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A Model priors

We detail the specification of the prior distribution for the model parameters.

First, for the population covariance matrix > that governs customer heterogeneity in

(9), we choose the standard Wishart prior for the precision matrix 71,

Y ~ Wishart(ro, Rp).

Second, we put priors on the Pitman-Yor process discount and strength parameters, d

and a,'% respectively by

d~Beta(¢4,00)
a~ Gammal(.6%).

Third, we put priors on the location parameters 6. by defining the base distribution of
the Pitman-Yor process, Fy. As described in (13), the location parameters are drawn from
0. ~ Fy(¢o). Following the notation in (10), consider 6 and 6” the components of 6 that
correspond to query parameters w; and click-purchase parameters p;, respectively. We define

Iy as a multivariate distribution factorized by each of the components of 6, defined by

Fo(6]¢po) = (H ewmm)w(aﬁruo,%),

where we assume Gaussian priors for the location parameter of click and purchase preferences,
and Fj is defined accordingly to the support of the parameter that governs the distribution

of each query variable m described in (2). That is,

y
Beta(oma;Pomb) if q;jn, is binary

) ¥ Dirichlet(¢oy,) if q;; 18 categorical
FOm(em‘gbOm): A ’

Gamma(oma,Pomsy)  if Gijm is continuous positive-valued

N (Pomp,Pomo) if g;;m is continuous.

16We restrict the model to a > 0.
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Finally, we put mean-zero Gaussian priors on all other parameters in the model including

nin (3), and of, o and o) in (4)

n~N(0,57)
a’~N(0,540)
ay ~N(0,5,.),V¢
a, ~N(0,S,3),7¢

B Blocked-Gibbs sampler algorithm

Our Metropolis-within-Gibbs MCMC sampling algorithm is based on Ishwaran and James (2001)
approximation using the stick-breaking representation of the Pitman-Yor (PY) Process, trun-
cating the infinite mixture by setting V=1 for a large enough integer C'. This approximation
allows us to draw context memberships of different journeys in parallel, significantly increasing
our sampling scheme’s speed. We use adaptive Metropolis-Hastings (M-H) steps to update the
PY parameters d and a as these full conditionals do not have a closed form (a has closed form only
if d=0). We use Gibbs steps for all other parameters as their full conditionals have closed form.
Similarly to the click and purchase components, we use data augmentation for the filter decisions
and define uf;, =af +w;; - af + B o +ef;,, such that e, ~N(0,1) and fi;0=1(ul;,>0).

We sequentially update the parameters by,

1. Draw latent click utilities for alternative k€ Page;;, U {s} using a truncated Gaussian by,

Truncated- N (., 1,Jower = —o0,upper =0) if yije=e
Ui ~ { Truncated- N(ﬂfjtk,l,lower =max{ug;, ,0},upper= w) ifyh=k

Truncated- N (., 1,Jower = —co,upper = max{u;, _,}) otherwise,

¢ 0c c I Az 3 ¢ 0s 5 _
where u;,, = B87F + x5, B +log-rank, ;. -n if kePage,;,, and uf;y, = B;7 if k=s.

2. Draw latent purchase utilities by,

Truncated- N/ (ﬂfj i1, Jower = —co,upper =0) if y;; = NoPurchase

;e ~ { Truncated- /\/’(ﬂfjk,l,lower =max{uj; ,0},upper= ) if yr =k

Truncated- N/ (ﬂfjk,l,lower = —oo,upper = max{u;;_ k}) otherwise,

=p _ 0p =Y
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3. Draw latent filter utilities by,

; Truncated- N(a? +wij - of ~|—,6fj'-a?,1,lower = —oo,upper = 0> it fi;0=0
Wijo ™~

Truncated- N(oz? +wiil o + B85 o) .1, Jower = 0,upper = oo) if fije=1.

