ j by the fact that nodes can only make connections to earlier nodes.

3.
∑J

i=1 α(j, i) = xj + 1 by the fact that number of connections made must match the data.

4.
∑J

j=1 α(j, i) ≥ Upuni(Gi−1)−Omyopici
B(1− δ)

By punishment condition.

Simply rewriting these restrictions in matrix form gives the requirement in the proposition. .

1.1.1 The Algorithm

Now we present an algorithm which can check for the existence of the matrix α described above.
However, before we go on, we will transform the problem a bit in order to make later steps simple.

2



To facilitate this we introduce complimentary conditions on a matrix A. Essentially we are rewriting
conditions in terms of the connections received from rather than connections provided to.

Dual Requirements

1. A(i, j) = 0∀j ≤ i, because each node cannot receive more than one connection from another
node.

2. 0 ≤ A(i, j) ≤ 1∀j, because nodes cannot receive connections from older nodes

3.
∑J

i=1 A(i, j) ≤ xj + 1 because nodes cannot provide more connections than observed.

4.
∑J

j=1 A(i, j) =
Upuni(Gi−1)−Omyopici

B(1− δ)
which is the dual punishment condition

We now show that a valid allocation α exists satisfying the initial requirements (IR) if and only if a
dual allocation A exists which satis�es the dual requirements (DR). Consider an arbitrary such A. We
de�ne α̃ by We de�ne α̃(i, j) = A(j, i). We immediately have α̃(i, j) satisfying IR1 and IR2 by DR1
and DR2. I there exists a j such that α̃(i, j) does not satisfy j the IR3 requirement is not satis�ed
with equality we can then add mass to arbitrary α̃(i, j) without violating IR1 or IR2 until equality is
reached. Doing this will only increase the LHS of IR4, so, since IR4 already held with equality that
constraint will continue hold.

It is always possible to do this transformation without violating IR1 and IR2, because the inferred
v1
j will be less than or equal to j − 1 for any input network, and

∑J
i=1 1(i < j) = j − 1.

The transformed α̃ will also satisfy IR4, because the untransformed α̃ already satis�es it, and
the transformation only increases the LHS value. The fact that the untransformed α̃ satis�es IR4 is
immediate from the fact that A satis�es DR4.

Now we must show that the existence of α implies the existence of the A. To do this simply invert
the process. De�ne a Ã by Ã(i, j) = a(j, i). Again, we immediately get Ã satisfying DR1 and DR2
from α's satisfying IR1 and IR2.

If Ã does not satisfy the j the DR4, we can transform it by simply decreasing arbitrary Ã(i, j)'s.
Such a transformation can always be performed without violating DR1 and DR2 because the inferred
v2
j must be greater than or equal to zero.

The transformed Ã must also satisfy DR3, because the untransformed version satis�es DR3, and
the transformation only lowers the LHS of the DR3 requirements. The fact that the untransformed Ã
satis�es DR3 comes immediately α's satisfying IR3.

In other words, the question of whether or not a given matrix can be the result of a Nash Equilibrium
given assumptions NE 1 and NE 2 can be rephrased as given a pair of vectors v1,v2 where v1

j = Nj +1

and v2
j = Nj(

C

B
− 1) + δ ∗ ∆gj(δ), can we �nd a triangular matrix A with entries between 0 and 1

which satis�es At1 ≤ v1 and A1 = v2

Lemma: For a given pair of vectors v1 and v2 of length J , the Algorithm to Check for a Triangular
Probability Matrix (ACTPM) will produce a triangular matrix A with entries between 0 and 1 which
satis�es At1 ≤ v1 and A1 = v2 if such a matrix exists.

Algorithm to Check for Triangular Probability Matrix
Begin with an empty allocation A(i, j) = 0 ∀ i, j
For j = J, J − 1, ..., 2, 1 execute the following steps

1. In this repetition we will be allocating AJ which is the vector of entries A(j, i) where i ∈
1, 2, 3, ..., J

2. Allocate that V 2
j by assigning A in order to minimize

∑J
i=j(v

1
i −

∑J
l=j A(i, l)2 subject to DR1,

DR 2, and
∑J

i=1 A(j, i) = v2
j . In other words, minimizing a sum of a strictly convex function of

the space remaining on the active inequality constraints.

