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Abstract

Hidden Markov Models (HMMs) have been widely used in marketing to study dynamics in customer

behavior. HMMs have been successfully applied to model how customers transition among a set latent

states such as attention levels, web search behavior, customer’s relationships, and purchase intent. While

most HMMs in marketing allow for heterogeneity in the model’s parameters, these models assume that

the number of latent states is common across customers. In this work, we analyze the potential bias of

making such an assumption, assess to what extent heterogeneity in the model’s parameters can mitigate

the impact of such bias, and provide a mixture of HMMs model that relaxes this assumption.

Using a comprehensive Monte Carlo simulation exercise and secondary data from an online role

playing game, we demonstrate that ignoring heterogeneity in the number of states could lead to model

identification problems and to erroneous interpretations of customer dynamics. In particular, we show

that: (1) even when only a small proportion of customers have a larger number of latent states (and most

customers transition among fewer states), the best fitting model would be an expensive HMM in terms of

number of states; (2) even when heterogeneity is accounted for in the HMM parameters, the inference

from analyzing the population estimates, a common practice in the literature, can be biased; (3) even the

individual-level estimates of customers with the correct number of states can be biased. We propose a

mixture of HMMs with different number of states to account for heterogeneity in the number of states

which captures well the behavior at both individual and population level.

Keywords: Hidden Markov Models (HMM); Heterogeneity; Hierarchical Bayesian Hamiltonian Monte

Carlo.
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1 Introduction

Hidden Markov Models (HMMs) have been used in various domains to model how a sequence of observations

is governed by transitions among a set of latent states. These include domains such as speech or word

recognition (Rabiner, 1989), image recognition (Yamato et al., 1992), economics (Hamilton, 1989, 2008),

finance (Mamon and Elliott, 2007), genetics (Eddy, 1998), and earth studies (Hughes and Guttorp, 1994).

Over the last decade the number of applications of HMMs in marketing has grown substantially. HMMs in

marketing have been primarily used to model how customers (and sometimes firms) transition among a set of

latent states over time. In the context of customers’ behavior, the latent states could be attention states

(Liechty et al., 2003; Wedel et al., 2008), the relationship between the customer and the firm (Netzer et al.,

2008; Ascarza and Hardie, 2013; Romero et al., 2013) purchase propensity (Schwartz et al., 2014), channel

migration (Mark et al., 2013), internet browsing behavior (Montgomery et al., 2004; Stüttgen et al., 2012),

consumers’ choice among a portfolio of products (Paas et al., 2007; Schweidel et al., 2011), purchase cycles

states (Park and Gupta, 2011), latent behavioral learning strategies (Ansari et al., 2012) and households

lifecycle stages (Du and Kamakura, 2006). HMMs have been also used to capture how marketing actions

could affect the transition among states (Netzer et al., 2008; Montoya et al., 2010; Kumar et al., 2011; Zhang

et al., 2014). In some marketing applications the unit of analysis does not involve consumers. For example,

Ebbes et al. (2010) looked at how firms’ (banks’) competitive landscape changed over time. Moon et al. (2007)

used a HMM to uncover firms’ latent competitive promotions. Lemmens et al. (2012) looked at evolving

segments of countries. Montoya and Gonzalez (in press) looked at product sales for multiple SKUs to identify

on-shelf out-of-stocks.

Thus, while HMMs reflect a fairly recent advance in the marketing literature, applications of HMMs in

marketing are numerous and are rapidly growing. According to Netzer et al. (2017), there are over 30

published papers leveraging HMMs in the marketing literature. See Appendix A, adapted from Netzer et al.

(2017), for a selected list of HMMs in marketing.

One of the main differences between the applications of HMMs in marketing versus other disciplines is that in

most applications in fields other than marketing, HMMs are used to study a single unit of analysis. That is,

the data comprise one (often long) time series that is used to infer the state of the system at any point in time

(e.g., GNP of the US from 1951 to 1984 to estimate the latent state of recession from Hamilton, 1989). In

marketing, in contrast, HMMs are commonly estimated across multiple time series generated by heterogeneous

agents (e.g. customers or firms).1 Accounting for heterogeneity across customers has both statistical and
1To simplify exposition, we will use hereafter customers to refer to the agent generating the sequence of observations. All

analyzes and discussions should follow through to other agents such as firms.
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substantive reasons. Statistically, accounting for heterogeneity in the parameters across customers in dynamic

models is crucial to properly disentangle heterogeneity from dynamics (Heckman, 1981). Failure to properly

account for heterogeneity may lead to biased estimates and misleading conclusions. Substantively, marketers

are particularly interested in understanding and exploiting heterogeneity across consumers (Fader, 2012).

Ideally, one would estimate a separate HMM per customer but due to limited number of observations per

customer, researchers typically pool the information across customers and use random effect or latent class

methods to account for heterogeneity. Indeed, of the 32 marketing papers that employ an HMM reported in

Table 15, 20 accounted for unobserved heterogeneity in this form or another. Several approaches have been

proposed to capture heterogeneity in the HMM parameters across time series (customers) such as Hierarchical

Bayesian modeling (Netzer et al., 2008; Schwartz et al., 2014; Scott, 2002) and latent class (Schweidel and

Knox, 2013). However, while marketing studies have accounted for heterogeneity in the HMM parameters, all

these studies assume that the number of latent states is common across customers and use model selection

criteria to determine the number of states for the entire customer base. That is, while customers can differ in

how they transition among states or even in the way they behave given a state, marketing, and other fields,

typically assume that all agents transition among the same number of states. We argue and demonstrate that

the common practice in marketing of estimating one model with the same number of states for all customers,

while flexibly accounting for heterogeneity in the model parameters, could lead to an identification problem

and misleading insights.

Thus, the main objective of this research is to examine potential biases and identification problems introduced

by assuming that customers have the same number of states and propose an approach to relax this assumption

allowing different customers to have different number of HMM states.

To illustrate the identification problem, imagine a set of customers who are transitioning among low, medium

and high levels of relationship with a firm, and another set of customers that only transition between low and

medium levels of relationship. Estimating a common model for both groups with three HMM states can lead

to a parameter identification problem for those customers who transition between only two states even when

parameter heterogeneity is allowed. To see this intuitively, customers who only transition between two states

but are represented by a model with three states could rationalize such third state in different ways. For

instance, they could have a third state that they never visit. In that case the parameters representing the

behavior in the third state could take any value, leading to an identification problem. Alternatively, these

customers can have a third state that mimics the behavior of the first (low relationship) state and freely

transition between the first and third, nearly identical, states, or have a third state that mimics the behavior

of the second (medium relationship) state and freely transition between the second and third, nearly identical,
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states. These multiple model representations of the observed data constitute an identification problem. We

further develop this intuitive example and elaborate on the identification problem in Section 2.

We first explore, using a simulation exercise, how severe the problem of ignoring heterogeneity in the number of

states is, while accounting for heterogeneity in the HMM parameters. We confirm that ignoring heterogeneity

in the number of states, when such heterogeneity exists, can lead to an identification problem, particularly

for the customers who transition among fewer states. Furthermore, even when only 5% of the customers have

a larger number of states, we find that various model selection criteria would recommend more expensive

models with more states. Therefore, we may select the model that yields an identification problem and is

the “wrong” model for the vast majority of the customers. Interestingly, we find biased estimates even for

customers with the same number of states as the implied by the estimated HMM. This bias is caused by

the identification problem of the parameters of the customers with fewer states, which shifts the estimates

of the customers with the correct number of states through the population shrinkage. In addition, we find

and demonstrate that accounting for heterogeneity in the HMM parameters but reporting insights from

population level estimates, as is commonly done in the marketing literature (e.g., Netzer et al., 2008; Montoya

et al., 2010; Kumar et al., 2011; Schweidel et al., 2011; Ansari et al., 2012), could lead to misleading insights

about the dynamics in customer behavior.

We present a solution to this problem by proposing a mixture of HMMs (MHMM) that accounts for

heterogeneity in the number of states. The model is able to identify different segments of customers with

different number of states and captures well the behavior at both the individual and population levels.

We examine the limitations of estimating a HMM with the same number of states for all consumers and the

performance of the MHMM using an empirical application to users engagement in a role playing online game.

We find that the traditional HMM can lead to misleading inference confusing heterogeneity in the number of

states for dynamics. On the other hand, the MHMM demonstrates not only superior predictive ability, but

also richer insights with respect to the players’ dynamics.

The rest of the paper is organized as follows. In Section 2, we outline a typical HMM and illustrate using a

numerical example the identification problem that can arise when estimating a HMM with the same number

of states for all customers. Section 3 describes several simulation experiments that show the conditions under

which the assumption of homogeneity in the number of states can lead to identification problems. In Section 4

we propose a model that allows for different number of states across customers. In Section 5, we use data

from an online role-playing game to examine the identification problem and illustrate the value obtained

from accounting for heterogeneity in the number of states. We conclude in Section 6 with the discussion of
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the main contributions of this paper and directions for future research.

2 Heterogeneity in the number of states of HMM

Before further illustrating the implications of the assumption of common HMM states across customers, it is

instructive to formally outline a typical HMM specification that we use in the remaining of this paper.