4. Draw individual-level stable preferences p;. We define a vector of click, purchase, and

filter latent utilities for journey j,
. T
[uijtk —log-rank; '77] tk
Usj = [ufjk:] k ;

f 0 / w
[uz‘je_ae_wijf Oy .

and Z)N(ij the corresponding “stacked” matrix of vectors multiplying /3;; in equations (3),
(4), and (6). That is,

X,’jz Xp s

where )N(fj is the matrix of stacked click covariates. Specifically,

> (010 0 |
il 100 x5,
}Nifj: Xe. andf(f':
f .@]t gt 1 00 ijtk/
| “Mi5T55 1 0 0 ngtKijt/

Similarly, ifj is the matrix of stacked purchased covariates,

0 0 1 Xijll

Xp: 0 01 Xz’jk/ s

_0 01 XijtK'/

ij 7|
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~ /
and A{j = [af...af...aﬁﬁ] .

The columns of each of these matrices multiply 8;; = ( %C, %9, 5?]-7’ , fj'),, respectively;

which yields the terms in (3), (4), and (6).

We further define )NQ as

242
[
e

and 1; as

— ~

Ui — X1 p1

Wi = | Uy — X5 pj

_aiJi _X’L'Ji : in i
Finally, we draw p; ~ N (Ji;,S;) where

§;1 == Zil +)~(;5§1

=3 (2—1 -0+5<;ﬁ,»).
. Draw context membership z; as follows

7Tc,Pj c
C
Z Tt chl

=1

plzj=cl) =

Y

where P, = <H%:1p(qijm|€§m)> - p (aij_iijl—lli|iij0§;1>y with p(gijm|0%,) denoting
the pdf of query variables as defined in (2), and p <17ij —)NCZ-]- -/,Li|5i,»j -9;’,1) denoting the

product of elementwise normal pdf evaluated at each components of ;; — X;; - p; with

mean X;;-04 and variance 1.
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6. Draw the query components of context location parameters 6% for each context c. We
denote J(c) the set of journeys j such that z; = ¢, and n.=|J (c)| the number of journeys
in that set. For each query variable m, we draw 6% depending on the type of query

variable modeled in (2). Specifically,

§
Beta| Gomat+ 2. Qijm:Pomb+1e— D () ijm | if ¢ijm i binary
jeJ(c)
Dirichlet <¢0m+ [NGem1ye-Nem Nm]T if g;;jm is categorical
0~ <
Gamma ((bgma +1e,Pomb+ D, Qijm if g;;m is continuous positive-valued
jeJ(c)
N (fiem,3em) if g;jm is continuous,

\

Where Nqemn = Zjej(c) 1 (qijm = n)a g;nlm = [¢Enlw + 0-7712] and ﬂcm = §cijEJ(C)Qijm-
7. Draw the click-purchase context location parameters #?. We define X, and . as

~

% [[%0] o =[] ]
[ (4)J jej(c)] an u [ ()i ()i " Hi(5) ()
where i(j) denotes the customer to whom journey j belongs to.

We draw 02 ~ N (fi,,S.), where

St =Vi'+ XX,
e = ‘gc (‘/0_1 "o +Xéﬁc> .

8. Draw ranking effect 7. Defining r as the vector of all log-rank,,, values, and the vector

of differences in click utilities u* = [{ug;,, — 8%+, BE Yiju |, we draw 7 by

n NN(ﬁmgz),
where

—1_ _—1 /
5, =85, +rr

unzgn(s;1-0+r’ur).
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9.

10.

11.

Draw a’. We define ﬁg as the vector of residual filter utilities where each component

is an observation (4,7,¢) defined as

x! B

agijz = u{je Wil o —
We also define a binary matrix that multiplies the vector of intercepts a’ to yield the
respective level for each observation. In other words, this matrix encodes in binary
variables to which level ¢ the observation (row) belongs, such that the entry in each row
that represents the observation (i,7,¢) takes the value one for column ¢, and zero for all

others. Consequently, we draw a® by
a(] NN(ﬂa,Oaga,O)v

where

f

w,

0

Draw aj’. We define ), ,= [{u{ﬂ —ay— fj’af}w] as the vector of residual filter utilities,

and Wy = [{ng@}qjj] the matrix of filter controls for level ¢, and draw af’ by
a?; NN(ﬁz)a’ga,w,ﬁ)y
where

St =Sem+ W W,

a,w,l

i = S ( Sk 0+ WIREL, ).

e a}“}ij] as the vector of residual filter utilities,

Draw arj. We define &%, , = [{uzsz—ag—w’.
and B, = [{ ,ng}m] the matrix of preferences, where each row of the matrix contains the

vector of preferences corresponding to the respective row in @% ,. Draw af by

a? NN(ﬁ?vga,ﬁ,f>7
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12.