3. If such an allocation cannot be generated without exceeding the size of a bin or violating DR1
or DR2, then the algorithm fails.
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Intuitively this algorithm adds the nodes one at a time. As each node is added, you must assign that
node probabilities of receiving connections from future nodes. Each node must be assigned enough
connections to meet their equality constraint without violating the inequality constraint that no node
can be assigned to give more connections in expectation than it was observed to give. We require that
the assignment always reduce the amount of slack on the loosest inequality constraint �rst, as doing
so is optimal in terms of allowing allocations to exist as we shall show.

Proof of Lemma
We must show is that, if the algorithmic allocation fails, then no feasible allocation exists which

satis�es the requirements.
Any algorithm which satis�es the dual requirements can be backwards constructed as we shall

explain. LetAj be an interim allocation, which is like a standard allocation exceptAj(i, l) = 0∀i ≤ j∀l.
We say that a interim allocation is valid if it meets DR1 and DR2 and the DR3's and DR4's associated
with i > j. Note that any valid allocation A can be converted into an interim allocation Aj at any
point simply by setting the correct entries in A to zero.

As a consequence, it is also possible if a valid interim allocation Aj−1 exists, to construct a valid
interim allocation Aj by setting row j of Aj−1 to zero. One can then reconstruct Aj−1 from Aj by
choosing the appropriate values for row j.

This means that any valid A can be constructed from the all zeroes AJ by introducing constraint
pairs DR3 and DR4 along with another valid row of A one at a time.

The question then arises, when is it possible to create a valid Aj−1 from a given Aj? It is possible
only when su�cient space exists in the in the active inequality constraints to satisfy the new equality
constraint while not violating the DR1 and DR2. In other words, it is possible to produce a valid
interim allocation when

∑J
j=1 F (A, j) ≥ v1

j where F (A, j) = max(1,v1
j −

∑j−1
i=1 A(i, j)).

To prove the lemma, we show that the algorithmic allocation achieves maximum feasible
∑J

j=i F (A, j)
of all allocations at each step. This in turn proves that the algorithmic allocation produces the maxi-
mum feasible

∑J
j=i F (A, j) of all valid allocations at each stage of its backwards construction including

the �nal one.
This means that if any backwards construction process can create a valid A matrix, then the

ACTPM can as well.
Call the algorithmic allocation matrix Ā. By DR4, the sum

∑J
j=i+1 f(A, j) where f(A, j) =

(Nj −
∑j−1

l=1 A(l, j)) will be the same for any valid continuation allocation. The algorithmic allocation

also always produces the same �xed
∑J

j=i+1 f(A, j) as any valid allocation when it produces an
allocation because we require DR4 to be met at each step..

De�ne fA(1) as the highest value f(A, j) of given A for any j. De�ne fA(k) as the k the highest
value f(A, j) take on for any j. The vector fA contains f(A, j) for all j in weakly decreasing order.
Say there is another feasible allocation A. De�ne ∆fA = fĀ − fA.

Ultimately, we want to show that
∑J

j=1 F (A, j) ≥
∑J

j=1 F (Ā, j)). By Karamata's inequality, the

condition
∑j

i=1 ∆fA(i) ≤ 0∀j ≤ J implies that result 1. Therefore if we prove
∑j

i=1 ∆fA(i) ≤ 0∀j ≤ J
we are done.

First we prove ∆fA(1) ≤ 0 or fĀ(1) ≤ fA(1). This is not an essential step, but it does help illustrate
what is happening when we generalize. To see this assume that the reverse is true and fĀ(1) > fA(1).
Say that the quantity fĀ(1) corresponds to the space remaining on the j1

A the constraint. In other
words fĀ(1) = f(Ā, j1

Ā
). Note that if two constraints ever have the same remaining space during the

algorithm, they will have the same remaining space from then on by construction.
When we say that an inequality constraint j (or set of constraints S) receives weight during a given

step i that just means that during that backwards construction step for A, we are assigning some
positive value to A(i, j) (or to some A(i.j), i ∈ S) during that step.

At the end of the backwards construction process either one DR3 constraint has more space left
than any other or several are tied for �rst. If only one has the most space, then it must have received
maximum (one or v2

j , whichever is smaller) weight every step that it was active in the backwards
construction process. As such, it is impossible that fĀ(1) > fA(1) in this case, because that would

1Karamata (1932)
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imply that f(A, j1
Ā

) ≥ f(Ā, j1
Ā

), contradicting the fact that the j1
Ā
the constraint received maximum

possible weight in the backwards construction of Ā.
Now consider what happens when several constraints are tied for most space remaining under Ā.