2.1 Model specification

We assume a customer i (i “ 1, . . . , I), exhibits a particular behavior (Yit, e.g., purchase) at each time period

(t “ 1, . . . , T ). The customer behavior at each time period is governed by the customer’s state in that period

(Zit “ s, s “ 1, . . . , S).2

2.1.1 HMM components

An HMM can be defined by three components:

1. The initial state distribution: The probability that customer i is in state s at period 1 is P pZi1 “ sq “ πis.

2. The transitions: Customer i transitions from state s at time t to state s1 at time t` 1 with probability

P pZit`1 “ s1|Zit “ sq “ qitss1 .

3. The state dependent behavior: The probability of observing behavior Yit “ yit for customer i at time t

given that she is in state s at time t is P pYit “ yit|Zit “ sq “ mit|spyitq.

This state dependent behavior can be represented by any discrete or continuous probability distribution

function. However, for the purpose of the simulation and empirical application presented in this paper, we

assume that customer i makes Nit purchase decisions in each time period t, and chooses a focal product

in yit of them. Accordingly, throughout the paper we model the observed behavior yit using a Binomial

distribution with known total number of trials Nit (e.g., Montoya et al., 2010). The likelihood of purchasing

at each occasion is affected by the customer’s state membership at time period t, Zit. Thus, we can write the

state-dependent behavior as:

P pYit “ yit|Zit “ sq “ mit|spyitq “

ˆ

Nit
yit

˙

pyit

is ¨ p1´ pisqNit´yit (1)

2Given that each customer may transition among different number of states, we describe the model for a customer with a
general number of states S
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where pis is the probability of purchasing given that the customer i is at state s. We parametrize pis to be

increasing in the state labels (pi1 ď pi2 ď . . . ď piS) to avoid the label switching problem (See Appendix B.1).

In addition, we define the transition matrix Qit that contains the transition probabilities between time t´ 1

and time t as:

Qit “

»

—

—

—

—

–

qit11 ¨ ¨ ¨ qit11
... . . . ...

qitS1 ¨ ¨ ¨ qitSS

fi

ffi

ffi

ffi

ffi

fl

(2)

We parametrize each row of the transition matrix using the softmax function (See Appendix B.2).

2.2 Likelihood

Defining the diagonal matrix Mit “ diag
ˆ

mit|1 . . . mit|S

˙

, we integrate out the hidden states (Zucchini

and MacDonald, 2009) to obtain,

Li “ ppYi|θi, uq “ πMi1

˜

Ti
ź

t“2
QitMit

¸

11, (3)

where 1 is a vector of ones of dimension S. The likelihood across consumers is given by: L “
śI
i“1 Li.

2.3 Numerical example

Similar to the stylized example briefly described in the introduction let assume a set of customers whose

purchase behavior follows an HMM. One set of consumers (Segment A) transitions among three latent states

of purchase propensity: Low, Medium and High. A second segment of customers transitions among only the

low and medium states. We denote ps in Equation (1) the purchase probability for each state s such that:

pA “

„

pL pM pH



“

„

0.1 0.5 0.9


That is, when a customer is in the Low, Medium, or High state, she has a 10%, 50%, and 90% probability of

purchasing, respectively. In addition, consumers in Segment A could transition among the three latent states

according to the following transition matrix QA that describes the transition probabilities among states (see

Equation 2).
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QA “

»

—

—

—

—

–

qLL qLM qLH

qML qMM qMH

qHL qHM qHH

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0.85 0.10 0.05

0.05 0.80 0.15

0.05 0.10 0.85

fi

ffi

ffi

ffi

ffi

fl

On the other hand, customers in Segment B only have two states: Low and Medium, with purchase

probabilities:

pB “

„

pL pM



“

„

0.1 0.5


Customers in Segment B transition between these two states according to the transition matrix QB :

QB “

»

—

–

qLL qLM

qML qMM

fi

ffi

fl

“

»

—

–

0.85 0.15

0.15 0.85

fi

ffi

fl

Because the researcher often does not observe a-priori which customer belongs to which segment, the

traditional approach in the marketing literature has been to estimate a single HMM with the same number of

states across customers but with heterogeneity in the HMM parameters. Suppose the selected model (using

some model selection criteria) corresponds to the three-state HMM.3 This model constraints all customers

to have three HMM states, but it allows customers to have different values for p and Q. If the researcher

allows for flexible heterogeneity structure, the HMM with three states should capture correctly the individual

parameters of customers in Segment A (we will see later that this is not always the case). However, it is not

clear how the three-state HMM will capture the behavior of consumers in Segment B with only 2 states.

One option for the model to rationalize the behavior of customers in Segment B is to estimate for these

customers the same purchase probabilities (ppB) as those of the customers in Segment A,

ppB “

„

0.1 0.5 0.9


but estimate a transition matrix ( pQB) such that customers in Segment B never transition to the high state,
3As we will show in Section 3, model selection criteria recommend choosing the more expensive model (i.e., the model with

more states) even when only a small fraction of the customers transition among a larger number of states.
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pQB “

»

—

—

—

—

–

0.85 0.15 0

0.15 0.85 0

q̂HL q̂HM q̂HH

fi

ffi

ffi

ffi

ffi

fl

The pitfall of this specification is that the parameters of the last row of the transition matrix are unidentified.

That is, because Segment B customers never visit the High state, any set of values for q̂HL, q̂HM and q̂HH

that are between 0 and 1 and sum to one would rationalize the data. For example, both these transition

matrices

pQB “

»

—

—

—

—

–

0.85 0.15 0

0.15 0.85 0

0.05 0.10 0.85

fi

ffi

ffi

ffi

ffi

fl

and pQB “

»

—

—

—

—

–

0.85 0.15 0

0.15 0.85 0

0.33 0.33 0.33

fi

ffi

ffi

ffi

ffi

fl

can be valid estimates from the model. Similarly, the value of pH “ 0.9 is not identified because any purchase

probability of this state would be consistent with the data.

Alternatively, the model could rationalize the behavior of Segment B customers differently. The model could

identify that all states are reachable by these customers; however, there are two states that capture essentially

the same purchase propensity. For example, in the estimated model the first state can have a purchase

probability of 10%, and two states with purchase probability of roughly 50%. Specifically:

ppB “

„

0.1 0.5´ ε 0.5` ε


pQB “

»

—

—

—

—

–

0.85 q̂LM q̂LH

„ 0.15 q̂MM q̂MH

„ 0.15 q̂HM q̂HH

fi

ffi

ffi

ffi

ffi

fl

In such a case, q̂LL is estimated to be 0.85 and q̂ML “ q̂HL « 0.15, but the customer could move in any

manner between Medium and High states, which capture nearly identical behavior, leading again to an

identification problem. For example, both the transition matrices below can be valid estimates from the

model.
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pQB “

»

—

—

—

—

–

0.85 0.075 0.075

0.15 0.7 0.15

0.15 0.15 0.7

fi

ffi

ffi

ffi

ffi

fl

and pQB “

»

—

—

—

—

–

0.85 0.075 0.075

0.15 0.25 0.6

0.15 0.6 0.25

fi

ffi

ffi

ffi

ffi

fl

In sum, the model for the Segment B customers (with two states) is not identified when a 3 state HMM is

estimated for all customers. Note that this identification problem cannot be corrected by collecting more

observations per customer.

Because the researcher does not know which customers belong to Segment A or to Segment B, this lack

of identification could be problematic when reporting aggregate estimates and when delivering insights

from model estimates. For example, following the first identification example above, the population mean

parameters of the last row of the transition matrix will be biased because they mix the correct estimates of

Segment A and the unidentified estimates of Segment B. Similarly, the individual level estimates for Segment

B customers, and any inference based on these estimates, are likely to be biased. In the next section, we use

a simulation study to assess the degree of the identification problem illustrated by this example.

3 Simulation exercise

Because in typical empirical applications the researcher does not observe the “true” number of states that

each customer transitions among, we design a simulation exercise, in which we know the true number of

states for each customer to assess the implications of the assumption of homogeneity in number of HMM

states. The objective of this simulation is to measure the potential impact of estimating an HMM that is

homogeneous in the number of states when customers have different number of states.

We assume that there are two customer segments following the model described in the numerical example

discussed in Section 2.3. The behavior of the first segment (Segment A) follows an HMM with three states

(Low, Mid, and High) and the behavior of the second segment (Segment B) follows an HMM with two

states (Low, and Mid). We simulate data for I “ 500 customers and T “ 45 time periods (25 periods for

calibration, 10 for validation, and 10 for testing). At each time period the customer is making Nit “ 2

purchase decisions following the state dependent behavior that corresponds to her state at that time period.

We define λ P r0, 1s as the proportion of customers in Segment B (customers with two states). Consequently,

I ¨ p1´ λq customers in Segment A transition among the Low, Mid, and High states, whereas I ¨ λ customers

in segment B transition only between the Low and the Mid states. Table 1 shows the corresponding initial,

state-dependent, and transition probabilities used to simulate the behavior of each segment.
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Table 1: Values for the HMM components used in the simulation exercise

HMM component 2 states (λ) 3 states (1´ λ)

π Initial state probabilities
„

1{2 1{2
 „

1{3 1{3 1{3


p State dependent

probabilities

„

0.1 0.5
 „

0.1 0.5 0.9


Qi Transition probabilities

»

—

–

0.85 0.15

0.15 0.85

fi

ffi

fl

»

—

—

—

—

–

0.85 0.10 0.05

0.05 0.80 0.15

0.05 0.10 0.85

fi

ffi

ffi

ffi

ffi

fl

Note that to better disentangle heterogeneity in the number of states from heterogeneity in the parameters

we keep the state dependent probabilities of the data generation process homogeneous within each segment.