13.

14.

where

ﬁf = goéﬁ,g (S_lﬁ'o—i-Blzﬁb )

«, w, b

(M-H step) Draw a proposal a?°P ~ p,_,rop(-|a). Update a = aP™P with probability

Tro a a C_l TrO o
a(a,a” ") =min{1, Gamma(a”?|¢5,07) [, Beta(Ve|l—d,a”P+c-d) .pafpmp(a‘ap P) }

Gamma(al¢§.0f)  [[Beta(V[l—d,atcd)  Paprop(@Pa)

We use a log-normal p,_prop(+|a) =logN (log(a), 72), where we use a vanishing adaptation
procedure (Atchadé and Rosenthal, 2005) to adapt the proposal step size to target an
acceptance rate of 0.44 (Gelman et al., 1995) through

i n <200,
771+ <(ap,—0.44)] n>200,

where ap,, is the empirical acceptance rate up to iteration n. Note the proposal

pa—prop(a|apr0p) __aProp
Pa—prop (aPP|a) a

distribution is not symmetric and yields a ratio

(M-H step) Draw a proposal d”*P ~ pg_p0p(+|d). Update d=dP™P with probability

rop | 4d 4d c-1 ro ro ro
a(d’dprop) —min 17 Beta(dp p|f0’d¢1) . Hc:l E_efaa/cu_dp p,a+c,dp p) . 1/pd*prop(dp p‘d)
Beta(d|¢07¢l) Hc:l Beta(Vcll—d,a+c-d) 1/pd7prop(d’dpr0p)

We use a logit-normal proposal distribution pg_prep(+|d) =logit—A (logit(d), s2), where
the logit function is defined by logit(d) = log(ﬁ), and the logit-normal pdf is defined

by logit—N (z|p,0%) = m}%x(ll_x) exp{—w}. We adapt s? analogously to 72 in

202

the previous step.

Draw context probabilities 7., by drawing the stick parameters V. from

C
V.~ Beta (1—d+nc,a+c-d+ Z ncx> ,

d=c+1

and compute 7, according to (14).
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15. Draw population covariance matrix Y, by
Y1 ~ Wishart(r,Ry),
where

ri=ro+1

Ry'=Ry! +ZH¢ i
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C Posterior distribution of holdout journey preferences

We outline the procedure to update the posterior distribution of preferences for holdout
journeys, given data on the focal journey and past journeys. (This corresponds to the

right-hand side of (16)). There are several relevant considerations for such a procedure.

First, we leverage the Pitman-Yor process when making inferences on new journeys, by
allowing for a previously unobserved context to be discovered in this focal journey. Second, as
the posterior of global parameters is obtained with a large number of journeys in the training
sample, we approximate the posterior of these parameters given all training data plus focal
journey j, by the posterior without focal journey j. That is, the inference on global parameters
remains largely unchanged by the addition of a single journey (except for discovering a context
that has not been observed before, as mentioned above). This assumption allows us to maintain
computational efficiency by not re-estimating the whole model when updating the inference
on current journey preferences as new data arrives. Third, as commented in Section 3.4, the
context of past journeys is conditionally dependent on the focal journey given past and current
journey data, because stable preferences and contexts both jointly determine the outcomes
in both journeys. Therefore, in the process of drawing preferences for new journeys, we update

the inferences for past journeys of the focal customer as well.

For each customer i, we denote the focal (holdout) journey by j, with j’ referring to
journeys different from the focal one. The set of past journeys (not including 7) is denoted
by J (i), the vector of contexts of all past journeys by z; _; = {2/} c7;), the entire journey
data for a journey j' by H; j = {qij/,yfj,lsz/ ,fijq:L,yfj,}, the collection of past journey data by

H;= |J Hij, the set of global parameters by ®,'” and all training data by D.
J'eJ (@)

We update the posterior of preferences for focal journey j, 8;;, by
p(Bijlaij Y10 Lije, Hi, D) = fp(ﬂij i Yij1.0-Liges Hir @) - p( P Dy Y10, Lije ) AP
~ fp(ﬂij‘qijayicjlzuﬁijt?Hiaq)) -p(®|D)d®, (19)

where p(®|D) is the posterior distribution of the global parameters given the training data.