Call the set of indices for these tied constraints S1. If fĀ(1) > fA(1), it must be the case that all of
these constraints receive more under A than Ā. If this were not the case then one of the constraints
would need to receive less weight under A than Ā, and that constraint would have more than fĀ(1)
space remaining.

This implies that the total weight assigned to all of the tied for �rst constraints must be higher
under the alternate allocation than the algorithmic allocation. Note that in the algorithmic allocation,
relative ranking of space remaining on constraints is preserved in he sense that if f(Ām, j) ≥ f(Ām, j)
then f(Āl, j) ≥ f(Āl, j)∀l ≤ m. This plus the fact that if two constraints ever have the same space
remaining implies that they always have the same space remaining leads us to conclude that at no
point during the backwards construction process could any weight have been applied to constraints
outside S1 set which could otherwise have been applied to constraint inside S1. Therefore it must be
the case that fĀ(1) ≤ fA(1).

Now we use a similar approach to prove
∑j

i=1 ∆fA(i) ≤ 0∀j ≤ |S1|. Again the proof is not strictly
necessary, but it does illustrate more about the workings of the general proof.

The most weight that can be added to any subset of constraints S during any step j is max(v2
j , |S|).

It must be the case that max(v2
j , |S

j
1|) weight is added to constraints in Sj

1 every step, since by
construction if any weight is added to a constraint j and constraint i does not have a full one weight
added to it during step m, it must be the case that f(Ām+1, j) ≥ f(Ām+1, j). Thus by preservation
of relative ranking, any constraint that received weight in preference to one in Sj

1 must also be in Sj
1.

Now, since the amount of weight given to the constraints in S1 is weakly lower under A than Ā,
and since under Ā, f(Ā, i) = f(Ā, j)∀i, j ∈ S1, it must be the case that

∑or:j
i∈S1

(
f(Ā, i)− f(A, i)

)
≤

0∀j ≤ |S1| where
∑or:j

i∈S1
denotes the sum of the j smallest realizations of the summation from the set of

possible elements given i ∈ S1 . By construction,
∑or:j

i∈S1

(
f(Ā, i)− f(A, i)

)
≥
∑j

i=1 ∆fA(i)∀j ≤ |S1|.
Now consider the set of constraints tied for n the most space remaining. Again by relative rank

persistence, constraints in Sl where l > n never receive weight in preference to constraints in Sn during
the backwards construction of Ā. This means that Sn cannot receive M more total weight under A
than under Ā unless S<n = ∪j<kSj receives at least M less weight.

In constraints in the set Sn receive M more weight under A than Ā, we know
∑

i∈S<n
f(Ā, i) −

f(A, i) ≤ −M . Because
∑

i∈S<n
f(A, i) ≤

∑|S<n|
i=1 fA(i), this implies that

∑|S<n|
i=1 ∆fA(i) ≤ −M .

If Sn receives M more weight under A then since f(Ā, i) is the same ∀i ∈ Sn it must be that∑or:j
i∈Sn

(f(Ā, i)−f(A, i)) ≤M∀j ≤ |Sn|. Furthermore,
∑or:j

i∈Sn
(f(Ā, i)−f(A, i)) ≥

∑j
i=|S<n|+1 ∆fA(i)∀j ≤

|Sn|, so
∑j

i=1 ∆fA(i) ≤ 0∀j ≤ |S≤n|.
Since this is true for all n, we have

∑j
i=1 ∆fA(i) ≤ 0∀j ≤ J

1.1.2 The Necessary condition

In the above sections we proved that, for a given network, the existence of a matrix satisfying certain
conditions derived from that network is su�cient for the existence of a NE with satisfying certain
conditions which could generate said network with positive probability. We also provided an algorithm
to check for the existence of such a matrix. We now show provide a necessary condition for a given
network to supportable through NE play satisfying when δ is small.

This necessary condition takes a very similar form to the su�cient condition discussed above, and
in fact the two converge to a single necessary and su�cient condition when δ = 0

Proposition NE 2: Under Assumption NE 1 and Assumption NE 2, and δ su�ciently small for the
given ε a given outcome network G cannot be supported by a NE unless there exists an upper triangular
JxJ matrix α with real valued entries between 0 and 1 satisfying αt1 ≥ ṽ2(G) and α1 = v1(G).