However, we generate individual-level transition matrices using a multivariate Normal distribution on the

corresponding unconstrained parameters.

3.1 Model estimation

We estimate an HMM with a Binomial state dependent distribution as described in Section 2.1 to recover the

model’s parameters. Throughout the paper we use a Hamiltonian Monte Carlo (HMC) procedure, particularly

the No U-Turn Sampling algorithm (NUTS) available in Stan (Carpenter et al., 2016) to draw the model

parameters from the posterior distribution (see Appendix C). We use a hierarchical specification to account

for heterogeneity in the HMM transition probabilities. Because the researcher does not know a-priori the

customer membership to each segment, she typically pools the data of all customers and estimates an HMM

with heterogeneous parameters but with a common number of states across customers. For the purpose of this

simulation exercise we specify state dependent parameters and initial state parameters to be homogeneous,

while we allow transition matrices to be heterogeneous across customers. Consequently, the HMM has a set

of individual parameters and a set of common parameters across customers. Specifically, we define θi as the

vector of all individual level parameters, and Φ the vector of all homogeneous parameters. In addition, as
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common practice in the literature, we assume θi are independent and identically distributed Multivariate

Normal with mean µθ and covariance matrix Σθ. See Appendix B for further details of the model specification,

and prior distributions.

3.2 Results

3.2.1 Bias towards more states

The first step in estimating a HMM is to choose the number of states. It is common to estimate a HMM with

varying number of states and choose the model that best fits the data based on some model selection criteria.

Diverse model selection criteria are often used to select the number of states (assuming the same number of

states for all customers).

Because in our simulation customers could have either two or three states, it is instructive to investigate

how the simulated proportion of customers with two states, λ, affects the number of states chosen by the

model selection criteria. Intuitively, the model selection should favor the model that best represents the true

number of states for the majority of the customers.

We analyze the number of states recommended by alternative model selection criteria when the proportion

of customers transitioning among three states (Segment A) and the proportion of customers transitioning

among two states (Segment B) are equal (λ “ 0.5). In Table 2, we show in-sample log-likelihood (LL), log

marginal density (LMD), Watanabe-Akaike information criterion (WAIC), as well as log likelihood in the

validation sample. Because in-sample likelihood-based measures such as LMD or WAIC may not sufficiently

penalize for additional parameters, we use the log posterior mean likelihood on the validation sample to select

the appropriate number of states.4 As can be seen in in the second row in Table 2, both penalized model

selection criteria (LMD and WAIC) favor the HMM with 3 states. The predictive Validation LL also favors

a 3-states HMM. Thus, the model selection criteria suggest choosing the specification that fits better the

customers with the larger number of states (more complex behavior).

An interesting question is how many states would the model selection criteria recommend when the majority

of the customers belong to Segment B? Would the model selection criteria recommend the simpler model

with only two states that fits the majority of the customers? To investigate this issue, we vary the proportion

of Segment B customers (λ) from 50% to 98% and calculate both in-sample likelihood based criteria as well
4We show in Appendix D.1 that when all customers have the same number of states, in-sample likelihood-based model

selection criteria such as LMD and WAIC tend to choose a model with more states than simulated.
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Table 2: Number of states selection for λ “ 50% of customers with 2 states. Note: The best model in each
column is in bold

In sample Validation
Number of States LL LMD WAIC LL

1 -14234.93 -14238.17 28478.65 -3980.95
2 -11855.63 -12006.04 24186.30 -3339.71
3 -11612.95 -11850.43 23805.67 -3290.16
4 -11576.55 -11865.49 23822.12 -3290.66

as log-likelihood for the validation sample for the two and three state HMMs (see Table 3).5 Even when most

customers truly transition among two states, most model selection criteria suggest a model with three states.

For instance, when only 5% of the sample corresponds to customers who transition among three states, LMD,

WAIC, and validation log-likelihood still suggest that the best model is the 3-states HMM. Thus, in such a

scenario, the model selection criteria recommend estimating the incorrect and unidentified model for 95%

of the customers. The main driver of this result is the ability of the 3-state HMM to explain the data for

both segments, whereas the 2-state HMM fits poorly the behavior of Segment A. We note that this result is

unlikely to be due to lack of penalization on the number of parameters as the recommended number of states

is given by likelihood performance on periods out of the calibration sample.

Table 3: Number of states selection as a function of λ. Note: The best model in each column is in bold

In sample Validation
Number of States LL LMD WAIC LL
70% with 2 states

2 -11771.93 -11921.59 23993.47 -3305.18
3 -11580.13 -11782.59 23659.69 -3232.04

80% with 2 states
2 -11680.37 -11839.79 23797.24 -3306.58
3 -11512.72 -11706.79 23504.87 -3257.65

90% with 2 states
2 -11579.15 -11726.82 23524.47 -3240.68
3 -11484.34 -11647.77 23351.28 -3230.38

95% with 2 states
2 -11640.97 -11800.44 23643.98 -3376.78
3 -11610.17 -11745.94 23545.50 -3367.03

98% with 2 states
2 -11451.27 -11599.23 23193.01 -3256.54
3 -11407.52 -11587.73 23182.27 -3259.50

5For completeness we also estimated a 1-state and 4-state HMMs but omit them from the table for clearer representation.
Those specifications were not selected by the penalized model selection criteria.
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3.2.2 Recovery of states

The numerical example in Section 2.3 suggests that if customers have different number of states then the

parameters of an estimated HMM assuming the same number of states across customers may be unidentified.

To investigate whether that is the case, we show in Table 4 the parameter estimates for the case with equal

proportion of customers with 2 and 3 states (λ “ 50%). Specifically, in Table 4b we report the state dependent

probabilities posterior mean and the 95% posterior interval, which are homogeneous across customers; and on

Table 4c we report the posterior mean and the 95% posterior interval of the average of the transition matrix

across the population. From the estimates of p, we conclude that the model recovers well the conditional

behavior associated with the true three states with probabilities 0.1, 0.5, and 0.9. Given that the model does

not allow for heterogeneity in p, it must be that the estimated model restricts customers with truly two states

to rarely transition to the highest state, as stated in the numerical example.

In order to draw insights or the transition matrix, we need to consider that the model allows for heterogeneity

in transition probabilities, and Table 4c shows the average across a population, which consists of two different

segments. We discuss this further in the next section.

Table 4: 3-state HMM parameter estimates for λ “ 50%

(a) Initial state probabilities posterior mean and posterior 95% intervals

1 2 3
πs 0.446

r0.366 0.527s
0.415

r0.311 0.513s
0.139

r0.083 0.199s

(b) State dependent probabilities posterior mean and posterior 95% intervals

1 2 3
ps 0.112

r0.096 0.127s
0.497

r0.461 0.531s
0.892

r0.870 0.914s

(c) Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.836

r0.797 0.870s
0.135

r0.101 0.173s
0.045

r0.025 0.077s

0.147
r0.106 0.190s

0.734
r0.674 0.788s

0.318
r0.136 0.473s

0.017
r0.004 0.039s

0.132
r0.085 0.179s

0.636
r0.492 0.803s

Q 2

3
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3.2.3 Interpreting aggregate estimates

Most marketing papers that use an HMM to represent customers’ dynamic behavior report and generate

insights from population estimates. See for example Table 4 in Netzer et al. (2008), Table 6 in Montoya et al.

(2010) , Table 4 in Schweidel et al. (2011), Table 5 in Kumar et al. (2011), Table 5 in Ascarza and Hardie

(2013),6 Table 7 in Zhang et al. (2014) (see Figure 1). This common practice may yield misleading insights if

different customers transitioned among different number of states.
6Note that Ascarza and Hardie (2013) report the average and 95% interval of individual posterior means instead of population

means. However, inferences based on this table suffer from the same potential bias as in the other papers.
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Figure 1: Sample of tables of population mean transition probabilities in marketing papers

(a) Netzer et al. (2008) (b) Montoya et al. (2010)

(c) Schweidel et al. (2011) (d) Kumar et al. (2011)

(e) Ascarza et al. (2013) (f) Zhang et al. (2014)

Then, how would a population table look like when customers have different number of states? Table 4c

shows the posterior mean and 95% posterior intervals of the average across the two segments. This average in

Table 4c reflects the “composite” or weighted average of the transition matrix of customers with three states

and the transition matrix of customers with two states who rarely transition to the third state. Both the

estimated pq13 and pq23 are in between the simulated transition probability to the third state for customers with

three states (q13 “ 0.05, q23 “ 0.15) and an hypothetical transition probability equal to zero for customers
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with only two states. As described earlier in our numerical example in Section 2.3, the parameters in the

third row of the transition matrix (transitions from State 3) are unidentified for customers with only two

states. Indeed, the corresponding aggregate estimates do not match those of the three states customers and

particularly the probability of staying at state 3 is biased downwards.

Thus, the population-based transition matrix in Table 4c (even though it was estimated with heterogeneity

in transitions) represents neither the true corresponding values for customers with three states nor those of

the customers with two states. As a result, one may make erroneous inferences from this aggregate transition

matrix. For example, one may conclude that the focal firm is not doing a good job in keeping its most

engaged customer active because the most profitable states (State 3 in our case), is less sticky than the two

other states. To explore this aspect, in Figure 2 we report the heterogeneity of the transition probabilities.

We observe that, opposite to what is suggested in the aggregated Table 4c, for those customers who visit the

high probability of purchase state, the company is doing very well in keeping them in the high purchase state

(State 3 is as sticky as the two other states for customers in Segment A), and we observe that the parameters

are biased by a large group of customers who rarely visit that state.