We expand the left term in (19), by drawing customer stable preferences, context-specific

.....
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parameters, focal context membership, and past journeys contexts and marginalizing them,
p(ﬁij|qijayicj1:t7£ijt7%iaq)) =

Jp(ﬂij7uia7j77jvzij7zi,j | Yijie:Lige: i, @) - dppi-dryy-dy—j-dzij-dz; -5, (20)

w .
where v_; = {7,/ } yes(:)- Finally, noting that ~; = ( ! ) we can write this posterior as being
Pj
proportional to the joint
p(IBijalina'Yja'}’—jazij?Zi,—j‘qz’jaygjl;t;'cijtﬂiiaq))
C p(Bijsbbis Yy Y—jsZigZi— Qi Yijie Lijes il , )
= plaglw;) - p(y5lpipin) - p(Lijlmi,ps,a’ a0 ) 1{Bi; = pi+ p;}

] p(Hag Iy, )
J'eJ(4)

p(lD)-p (2 pladm ) T p(zapledinedlls), @)
J'eT ()

where C is the number of contexts (which is a latent variable, and thus, it is drawn from the
posterior p(®|D)).

We update those parameters using steps 1, 2, 3, and 4 exactly as shown in Web Appendix

B, and we adapt steps 5, 6, and 7 to allow for previously unobserved contexts to be drawn by:

5*. Draw context membership z; € {1..CYu{C+1} as follows

(ne—d)-Pje, if c<C
(a+d-C)-Pr ife=C+1

where P, as defined in step 5 in Web Appendix B, and P} = (]_[%le(qijmlqé()m)) :
p(ﬂij —)NCU ui\f(ij, ,uo,Vo> the product of posterior predictive likelihoods'® such that

p(QijmkbOm) = J‘p(QijqurZ) p(eﬁi ‘ ¢0m)d0xz

p<aij *}N(z‘juipzij,uov‘/o) = JP (ﬁij *)N(ijui|iij9§?>/\/(9p|ﬂa%)d9p-

18 A all prior-likelihood pairs are conditionally conjugate, these posterior predictive likelihoods have closed
form.
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6*.

T*.

T

If z;; = C+ 1, then draw the query components of context location parameters 0g+ .

following step 6 in Web Appendix B.

If 2= C+ 1, then draw the click-purchase context location parameters H%Jr . following
step 7 in Web Appendix B.

If z;; = C'+1, then update C'=C+1, and repeat the same steps for all j'€ 7 (c).
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D Algorithm for computing purchase probabilities

Algorithm 1 Computing purchase probabilities

Input
A vector of preferences 3;;
A set of products with at least one click Cl‘-’fs = {k[ ' <t,y5; =k}
Number of samples S for the Monte Carlo approximation
Trained predictor function ge(x,3)
Output
p(y%wicjl:taﬂij)
Procedure
for all s<1:5 do
Initialize consideration set C;; <—ij?’5
for all kq:‘ijbs do
Draw u~U(0,1)
if u<gc(xyjx,Bi;) then
Cij <« CZ 5\ {k}
end if
end for
Compute ps = p(yf-’j |Cij,Bi;) using GLK simulator and Equation (6)
end for
Return P(yfj |yz‘cj1:t7:3ij) ~ %Z;g:ﬂ?s
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E Details on the computation of consideration probabilities
(XGBoost)

We estimate tree-based classifiers (XGBoost and Random Forest) to predict consideration in hold
out journeys. We train such models using the data from the training sample (including clicks as
dependent variable and the product attributes as features) as well as draws from the posterior dis-

tribution of the vector of preferences (which are included as additional features in our classifier).

In our empirical application, consideration is operationalized slightly differently for the two
types of flights one-way and roundtrip. For one-way itineraries, the details page is shown after a
single click on a oneway results page; moment at which we assume the flight is being considered.
For roundtrip itineraries, on the other hand, the customer must click on the outbound component
of the flight (on an outbound results page), and on the inbound (return) component of the flight
in order to see the details page and for the product to be considered. Accordingly, we train three
different models, each aiming at a different prediction task: One that predicts consideration
for oneway flights (.. ), another one that predicts whether the outbound component of a
roundtrip flight is considered (§o.; ), and another one that predicts, conditional on the outbound

component being considered, whether the inbound component is also considered (g, ).