Say xi is the number of connections Player imade in excess of one, Omyopici is the observed myopic
payout received by i , and Upuni(Gi−1) is the punishment utility for Player i which can be inferred from

the observed Gi−1 . Then v1
i = xi + 1 and ṽ2

i =
1

B(1− δ)
(
Upuni(Gi−1)−Omyopici− δB(J − j)

)
− ε.
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Proof of Proposition NE 2: Assume that there exists a strategy pro�le S which supports the
observed network G. In any Nash equilibrium, all players must be making more than their min-max
payo� in expectation at every decision node. The maximum expected payo� that a Player i who will
receive ki connections in expectation can receive after making the move observed in network G is
Omyopici(G) + δB(J − j) + ki(G)B(1− δ), where the �rst term is the myopic payo�, the second term
is the maximum payo� from non-connecting nodes, and the last term is the additional gain from direct
connections. It must then be the case that Omyopici(G) + δB(J − j) + kiB(1− δ) ≥ Upuni(Gi−1∀i.
We can then de�ne ki(G) as the minimum ki such that the inequality is satis�ed.

Note that the �xed number of connections made by each player and the low δ mean that we can
get ensure that all possible Omyopici(G̃)'s that a player can manifest are arbitrarily close together
for all G̃ generated with positive probability by S. This in turn allows us to a assume that all of the
ki(G̃)'s, for G̃ generated with positive probability by S, will always be arbitrarily close together and
arbitrarily close to the ki(G) inferred from the observed network. This means that if a Player i ever
receives less than ki(G)− ε connections in expectation after a given decision node, then there exists a
δ̄ corresponding to that ε such that for δ < δ̄, Player i is making less than their min-max payo�.

Thus if δ is su�ciently small relative to ε, it must be the case that all players receive at least
ki(G) − ε connections in expectation at each decision node in S. Then, by Bayes plausibility, the
matrix α ex-ante connection probabilities under S must satisfy the following requirements:

1. 0 ≤ α(j, i) ≤ 1∀i

2. α(j, i) = 0∀i ≥ j

3.
∑J

i=1 α(j, i) = xj + 1

4.
∑J

j=1 α(j, i) ≥ 1

B(1− δ)
(
Upuni(Gi−1)−Omyopici − δB(J − j)

)
− ε

Which is precisely the set of requirements in the statement.
Notes on Proposition NE 2: Because this proposition takes a similar form to Proposition NE

1, the ACTPM can be employed to check for existence.
The inclusion of the ε and the su�ciently small δ requirement can cause concern when one is not

sure how small of a δ is needed for a given ε. In general, the necessary condition holds when fairly
tightly, with an ε very close to zero, when δ is small enough that direct connections are substantially
more important than indirect connections when determining payo�. Note that we do not need δ to be
small if the system has some way of guaranteeing that the network remains small in diameter. Small
diameter networks tend to have payo�s which depend primarily on number of connections made rather
broad network structure.

1.1.3 Value of the NE results

These conditions are most useful in contexts where plausibility of threats is not a major concern,
because we are dealing with standard NE rather than SPE. This can be the case when players are not
sophisticated or when norms are highly valued and enforced independent of individual disutilty from
the punishments. If possible, this type of subgame imperfect play could be bene�cial to the system,
because there are generally NE supported by the types of strategy pro�les described in the proof of
Proposition NE 1 which produce more connected networks than the most connected outcomes of SPE's.
When more connections improve welfare, the gain from choosing a non-subgame perfect equilibrium
could be substantial. The su�cient condition is particularly useful when NE's are the primary focus,
because it does not depend as heavily on a low δ parameter.

While the usefulness of the conditions and algorithm in this section are not immediately obvious to
readers more concerned with subgame perfection, they do have important implications. Most obviously,
a necessary condition for NE satisfying conditions NE 1 and NE 2 is also a necessary condition for SPE
satisfying those conditions. The necessary condition can provide a good upper bound on the number of
connections that those types of SPE's can produce for given parameter values. The condition will reject
potential outcomes in which groups of players jointly make implausibly high number of connections.
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Empirically, the necessary condition can be used to check for rationality and belief consistency
under the assumption that players stick to equilibria of the kind discussed. If two players both make
so many connections that there is no way for later connections to make up both of their myopic losses,
then it is likely that either they have di�erent beliefs about the connection behavior of future players,
or they are irrational. Checking the necessary condition will catch these kinds of inconsistencies.

As mentioned before, when δ goes to zero the necessary and su�cient conditions converge. In
addition, when δ = 0, the joint condition becomes a necessary and su�cient condition the existence
of a SPE supporting the observed outcome under assumptions NE 1 and NE 2. The proof is omitted
due to its similarities with the preceding proofs.
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