Figure 2: Histogram of the individual posterior means of the transition probabilities
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from 2 to 1 from 2 to 2 from 2 to 3
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Another way of summarizing the heterogeneity in customers’ dynamics is by computing the steady-state

probabilities which represent the long-term behavior of each customer. Figure 3 illustrates this heterogeneity

for the simulated sample. It shows that there is a group of customers who are more likely to transition among

two states (mainly customers in segment B with relatively low estimated probability of being in state 3)

whereas there are other customers who are more dynamic and are more likely to be transitioning among the

three states.

Figure 3: Individual steady-state probabilities. Customers with 3 states are colored in black and customers
with 2 states are colored in gray.

State 2

State 1 State 3

 Segment: A (3 states) B (2 states)

Note that the problem of interpretability of the aggregate result is likely to be even more severe when one

accounts for heterogeneity in both Q and p in a continuous or discrete fashion, because the model would

provide more flexibility for the unidentification problem to arise. We encourage researchers to closely look

at and report the heterogeneity in the transition matrix parameters (as in Figure 2) and be cautious about

interpreting the aggregate transition matrix when the heterogeneity is substantial. We further explore the

bias in parameter estimates for the customers with the correct estimated model in Section 3.2.4.

3.2.4 Bias for “correctly” estimated customers

Arguably, the misleading insights drawn from aggregated transition matrices could be just a consequence of

averaging two different populations, while indeed individual level estimates are unbiased for customers in

segment A with truly 3 states. We show that this may not be the case. Indeed, we find evidence that the
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parameter estimates for customers with truly 3 states are also biased.

Because in the simulated data we know a-priori which customers belong to which segment, we can explore

the estimated transition matrix, Qi, averaging the segments with two and three states separately. We report

the mean and 95% confidence intervals across draws from the corresponding posterior distributions for those

averages for Segment A (3 states) and Segment B (2 states) customers in Table 5a and Table 5b, respectively.

Table 5: 3-state HMM transition probabilities by segment for λ “ 50%

(a) Segment A (3 states) transition matrix, mean and 95% intervals for the average across draws

1 2 3
1 0.832

r0.781 0.872s
0.095

r0.063 0.135s
0.050

r0.030 0.076s

0.151
r0.105 0.202s

0.717
r0.640 0.795s

0.223
r0.120 0.312s

0.018
r0.004 0.041s

0.188
r0.110 0.260s

0.726
r0.644 0.820s

Q 2

3

(b) Segment B (2 states) transition matrix, mean and 95% intervals for the average across draws

1 2 3
1 0.840

r0.804 0.873s
0.174

r0.129 0.225s
0.040

r0.019 0.084s

0.143
r0.103 0.185s

0.751
r0.685 0.806s

0.414
r0.145 0.647s

0.017
r0.004 0.036s

0.075
r0.042 0.118s

0.546
r0.329 0.793s

Q 2

3

First, as expected, we note from Table 5b that the third row of the transition matrix (transitions from State

3) for customers in Segment B seems to be unidentified. The estimated pq33 is significantly lower than the true

value 0.85 (which drives the overall average in Table 4c downwards) and has a wide 95% posterior interval.

This result is a consequence of the posterior distribution of q33 for Segment B customers being mainly driven

by the shrinkage toward Segment A customers. Second, if we consider now the average transition matrix

for Segment A customers in Table 5a, even though pq33 is higher than the corresponding pq33 for Segment B

customers in Table 4c, this probability is also biased downwards (significantly lower than the true value 0.85)

for the customers that truly have 3 states.

What would happen if the proportion of customers with 2 states increases? We expect that with more

customers that have a lack of identification in their transition matrix, the bias in the parameters for the

customers with 3 states increases. We show in Table 6 the average transition matrix for customers in Segment

A (3 states) when the proportion of customers with 2 states is 50%, 80%, 90% and 95%.7 These results show
7Note that in all these scenarios, the 3-states HMM is chosen as the best model.
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that the bias for the customers with truly 3 states increases as the proportion of customers with unidentified

parameters increases.

Table 6: 3-state HMM transition probabilities of customers in Segment A for λ P t50%, 80%, 90%, 95%u

(a) λ “ 50%: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.832

r0.781 0.872s
0.095

r0.063 0.135s
0.050

r0.030 0.076s

0.151
r0.105 0.202s

0.717
r0.640 0.795s

0.223
r0.120 0.312s

0.018
r0.004 0.041s

0.188
r0.110 0.260s

0.726
r0.644 0.820s

Q 2

3

(b) λ “ 80%: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.839

r0.784 0.880s
0.130

r0.088 0.178s
0.060

r0.021 0.134s

0.140
r0.096 0.195s

0.829
r0.747 0.878s

0.258
r0.121 0.373s

0.021
r0.008 0.040s

0.041
r0.009 0.114s

0.682
r0.582 0.797s

Q 2

3

(c) λ “ 90%: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.837

r0.769 0.889s
0.131

r0.090 0.178s
0.123

r0.028 0.281s

0.153
r0.098 0.220s

0.833
r0.773 0.876s

0.206
r0.060 0.370s

0.010
r0.002 0.025s

0.037
r0.011 0.082s

0.671
r0.544 0.815s

Q 2

3

(d) λ “ 95%: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.851

r0.799 0.888s
0.133

r0.083 0.202s
0.264

r0.090 0.475s

0.137
r0.099 0.189s

0.836
r0.752 0.889s

0.251
r0.030 0.461s

0.012
r0.003 0.025s

0.031
r0.005 0.082s

0.485
r0.348 0.649s

Q 2

3

We further investigate the individual bias by computing the posterior mean of the transition probabilities for

each individual. Figure 4 shows the histogram of the individual posterior means for q33. Figures 4a, 4b, and

4c depict these values for all, Segment A, and Segment B customers, respectively.

Figure 4 is consistent with the unidentification problem and the individual-level bias for most customers.

Figure 4a shows how the posterior mean (and confidence interval in dashed black lines) excludes a significant

portion of customers. The location of pq33 for customers in Segment B is close to 0.5 (Figure 4c), which drives
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the overall population mean downwards. More importantly, a large proportion of customers of Segment A

have biased estimates with values significantly lower than the true 0.85 (Figure 4b).

Figure 4: Histogram of the individual posterior means of q33. The solid black line represents the population
posterior mean whereas the dashed black lines represent the population posterior 95% intervals. The solid
red line represents the true value of q33 “ 0.85 for Segment A customers.
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Note that when we estimate an HMM using only the customers in Segment A (which we can do in a simulated

context), the bias reported in Figure 4b disappears (see Figure 3).8 This means that this bias on customers

with truly 3 states is caused by the pooled estimation of Segment A and Segment B customers by a 3-states

HMM model.
8Specifically, we estimate the model considering the I ¨ p1´ λq customers for the scenario with λ “ 50%. We do this to keep

the number of customers with 3 states constant. Note that in this case, we have less data than in the baseline case that includes
both segments. The details on the selection of the number of states and the parameter estimates can be seen in Appendix D.
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Figure 5: Histogram of the individual posterior means of q33 when estimating the model using only Segment
A customers. The solid black line represents the population posterior mean whereas the dashed black lines
represent the population posterior 95% intervals. The solid red line represents the true value of q33 “ 0.85 for
Segment A customers.
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Therefore, the pooling of customers with different number of states may produce an important bias in both

incorrectly and correctly estimated customers. Indeed, the uncertainty in the parameter estimates is a result

of this lack of identification (see Figure 6). Figure 6a reports the posterior mean and 95% confidence intervals

of the individual transition probabilities for all customers sorted in decreasing estimated probability. For some

transition probabilities we observe large confidence intervals for many customers that prevent to statistically

conclude any behavior. For instance, note the dashed area for the corresponding transition probabilities q22

and q33. In those cases, the estimated posterior distributions move fully in the r0, 1s interval. By plotting

separately Segment A and Segment B customers, we confirm that the uncertainty is more severe for Segment

B customers (see the corresponding last row of the transition matrix in Figure 7b)

Note that the uncertainty reduces importantly if we estimate a model only considering Segment A customers

(with 3 states) although we use only half the observations than in the pooled case (see Figure 6b and compare

it to Figure 7a).
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Figure 6: Posterior mean and 95% confidence interval for individual transition probabilities. For each
transition probability, customers are sorted decreasingly on their posterior mean. The shaded area represents
the 95% intervals and the white line represents the posterior mean.
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(b) Using only segment A (3 states)
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Figure 7: Posterior mean and 95% confidence interval for individual transition probabilities. For each
transition probability, customers are sorted decreasingly on their posterior mean. The shaded area represents
the 95% intervals and the white line represents the posterior mean.
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(b) Segments B (2 states)
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4 Mixture of HMM

As we have seen in Section 3, not accounting for heterogeneity in the number of states often leads to

identification problems, biased estimates, and potentially misleading insights. In this section we present our

approach to allow for heterogeneity in the number of states by proposing a mixture of HMMs.