Following, (18), we compute the consideration probabilities given whether the customer

has clicked on the itinerary, or a portion of the itinerary. That is,

. 1 if flight was clicked on before
p(keCij\OneWay,yijl:t,Bij) ~
Gow(Xij1,0i5)  if flight has not been clicked on yet,

1 if both legs were clicked on
p(keCi|Roundtrip,yiiy.Bi5) = { 1+ Gin(XijnsBis) if only outbound leg was clicked on

gout (ijk,ﬁw) g’m, (lekyﬁz]> if no leg has been clicked on.

Because the parameters 8;; are estimated in a Bayesian manner (i.e., we don’t have a
point estimate but a posterior distribution), we draw a sample of 50 draws from the posterior
distribution of B3;; when training the consideration of each journey. Specifically, for each
product k in a journey, we create 50 observations, each with a feature vector concatenating
the vector of product attributes, x;;;, and the drawn preferences El-jd. We sample 1,000,000
observations (~1% of total) to train the classifiers. We use oneway observations to train §o;

and roundtrip observations to train g,,;. To train g,;,, we only use roundtrip observations
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such that the outbound leg of the corresponding itinerary was clicked on.!® We use as binary
outcomes whether the corresponding product of each observation was clicked on during the

journey,?® and the corresponding cross-entropy loss (i.e., binary logistic) to train the models.

We use a 80%-20% training/test split, and ten-fold cross-validation on the training
sample over a grid to tune the hyperparameters of each classifier (e.g., the learning rate and
the maximum depth of the trees for the XGBoost). Table E.2 shows the performance of both
the XGBoost and the Random Forest on each prediction task. Because the XGBoost overall
accuracy metrics (F1 and AUC) are superior in all tasks, we use the results of the XGBoost

when augmenting consideration sets.

Consideration

Model Balanced accuracy Precision Recall F1 AUC
Oneway (Jow)

XGBoost 0.2287 0.3893 0.0680 0.1158 0.9064

Random Forest 0.3403 0.6486 0.0320 0.0610 0.6898
Outbound (§ou;)

XGBoost 0.9598 0.9406 0.9789 0.9594 0.9958

Random Forest 0.8027 0.8304 0.7749 0.8017 0.9593
Inbound (§;,)

XGBoost 0.3488 0.5482 0.1494 0.2348 0.9233

Random Forest 0.3928 0.6879 0.0977 0.1711 0.7737

Table E.2: Performance of XGBoost consideration predictors.

19 Arguably, there could be selection bias affecting our sample, as we would make predictions for those
not clicked on yet based only on those clicked on the outbound leg. However, we argue that this approach
is the most sensible given the task at hand. First, any potential selection bias should hurt the out-of-sample
performance, and, thus, be captured by the out-of-sample performance of the predictions of the whole model.
Second, those predictions should only be relevant for products that their outbound leg was clicked on, or that
the outbound model predicts will be clicked on. Therefore, even if predictions are off for products that are
unlikely to be clicked on, these are captured already by Gou:-

20For the outbound leg model, we use as an outcome whether that product has the same exact outbound
leg as any product that was clicked on during the journey, that is, if an outbound leg is clicked on within a
results page, all returning flights displayed on the next page (which share the same already-clicked outbound
leg) are defined as positive labels for the predictive model.
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F Empirical application: Additional figures and summary statistics
F.1 Example of purchase journey steps

F.2 Product attributes
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(a) Example of query page

X B X B v = a

Flights Hotels Bundle and Save Cruises Things to Do Vacation Rentals

Roundtip  Oneway  Multi-City

Flying from Flying to
Mew York (NYC-All Airports) x Los Angeles, CA (LAX-Los Angeles Intl.)

Departing Returning . Travelers
11/18/2019 11/23/2019 1 Adult

vanced options ¥

m B Addahotel g & Addacar

(b) Example of outbound page results (c) Example of inbound page results

Select your departure to Los Angeles Mon, Nov 18

Prices are roundrip per

Your selected departure

rson, include alltaxes and fees, but

tinclude baggage fees.

6:00pm - 9:18pm 6h 18m (Nonstop)

R United .