4.1 Model

The idea behind our proposed mixture of hidden Markov models (MHMMs) is to create a model that combines

HMMs with varying number of states and allow each customer to probabilistically belong to an HMM process

with the number of states that best reflects her behavior. Following Equation (3) we can define the likelihood

of an HMM with Sm states as Li,HMM pYi|Q
m
i , p

m
i , Smq, where Qmi and pmi are the corresponding parameters

of customer i for an HMM with Sm states. Our MHMM assumes that each customer has a probability, λm, of

belonging to an HMM with Sm states. Let m “ t1, . . . ,Mu be a class that follows an HMM with Sm number

of states9 and λm the probability that a customer belongs to class m. Then the likelihood of the MHMM can

be written as:

Liptp
m, Qmi u

M
m“1,λ|Yi,1:T q “

M
ÿ

m“1
λmLi,HMM pp

m
i , Q

m
i |Yi,1:T , NSi “ Smq

Similar to the case of a single HMM, we use the procedure described in Section 2.3 to estimate the parameters

of the MHMM.

4.2 Results

We estimate the MHMM on the simulated data described in the previous section for the case with 50%

customers in each segment. We show the fit measures for the 3-states HMM model chosen considering the

validation sample and the MHMM with 1, 2, and 3 states (Table 7). We compare these models using the

holdout sample, which we have not used to choose the number of states within the HMM models. The

log-likelihood in the holdout sample suggests a better predictive performance of the MHMM model.
9For simplicity, we assume Sm “ m, but more generally we can choose the number of states by cross validation.
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Table 7: Model comparison for λ “ 50% of customers with 2 states. Note: The best model in each column is
in bold

In sample Validation Holdout
Model Number of States LL LMD WAIC LL LL
HMM 3 -11612.95 -11850.43 23805.67 -3290.16 -3751.95

MHMM 1, 2, and 3 -11799.09 -11939.09 23922.88 -3251.30 -3711.42

To go beyond model fit, we investigate whether the MHMM captures well the behavior of customers with 2

and 3 states. Table 8 represents the parameter estimates for the MHMM for the case with 50% customers

in each segment. Consistent with the simulated populations, the mixture membership probabilities assign

customers to either the 2- or 3-state HMMs with similar probabilities. Only a small fraction (approximately

1%) of the customers are erroneously allocated, a-priori, to a 1-state HMM (see Table 8a). Looking at the

state dependent behavior (p), and the transition probabilities (Q) of the component with 2 states (Tables 8d

and 8e) and the component with 3 states (Tables 8g and 8h) the MHMM successfully recovers the behavior

of the customers for each segment. Indeed, all true parameters fall within the corresponding confidence

intervals.
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Table 8: MHMM parameter estimates for λ “ 50%

(a) Membership probabilities to each MHMM component. Posterior mean and posterior 95% intervals

1 state 2 states 3 states
λm 0.014

r0.000 0.046s
0.507

r0.405 0.602s
0.480

r0.382 0.583s

(b) 1 state component: State dependent probabilities posterior mean and posterior 95% intervals

1
ps 0.528

r0.082 0.976s

(c) 2 state component: Initial state probabilities posterior mean and posterior 95% intervals

1 2
πs 0.509

r0.374 0.633s
0.491

r0.367 0.626s

(d) 2 state component: State dependent probabilities posterior mean and posterior 95% intervals

1 2
ps 0.115

r0.089 0.139s
0.535

r0.493 0.575s

(e) 2 state component: Population mean transition matrix posterior mean and posterior 95% intervals

1 2
1 0.840

r0.790 0.881s
0.176

r0.134 0.224s

0.160
r0.119 0.210s

0.824
r0.776 0.866s

Q 2

(f) 3 state component: Initial state probabilities posterior mean and posterior 95% intervals

1 2 3
πs 0.432

r0.307 0.551s
0.321

r0.169 0.475s
0.247

r0.150 0.356s

(g) 3 state component: State dependent probabilities posterior mean and posterior 95% intervals

1 2 3
ps 0.113

r0.089 0.138s
0.501

r0.431 0.563s
0.889

r0.868 0.911s

(h) 3 state component: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.801

r0.701 0.880s
0.043

r0.002 0.142s
0.070

r0.042 0.099s

0.137
r0.060 0.242s

0.762
r0.621 0.868s

0.085
r0.029 0.172s

0.062
r0.021 0.124s

0.195
r0.102 0.310s

0.845
r0.767 0.893s

Q 2

3
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Figure 8 shows the heterogeneity in the estimated transition probabilities for the components with 2 and 3

states of the MHMM. We observe that the heterogeneity within each component is not as large as in the

pooled 3-sates HMM (Figure 2). Indeed, the fact that most of the individual transition probabilities fall

within the 95% confidence intervals of the population means, suggests that the pooling within each component

do not yield severe bias.
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Figure 8: Histogram of individual posterior mean of transition probabilities for each component of the MHMM.
In solid black line is the population posterior mean, and in dashed lines the 95% confidence interval
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We now evaluate whether the MHMM is capable of allocating each customer to the class with the appropriate

number of states. Table 9 presents the confusion matrix comparing the “true” number of states based on the

simulated data and the posterior membership to each class based on the MHMM’s prediction. To predict

each customer membership, we consider the highest probability to each class, by using

ppNSi “ Sm|Yi,1:T , tλm, p
m
i , Q

m
i u

M
m“1q 9 ppNSi “ Smq ¨ ppYi,1:T , tp

m
i , Q

m
i u

M
m“1|NSi “ Smq

9 λm ¨ Li,HMM pp
m
i , Q

m
i |Yi,1:T , NSi “ Smq.

Table 9: Confusion matrix of customer allocation of HMM component for each segment

True
2 states (Segment B) 3 states (Segment A)

1-state component 0 0
2-states component 226 67MHMM component
3-states component 24 183

As can be seen in Table 9 the MHMM does a reasonably good job in allocating customers to the HMM with

the appropriate number of states. Indeed, 81.8% (“ 226`183
500 ¨ 100) of the customers are allocated correctly.

The model is also able to recover the parameters at the individual level. To illustrate this characteristic, we

show in Figure 9 the individual-level estimates of q33 for all customers, similarly as in Section 3.2.4.10

Figure 9: Histogram of individual-level posterior mean of q33 for the MHMM 3-states component. The solid
black line represents the population posterior mean whereas the dashed black lines represent the population
posterior 95% intervals. The solid red line represents the true value of q33 “ 0.85 for Segment A customers.
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Figure 9 shows that the model is able to accurately capture the behavior of customers with 3 states. Note

that we plot the estimated q33 for all customers as the MHMM provides an estimate for each individual

regardless of her posterior membership probability. This result suggests that customers in Segment B are

being correctly shrinkaged to the mean of the Segment A estimates and consequently the parameter estimates
10We select to show q33 because this parameter highlights better the unidentification problem in the transition matrix for the

3-states HMM.
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for customers with 3 states do not suffer from bias.

Therefore, these results provide compelling evidence that the proposed MHMM not only predicts the data

well, but unlike the standard HMM, it is also capable of correctly capturing the underlying dynamics of

customers with varying number of hidden states. In the next section we use secondary data from an online

role playing game to compare the proposed MHMM to an standard HMM that assumes the same number of

states for all customers.

5 Empirical application

In this section we use secondary data about users’ activity in an online role playing game to contrast the

HMM and the MHMM in an actual marketing setting. While we do not know the true number of states for

each customer in this dataset, it allows us to compare the performance of the HMM and MHMM both in

terms of predictive ability and the insights each model generates.

5.1 Data

Our data comprise online game behavior in a role playing online game from a random sample of 300 gamers

over a 60-day period after each gamer was acquired. Our full observation period is between April 1, 2008 and

December 31, 2008. We observe when each player started the game for the first time and follow them for a

60-day period. We selected active gamers that played at least 10 days during their first 40 days (note that

more than 40% of gamers did not play more than two days during those 40 days). This subset of players

accounts for only 34% of all gamers that started playing after April 1, 2008, but they represents 77% of

the total number of days played by all gamers acquired after April 1, 2008. We use the first 40 days for

calibration, the next 10 days for validation (for selecting the number of hidden states of the HMM), and the

last 10 days for testing the best HMM model against the proposed MHMM. Consistent with common metrics

in game user analysis (Huang et al., 2018), our aim is to predict whether the gamer plays on any given day.

Figure 10 summarizes the playing behavior for the selected sample of 300 gamers. Figure 10a shows the

commonly observed overall decline in playing behavior over the curse of the gamers life post acquisition.

Figure 10b suggests a high degree of heterogeneity in the playing behavior with some players playing every

single day for the entire 40 days and others as few as 10 days. Thus, an appropriate model of usage behavior

should be able to capture both the heterogeneity and the dynamics in usage behavior over time.
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Figure 10: Summary of daily gaming behavior
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5.2 HMM and MHMM specifications

Following the description in Section 2.1.1 we specify the HMM of gamers’ behaviors as follows:

• Initial probabilities: We estimate the probabilities directly from the data such that πs is the probability

that a gamer starts in state s with πs P r0, 1s and
ř

s πs “ 1.

• Transition probabilities: We parametrize each row of the transition matrix using the softmax function

(see Appendix B.2).

• Conditional gaming behavior: We specify a Binomial distribution with N “ 1. Specifically

P pYit “ yit|Zit “ sq “ mit|spyitq “ Binomialpyit|N “ 1, pitsq (4)

where pits “ logit´1
pui ` φs ` bsXitq. Thus ui represents an individual-specific random effect, φs

captures the state level, and bs is the effect of our covariate when the gamer is in the state s. In this

application Xit is a binary variable that indicates for gamer i if the day t corresponds to a Friday,

Saturday or Sunday.

After specifying the HMM, we follow the description in Section 4.1 to specify the corresponding MHMM.

In particular, for each component of the MHMM we specify an HMM with one, two and three states as

described above. The parameters for the HMM and the MHMM are estimated as described in Section 3.1.
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5.3 Results

5.3.1 Model selection for the HMM

We first determine the best specification for the HMM. To infer the number of states that best represents the

data, we estimated the HMM for varying number of states. Based on the Validation log-likelihood measure we

selected a 3-states HMM (see Table 10). Note that, as in our simulation exercise, the in-sample fit measures

suggest a more complex specification.

Table 10: Selection of number of hidden states for the HMM. Note: The best model in each column is in bold

In sample Validation
Number of states LL LMD WAIC LL

1 -7006.59 -7087.67 14293.49 -1828.26
2 -5968.33 -6128.45 12501.01 -1424.01
3 -5904.30 -6084.65 12422.38 -1390.34
4 -5817.53 -6041.75 12407.65 -1390.93

5.3.2 Parameter estimates for the 3-state HMM

In Table 11 we report the population estimates of the 3-state HMM whereas in Figure 11 we report the

individual posterior means for the state dependent and for the transition probabilities. First, the results

suggest that the three states of the HMM would correspond to a low, medium and high states of gaming

behavior with playing probabilities in any particular day of 0.089, 0.579, and 0.866, respectively (see Table 11b).

Note that the heterogeneity in the conditional behavior, ps, when a gamer is in the second state is substantial

(see also Figure 11a). Second, the results for πs in Table 11a suggest that most gamers start in the high

state. Finally, regarding gamers’ dynamics, Table 11c shows a large uncertainty in the population transition

matrix, Q, particularly for state 2. In addition, Figure 11b shows important heterogeneity in the transition

probabilities across gamers, particularly in the third state. Overall, these results seem to suggest that the

second state is less sticky than the other two states and once the gamer is in that state she is almost as likely

to stay as she is to move to the other states, and in particular to State 3. For completeness we also report in

Table 11d the estimates for the effect of weekend days which indicate that during Friday, Saturday or Sunday

a gamer is less likely to play if she is in the low or medium state but more likely to play if she is in the high

state.
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Table 11: 3-state HMM parameter estimates

(a) Initial state probabilities posterior mean and posterior 95% intervals

1 2 3
πs 0.137

r0.038 0.216s
0.129

r0.031 0.247s
0.734

r0.643 0.814s

(b) Population mean state dependent probabilities posterior mean and posterior 95% intervals

1 2 3
ps 0.089

r0.048 0.126s
0.579

r0.231 0.833s
0.866

r0.830 0.902s

(c) Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.881

r0.803 0.926s
0.064

r0.002 0.169s
0.095

r0.002 0.148s

0.034
r0.000 0.166s

0.519
r0.362 0.669s

0.118
r0.065 0.206s

0.086
r0.013 0.126s

0.417
r0.264 0.595s

0.788
r0.750 0.820s

Q 2

3

(d) Weekend effect posterior mean and posterior 95% intervals

1 2 3
bs 0.502

r´0.114 1.540s
-4.529

r´9.320 ´ 2.200s
3.501

r2.065 7.506s
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Figure 11: Histogram of individual posterior means of the state-dependent probabilities and the transition
probabilities for 3-states HMM. The solid black line represents the population posterior mean whereas the
dashed black lines represent the population posterior 95% intervals.
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(b) Transition probabilities
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5.3.3 Parameter estimates for the MHMM

Table 12 reports the parameter estimates for the proposed MHMM summarizing the posterior means and 95%

confidence intervals for the population mean. Figure 12 shows the histogram of the individual conditional

probabilities and Figure 13 shows the histogram of the individual transition probabilities. The aggregated
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and the individual level estimates show similar patterns. Therefore, we will use both sources of information

to describe the behavior implied by the estimated MHMM.

Table 12a reports the population membership probabilities, λm, and indicates that most gamers (75.4%)

have 3 states whereas 18.5% have 2 states and 6.1% have only one state. Let’s now proceed to describe the

behavior captured by each component.

1-state gamers. These static gamers show a medium to level of playing behavior overall with probability of

playing, p “ 0.395 (see Table 12b).

2-state gamers. These dynamic gamers have two distinct states, characterized by a low level of playing

behavior when they are in the low state, with p1 “ 0.190, and a very high level of playing behavior when

they are in the high state, with p2 “ 0.969 (see Table 12d). All these gamers start in the high state (see

Table 12c) and stay in that state with high probability, q22 “ 0.913. However, if the move to the low state,

they also stay there with high probability, q11 “ 0.787 (see Table 12e).

3-state gamers. These dynamic gamers have three distinct states, characterized by an inactive behavior when

they are in the low state, with playing probability p1 “ 0.025, a low level of playing behavior when they are

in the second state, with p2 “ 0.254, and a very high level of playing behavior when they are in the third

state, with p3 “ 0.941 (see Table 12g). Most of these gamers (60.8%) start in the high state (see Table 12f)

and stay in that state with relatively high probability, q33 “ 0.790. In addition, 39.2% of the gamers start in

the second state but once gamers transition to that state they stay there with also relatively high probability,

q22 “ 0.731. Finally, only 2.5% of the gamers start in the inactive state and stay there with high probability,

q11 “ 0.902. Therefore, the 3-state gamers are more dynamic than the 2-state gamers as the probabilities

in the diagonal of the transition matrix are less sticky than the corresponding probabilities for the 2-state

gamers.

We note that the individual estimates illustrated in Figures 12 and 13 confirm the characterization implied

by the population estimates.
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Table 12: MHMM parameter estimates

(a) Component probabilities posterior mean and posterior 95% intervals

1 state 2 states 3 states
λm 0.061

r0.024 0.116s
0.185

r0.105 0.289s
0.754

r0.636 0.848s

(b) 1 state component: Population mean state dependent probabilities posterior mean and posterior 95% intervals

1
ps 0.395

r0.173 0.676s

(c) 2 state component: Initial state probabilities posterior mean and posterior 95% intervals

1 2
πs 0.000

r0.000 0.000s
1.000

r1.000 1.000s

(d) 2 state component: Population mean state dependent probabilities posterior mean and posterior 95% intervals

1 2
ps 0.190

r0.054 0.352s
0.969

r0.929 0.999s

(e) 2 state component: Population mean transition matrix posterior mean and posterior 95% intervals

1 2
1 0.787

r0.669 0.865s
0.087

r0.048 0.146s

0.213
r0.135 0.331s

0.913
r0.854 0.952s

Q 2

(f) 3 state component: Initial state probabilities posterior mean and posterior 95% intervals

1 2 3
πs 0.000

r0.000 0.000s
0.392

r0.277 0.535s
0.608

r0.465 0.723s

(g) 3 state component: Population mean state dependent probabilities posterior mean and posterior 95% intervals

1 2 3
ps 0.025

r0.000 0.069s
0.254

r0.181 0.360s
0.941

r0.892 1.000s

(h) 3 state component: Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.902

r0.724 0.963s
0.083

r0.034 0.161s
0.002

r0.000 0.012s

0.042
r0.000 0.227s

0.731
r0.602 0.843s

0.208
r0.155 0.274s

0.056
r0.017 0.100s

0.186
r0.102 0.279s

0.790
r0.723 0.841s

Q 2

3
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Figure 12: Histogram of individual level posterior mean of state dependent probabilities for each component
of the MHMM. In solid black line is the population posterior mean, and in dashed lines the population mean
95% CPI.
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(c) 3 states component
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Figure 13: Histogram of individual level posterior mean of transition probabilities for each component of the
MHMM. In solid black line is the population posterior mean, and in dashed lines the population mean 95%
CPI.

(a) 2 states component

from 2 to 1 from 2 to 2

from 1 to 1 from 1 to 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

0

100

200

qss'

C
us

to
m

er
s

(b) 3 states component
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5.3.4 Comparison between HMM and MHMM

We now proceed to compare the results of the HMM and MHMM by first looking at the predictive performance

and then by contrasting the characterization of the dynamics implied by each approach. In Table 13 we

report the in-sample fit and out-of-sample predictions of the selected 3-state HMM and the proposed MHMM.

We note that the HMM does better in terms of in-sample fit whereas the proposed MHMM has a better

performance in the Validation data (that was used to select the number of states in the HMM) and the

holdout data that were never used by neither of these models.

Table 13: Model selection: HMM vs. MHMM. Note: The best model in each column is in bold

In sample Validation Holdout
Model Number of states LL LMD WAIC LL LL
HMM 3 -5904.30 -6084.65 12422.38 -1390.34 -1355.54
MHMM 1, 2, and 3 -5979.15 -6205.65 12594.02 -1380.35 -1342.09

We further compare the predictive performance of the two selected models by reporting the RMSE between

the predicted and the true number of customers playing each day during the holdout period (see Table 14).

We note that considering all gamers the MHMM shows better predictive ability (lower RSME, 12.96 vs 14.31).

Now, if we use the MHMM to split the sample between the gamers with different number of states, the

RMSE of the HMM is slightly better for gamers with 1 and 2 states (4.68 vs 4.99) whereas the RMSE of

the proposed MHMM is better for gamers with 3 states (10.49 vs 12.39). That is, for gamers with simpler

dynamics, both models yield fairly similar predictions whereas for gamers with richer dynamics, the MHMM

provides a better prediction.