6:00pm - 9:33pm 6h 33m (Nonstop) = ) 4 $394 [ galect e R

\ American Airlines JFK - LA roundtrip

Excellent Flight (8.5/10) Select your return to New York sat, Nov 23

Details & baggage fees v Prices are roundtrip per person, include all taxes and fees, but do not include baggage fees.
11:30pm - 1:30pm +1 11hOm (1stop) = B #

7:00am - 10:07am 6h 7m (Nonstop) = [0 ¢ $397 (Nsoiect \ American Airlines LAX - 3h 58m in BOS K

8 United 2 - LA roundtrip Fair Flight (5.1/10)

Excellent Flight (8.6/10) Details & baggage fees v

Details & baggage fees v
Rules and restrictions apply

7n30‘am- 10“‘4‘0@ 6h 10m (Nonstop) = () 4 ‘ :3‘77 Select | 11:15pm - 7:55am +1 5h 40m (Nonstop) = [ 4

Alaska Aifines JFK - LA oundtrip S )

Excellent Flight (8.5/10) H/A‘ag ‘sukmmm‘s o) LAX - JFK
Very Good Flight (8.3/

Details & baggage fees v Details & baggage fees v

9:20pm - 12:35am +1 6h 15m (Nonstop) = (& # $397 [(gaiect

A Delta JFK roundtrip

11:15pm - 9:05am +1 6h 50m (1 stop) = &
® United o

Very Good Flight (8.1/10) Jnite LAX - 57m in -EWR
Satisfactory Flight (6.6/10)

Details & baggage fees v
Details & baggage fees v

Rules and restrictions apply

(d) Example of flight details results

Review your trip
Trip Summary
From Liberty Intl. (EWR)
Mon, Nov 18 - " | 0 angeles Intl. (LAX) A Return: Arrives on 1172472019
B united
6:00pm 9:18pm 6h 18m, Nonstop

Tip Totat: $4312

4 72969 customers protected their flight in the last
« Camy-on bag not allowe 7 days. Add flight protection when you check out.

@ Important Flight Information

Tickets are non-refundable
o transferable. Name ch

From Los Angeles Intl. (LAX) Fare
Sat, Nov 23 Liberty Intl. (EWR) o
B United

11:15pm 9:05am 6h 50m, 1 stop

< Change flights

Continue Booking | v Free Cancellation within 24 hours of booking!

Save this ltinerary

Figure F.2: Purchase journey steps
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Product attribute Mean SD Quantiles
5% 50% 95%
Product level attributes
Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117
Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42 28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07 17.08
Number of stops: Non stop 0.20 0 0 1
Number of stops: One stop 0.59 0 1 1
Number of stops: 2+ stops 0.21 0 0 1
Alliance: Alaska Airlines 0.04 0 0 0
Alliance: Frontier 0.01 0 0 0
Alliance: JetBlue 0.03 0 0 0
Alliance: Multiple alliances 0.07 0 0 1
Alliance: Other — No alliance 0.07 0 0 1
Alliance: OneWorld (American) 0.27 0 0 1
Alliance: Skyteam (Delta) 0.27 0 0 1
Alliance: Spirit 0.02 0 0 0
Alliance: Star Alliance (United) 0.23 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 0 0 0
Dep. time: Morning (5:00am — 11:59am) 0.47 0 0 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.31 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.18 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.05 0 0 0
Arr. time: Morning (5:00am — 11:59am) 0.24 0 0 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.34 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.37 0 0 1
Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 4.27 17.75
Number of stops: Non stop 0.19 0 0 1
Number of stops: One stop 0.70 0 1 1
Number of stops: 2+ stops 0.11 0 0 1
Alliance: Alaska Airlines 0.02 0 0 0
Alliance: Frontier 0.02 0 0 0
Alliance: JetBlue 0.02 0 0 0
Alliance: Multiple alliances 0.02 0 0 0
Alliance: Other — No alliance 0.07 0 0 1
Alliance: OneWorld (American) 0.51 0 1 1
Alliance: Skyteam (Delta) 0.13 0 0 1
Alliance: Spirit 0.05 0 0 1
Alliance: Star Alliance (United) 0.15 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 0 0 0
Dep. time: Morning (5:00am — 11:59am) 0.65 0 1 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.18 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.14 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.04 0 0 0
Arr. time: Morning (5:00am — 11:59am) 0.55 0 1 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.19 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.23 0 0 1