Table 14: RMSE of the number of gamers playing per period using: (1) all gamers, (2) gamers identified by
the MHMM with 1 or 2 states, and (3) gamers identified by the MHMM with 3 states. Posterior mean and
95% confidence intervals are reported

All 1 and 2 states 3 states
Model Post. Mean CPI Post. Mean CPI Post. Mean CPI
HMM 14.31 [11.21 , 17.64] 4.68 [3.48 , 6.09] 12.39 [ 9.37 , 15.54]
MHMM 12.96 [10.20 , 16.31] 4.99 [3.87 , 6.43] 10.49 [ 7.97 , 13.15]

To study the superior predictive performance of the MHMM we compute the hit rate between the predicted

behavior (by each model) and the true behavior for the holdout period. Figure 14 contrasts the implied hit

rates of each model at the individual level. We observe that overall the two models yield fairly similar results

but the advantage of the MHMM is stronger for gamers that are relatively easier to predict (for which both
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models yield high hit rates). Statistically, the slope of a regression of individual hit rates of the MHMM (y)

on the individual hit rates of the HMM (x) yield a slope significantly higher than 1 (at the 95% significance

level) and a non-significant intercept, confirming the overall superior individual-level predictive ability of the

MHMM relative to the HMM.

Figure 14: Individual level hit rate using HMM vs. MHMM.
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The HMM and MHMM suggest that players star at a state with a high level of engagement and transition

over time to lower states. This may be indicative of churn behavior, which is an extremely important metric

in the context of online games. Accordingly, we further explore the ability of the models to predict gamers’

defection. For that analysis, we consider a defected gamer if she does not play during the last 10 days of

the holdout period. Figure 15 summarizes the predictive performance of each model with the corresponding

ROC curves.
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Figure 15: ROC curve for churn prediction: HMM vs. MHMM.

Model

HMM

AUC

MHMM

0.827

0.871

0%

25%

50%

75%

100%

0%25%50%75%100%

Specificities

S
en

si
tiv

iti
es

Model HMM MHMM

Figure 15 confirms the superior performance of the MHMM in predicting churn. Indeed, the area under the

curve (AUC) of the MHMM is a 5.3% higher than that of the HMM.

Regarding the dynamics implied by both approaches the difference that stand out the most is the charac-

terization of the second state. We note that the HMM suggests a medium state (probability of playing of

p “ 0.579) that is quite unsticky (probability of staying in that state of q22 “ 0.519). In contrast, the MHMM

does not find such state. The 3-state components of the MHMM suggests that gamers are transition among a

non-playing, low-playing or intensive-playing, all of which are quite sticky. Thus, one could conclude that

compared to our proposed MHMM, the HMM traditionally used in the literature fails by mixing heterogeneity

in dynamics with dynamics. That is, as it is unable to capture the heterogeneity in dynamics, the model

rationalizes such behavior by suggesting more dynamic behavior than the one implied by an MHMM that

captures such heterogeneity in dynamics.

6 Discussion

HMMs have proved to be an effective modeling approach to describe customer dynamic behavior. Accordingly,

there have been diverse applications of this method in Marketing covering different topics ranging from

eye-tracking to B2B contexts. Although most of the applications allow for flexible heterogeneity in customer

behavior it is usually assumed that all customers have the same degree of dynamics by constraining the

customer sample to have the same number of hidden states.
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In this work we first analyze through a series of simulations the implications of such an assumption. We

simulate a population with two segments with different number of states (two and three hidden states) and

then estimate the typical HMM that does not allow for such heterogeneity. We find that in contrast to

selecting the model that best represents the behavior of the majority of the population, the existence of few

customers with a high number of states dictates model selection and favors choosing expensive models. We

observe that population estimates may not summarize well customers’ behavior and must be interpreted

with caution as such results may lead to misleading conclusions. Additionally, we observe biased estimates

even for customers with the same number of states as estimated due to the impact of the customers with

misspecified and unidentified on the parameter estimates of the entire population.

Note that the implied population estimates (usually taken from the hierarchical structure of the HB modeling

approach) may not summarize well the behavior of the population. Especially the dynamics implied by the

transition matrix Q. The transition matrix derived by using the population parameters mixes customers that

reach all states with customers that never reach a certain state. These latter customers have un-identified

parameters that bias the population estimates. If the researcher wants to report one transition matrix for

the population (for HMM or even MHMM approach) we suggest reporting an histogram of individual level

posterior mean estimates, to show the degree of heterogeneity in the population.

We propose a mixture model (MHMM) approach that flexibly captures heterogeneity in the number of states

and at the same time allows for heterogeneity in the parameters. The proposed approach obtains good results

by identifying correctly the behavior of the simulated segments.

The MHMM proved to be a flexible approach to account for heterogeneity in the number of states both in

simulated and an online game empirical application. The application to the online gaming application further

highlights the different dynamic patterns that may emerge from using a MHMM relative to a HMM.

However, we caution that using MHMM could become expensive in terms of number of parameters to estimate

if one allows for more segments with higher number of states (with four or more hidden states). That being

said, in most applications seen in the marketing literature, the estimated HMM with common number of state

for the entire population has been relatively (typically 3 states). An alternative approach to the MHMM

would could be to use a Hierarchical Dirichlet Process to let the data select the number of hidden states as

part of the inference. However, application of such an approach with individual level selection of mass points

can be computationally challenging. We leave this modeling approach for future research.

Overall, despite the deserved importance and care being given in the marketing literature and practice to

capturing individual-level heterogeneity, application of HMMs in marketing commonly assume heterogenous
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parameters, but homogeneity in the number of states for all consumers. We demonstrate the risks of assuming

such homogeneity and propose a possible solution. We hope this research will pave the road for further

exploring individual-level dynamics using HMMs.
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Appendix

A HMM papers in marketing

Table 15: Non-comprehensive list of marketing papers using HMM (Netzer et al., 2017)

Heterogeneity in:

Article transition state dependent Number of Number of states

probabilities probabilities states selected based on:

Poulsen (1990) No No 2 Estimation
Brangule-Vlagsma et al. (2002) No No 6 Estimation
Liechty et al. (2003) No No 2 Theory
Montgomery et al. (2004) Yes Yes 2 Estimation
Du and Kamakura (2006) No No 13 Estimation

Paas et al. (2007) No No 9 Estimation
Moon et al. (2007) No Yes 2 Theory
Netzer et al. (2008) Yes No 3 Estimation
Wedel et al. (2008) No No 2 Theory
van der Lans et al. (2008b) No Yes 2 Theory

van der Lans et al. (2008a) No Yes 2 Theory
Montoya et al. (2010) Yes Yes 3 Estimation
Ebbes et al. (2010) No No 3 Estimation
Schweidel et al. (2011) Yes No 4 Estimation
Park and Gupta (2011) No Yes 2 Theory

Li et al. (2011) Yes Yes 3 Estimation
Kumar et al. (2011) No Yes 3 Estimation
Lemmens et al. (2012) No Yes 3 Estimation
Stüttgen et al. (2012) Yes Yes 2 Theory
Ansari et al. (2012) Yes Yes 2 Theory

Shachat and Wei (2012) No No 3 Theory
Ascarza and Hardie (2013) Yes Yes 3 Estimation
Romero et al. (2013) No Yes 7 Estimation
Shi and Wedel (2013) No No 3 Estimation
Luo and Kumar (2013) Yes Yes 3 Estimation

Mark et al. (2013) No No 4 Estimation
Mark et al. (2014) No No 3 Estimation
Shi and Zhang (2014) Yes No 3 Estimation
Zhang et al. (2014) Yes Yes 2 Estimation
Schwartz et al. (2014) Yes Yes 2 Theory

Ma et al. (2015) Yes Yes 3 Estimation
Zhang et al. (2016) No No 4 Estimation
Ascarza et al. (2018) Yes Yes 3 Estimation
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B HMM model specification

We detail the parameter transformations and priors for the general model specification in Section 2.1.

B.1 State dependent probabilities

We define the increasing vector of probabilities p with p1 ď p2 ď . . . ď pS , such that

ps “
s
ÿ

k“1
uk

with ~u a vector in the S´dimensional simplex

p~u P RS`1, us ě 0,
ÿ

s

us “ 1q

B.2 Transition probabilities

We parametrize Qis‚, the s’th row of the transition matrix for customer i using a vector γis P RS´1 where:

qiss1 “

$

’

’

’

’

’

&

’

’

’

’

’

%

exppγiss1 q
S´1
ř

k“1
exppγiskq`1

if s1 P t1, . . . , S ´ 1u

1
S´1
ř

k“1
exppγiskq`1

if s1 “ S

B.3 Heterogeneity (hierarchical component)

We denote θi “
ˆ

γi11, . . . , γiSS´1

˙

, and we a Gaussian distribution to account for unobserved heterogeneity,

θi „ N pµθ,Σθq

where µθ and Σθ are the mean vector and covariance matrix respectively.

We further parametrize to fasten computation. We define τ “
a

diagpΣθq the vector of standard deviations,

Ω the correlation matrix for covariance Σ, and LΩ its corresponding Cholesky decomposition. We also define

zi the standardized individual level parameters, such that,
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θi “ µθ ` diagpτq ¨ LΩ ¨ zi

with zi „ N p0, Iq.

In addition, to ensure a positive τ , we parametrize each component k of τ using the vector rτ such that,

τk “ 2.5 ¨ tanprτkq.

B.4 Priors

B.4.1 Initial probabilities

For π P RS we use uniform priors on the simplex,

π „ Dirichletp1q.

B.4.2 State dependent probabilities probabilities

For u P RS`1 we use uniform priors on the S-dimensional simplex,

u „ Dirichletp1q.

B.4.3 Transition probabilities

We use the following priors for µθ, rτ , and LΩ

µθ „ N p0, 2 ¨ Iq

rτk „ Up0, π{2q

Note that in this case, π stands for the number π « 3.14 . . ..

LΩ „ LKJ_corr_choleskyp2q
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where LKJ_corr_choleskyp¨q stands for the distribution ofthe cholesky factor of a mtrix that distributes

according to an LKJ correlation distribution (LKJ_CorrpΩ|cq9detpΩqc´1)
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C HMM Stan code

data {

int<lower=1> S; // num states

int<lower=1> I; // num customers

int<lower=1> T; // num calibration periods

int<lower=0> Y[I,T]; // observed behavior

int<lower=1> T_val; // num periods for validation

int<lower=0> Y_val[I,T_val]; // observed behavior for validation

int<lower=1> T_test; // num periods for testing

int<lower=0> Y_test[I,T_test]; // observed behavior for testing

int<lower=1> K; // Binomial number trials

}

parameters {

matrix[S*(S-1), I] z; // indep normals for transition prob.

cholesky_factor_corr[S*(S-1)] L_Omega; // cholesky corr. for transition prob.

row_vector[S*(S-1)] mu_theta; // mean of unconstrained transition prob.

vector<lower=0,upper=pi()/2>[S*(S-1)] tau_unif; // scaled variance of transition prob.

simplex[S+1] mu_unif_phi; // transformed state dependent prob.

simplex[S] ppi; // initial prob.

}

transformed parameters{

matrix[I,S*(S-1)] theta; // individual transition parameters

vector<lower=0>[S*(S-1)] tau; // variance of transition prob.

matrix[S,S] log_Q[I]; // log transition prob.

for (s in 1:S*(S-1))

tau[s] = 2.5 * tan(tau_unif[s]);

theta = rep_matrix(mu_theta,I) + (diag_pre_multiply(tau,L_Omega) * z)';

for (i in 1:I){

for (k in 1:S){

row_vector[S-1] ttheta;

ttheta = theta[i,((S-1)*(k-1)+1):((S-1)*k)];
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log_Q[i,k,]=to_row_vector(log_softmax(to_vector(append_col(ttheta,0))));

// add the zero at the end, so vector is size S,

// and compute softmax (multinomial logistic link)

}

}

}

model {

to_vector(z) ~ normal(0, 1);

L_Omega ~ lkj_corr_cholesky(2);

mu_theta ~ normal(0, 2);

mu_unif_phi~dirichlet(rep_vector(1.0,S+1));

{

vector[S] mu_phi = head(cumulative_sum(mu_unif_phi),S);

// Forward algorithm

for (i in 1:I){

real acc[S];

real gamma[T,S];

for (k in 1:S)

gamma[1,k] = log(ppi[k])+ binomial_lpmf(Y[i,1]|K,mu_phi[k]);

for (t in 2:T) {

for (k in 1:S) {

for (j in 1:S){

acc[j] = gamma[t-1,j] + log_Q[i,j,k] + binomial_lpmf(Y[i,t]|K,mu_phi[k]) ;

}

gamma[t,k] = log_sum_exp(acc);

}

}

target +=log_sum_exp(gamma[T]);

}

}

}

generated quantities{

matrix[S*(S-1),S*(S-1)] Omega; // Correlation of transitions
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matrix[S,S] Q[I]; // Transitions

vector[I] log_like; // In sample log-likelihood

vector[I] log_like_val; // Validation log-likelihood

vector[I] log_like_test; // Holdout log-likelihood

int<lower=1,upper=S> y_star[I,T]; // Most likely state (Viterbi)

real log_p_y_star[I]; // Probability of most likely state (Viterbi)

vector[S] mu_phi = head(cumulative_sum(mu_unif_phi),S); // State dependent prob.

Omega = L_Omega * L_Omega';

Q = exp(log_Q);

for (i in 1:I){

int bacS_ptr[T, S];

real best_logp[T, S];

real best_total_logp;

real acc[S];

real gamma[T+T_val+T_test,S];

// Forward algorithm and Viterbi algorithm

for (k in 1:S){

gamma[1,k] = log(ppi[k])+ binomial_lpmf(Y[i,1]|K, mu_phi[k]);

best_logp[1, k] = gamma[1,k];

}

for (t in 2:T) {

for (k in 1:S) {

best_logp[t, k] = negative_infinity();

for (j in 1:S){

real logp;

logp = best_logp[t-1, j]+ log_Q[i,j,k] +

binomial_lpmf(Y[i,t]|K, mu_phi[k]);

acc[j] = gamma[t-1,j] + log_Q[i,j,k] + binomial_lpmf(Y[i,t]|K, mu_phi[k]);

if (logp > best_logp[t, k]) {

bacS_ptr[t, k] = j;
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best_logp[t, k] = logp;

}

}

gamma[t,k] = log_sum_exp(acc);

}

}

log_p_y_star[i] = max(best_logp[T]);

for (k in 1:S)

if (best_logp[T, k] == log_p_y_star[i])

y_star[i,T] = k;

for (t in 1:(T - 1))

y_star[i,T - t] = bacS_ptr[T - t + 1,y_star[i,T - t + 1]];

log_like[i] =log_sum_exp(gamma[T]);

// Validation

for (k in 1:S){

for (j in 1:S)

acc[j] = gamma[T,j] + log_Q[i,j,k] +

binomial_lpmf(Y_val[i,1]|K,mu_phi[k]) ;

gamma[T+1,k] = log_sum_exp(acc);

}

for (t in 2:T_val) {

for (k in 1:S) {

for (j in 1:S){

acc[j] = gamma[T+t-1,j] + log_Q[i,j,k] +

binomial_lpmf(Y_val[i,t]|K,mu_phi[k]);

}

gamma[T+t,k] = log_sum_exp(acc);

}

}

log_like_val[i] =log_sum_exp(gamma[T+T_val])-log_like[i];
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// Holdout

for (k in 1:S){

for (j in 1:S)

acc[j] = gamma[T+T_val,j] + log_Q[i,j,k] +

binomial_lpmf(Y_test[i,1]|K,mu_phi[k]) ;

gamma[T+T_val+1,k] = log_sum_exp(acc);

}

for (t in 2:T_test) {

for (k in 1:S) {

for (j in 1:S){

acc[j] = gamma[T+T_val+t-1,j] + log_Q[i,j,k] +

binomial_lpmf(Y_test[i,t]|K,mu_phi[k]);

}

gamma[T+T_val+t,k] = log_sum_exp(acc);

}

}

log_like_test[i] =log_sum_exp(gamma[T+T_val+T_test])-

log_like[i]-log_like_val[i];

}

}
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D Results for no heterogeneity in the number of states

We are interested in showing that the results from Section 3.2 and Section 4.2 are purely driven by the

heterogeneity in number of states. Therefore, we estimate the model using only customers from Segment A.

D.1 Model selection

Table 16: Number of states selection when all individuals have 3 states

In sample Validation Holdout

Number of States LL LMD WAIC LL LL

HMM
1 -7336.31 -7337.24 14680.51 -2065.25 -2349.62
2 -5920.08 -6010.19 12042.73 -1667.51 -1888.95

3 -5790.17 -5924.84 11882.09 -1635.87 -1858.56
4 -5780.35 -5922.29 11880.63 -1636.62 -1860.35
5 -5778.06 -5911.16 11879.52 -1637.35 -1864.72

MHMM
3 -5803.49 -5937.56 11897.02 -1636.01 -1858.60

D.2 Parameter estimates

Table 17: 3-state HMM parameter estimates for λ “ 0%

(a) Initial state probabilities posterior mean and posterior 95% intervals

1 2 3
πs 0.408

r0.314 0.504s
0.320

r0.187 0.452s
0.272

r0.178 0.369s

(b) State dependent probabilities posterior mean and posterior 95% intervals

1 2 3
ps 0.114

r0.094 0.134s
0.524

r0.471 0.576s
0.892

r0.871 0.913s

(c) Population mean transition matrix posterior mean and posterior 95% intervals

1 2 3
1 0.794

r0.718 0.857s
0.078

r0.025 0.148s
0.063

r0.036 0.093s

0.147
r0.073 0.231s

0.745
r0.623 0.848s

0.125
r0.048 0.213s

0.060
r0.026 0.106s

0.178
r0.096 0.277s

0.812
r0.733 0.875s

Q 2

3

55


	Introduction
	Heterogeneity in the number of states of HMM
	Model specification
	HMM components

	Likelihood
	Numerical example

	Simulation exercise
	Model estimation
	Results
	Bias towards more states
	Recovery of states
	Interpreting aggregate estimates
	Bias for correctly estimated customers


	Mixture of HMM
	Model
	Results

	Empirical application
	Data
	HMM and MHMM specifications
	Results
	Model selection for the HMM
	Parameter estimates for the 3-state HMM
	Parameter estimates for the MHMM
	Comparison between HMM and MHMM


	Discussion
	HMM papers in marketing
	HMM model specification
	State dependent probabilities
	Transition probabilities
	Heterogeneity (hierarchical component)
	Priors
	Initial probabilities
	State dependent probabilities probabilities
	Transition probabilities


	HMM Stan code
	Results for no heterogeneity in the number of states
	Model selection
	Parameter estimates