Table F.3: Summary statistics of product attributes in page results

App- 18



F.3 Filters construction and summary statistics

As mentioned in the main manuscript, the focal company did not collect the action of “filtering”
directly. Rather, we infer such a behavior from the flight results we observe in the data.
Specifically, we construct filter data conservatively in the following manner: (1) We infer that a
filter was applied if all product results on a page have the same level on a product attribute (e.g.,
non-stop) and this does not occur in the first page of results.?! (2) We allow multiple filters

on a page as long as they belong to different attributes (e.g., American Airlines and non-stop).

Similar to the click and purchase data, airline data in filters is equally sparse, so we
aggregate them into filters at the alliance level. That said, we still infer whether a filter was
applied on a page using the airline data, as customers could only apply filters at the airline
level and not at the alliance level during the observation window. For example, if a page
contains results from multiple OneWorld airlines (e.g., American Airlines and British Airways
results), we do not define those results as resulting from a filter, as the platform did not allow
customers to filter specifically on alliances. However, we define a filter on the OneWorld
alliance if all flights belong to a single airline that belongs to the OneWorld alliance (e.g., all
flights American Airlines or all flights British Airways).

Table F.4 shows, per attribute and level, the percentage of first-party journeys where
a filter was applied.

21Because the website does not filter by default, a constant attribute on the first page reflects limited supply,
not a filtering constraint.
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Attribute Level Proportion journeys filtered
Mean s.e.
Alliance OneWorld 0.020 0.001
Skyteam 0.016 0.001
Star Alliance 0.017 0.001
Alaska Airlines 0.003 0.000
Frontier 0.001 0.000
JetBlue 0.006 0.000
Spirit 0.001 0.000
OTHER_NO__ALLIANCE 0.008 0.001
Stops Non-stop 0.138 0.002
One stop 0.038 0.001
Departure time  Early morning (0:00am - 4:59am)  0.004 0.000
Morning (5:00am - 11:59am) 0.032 0.001
Afternoon (12:00pm - 5:59pm) 0.027 0.001
Evening (6:00pm - 11:59pm) 0.028 0.001
Arrival time Early morning (0:00am - 4:59am)  0.002 0.000
Morning (5:00am - 11:59am) 0.018 0.001
Afternoon (12:00pm - 5:59pm) 0.019 0.001
Evening (6:00pm - 11:59pm) 0.021 0.001

Table F.4: Percentage of journeys with filters in attributes.
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G Additional results

G.1 Context-specific parameter estimates

Context

Parameter 1 2 3 4 5 6 7 8 9 10 11

Query
Is it roundtrip? Yes 024 091 0.90 099 097 093 095 099 020 096 097
Is it domestic? (within EU is domestic) Yes 1.00 1.00  1.00 0.00 0.02 1.00 0.00 1.00 0.08 0.00 0.03
Flying from international airport? Yes 0.55 0.74  0.48 0.87 0.74 0,50 094 0.62 090 0.90 0.90
Market: US Domestic 098 095 097 0.00 0.00 0.97 0.00 093 0.00 0.00 0.00
Market: US Overseas 0.00 0.00 0.00 0.83 0.01 0.00 0.72 0.00 0.00 0.78 0.01
Market: Non-US across continent 0.00 0.00 0.00 0.15 0.05 0.00 0.26 0.00 0.09 0.20 0.08
Market: Non-US within continent 0.00  0.02  0.00 0.01 0.07  0.00 0.01 0.04 019 0.01 0.10
Market: US North America 0.02  0.02 0.03 0.00 0.88 0.02 0.00 0.03 0.72 0.00 0.81
Type of location searched: Airport 0.92 0.89 0.93 0.88 0.90 0.88 0.89 0.91 0.90 0.85 0.81
Type of location searched: Both 0.02 0.01 0.02 0.02 0.06 0.04 0.04 0.02 0.07 0.04 0.07
Type of location searched: City 0.05 0.10 0.05 0.10 0.04 0.08 0.07 0.07 0.03 012 0.12
Trip distance (1000s kms) 1.87 253 184 9.72 271 080 9.71 236 253 896  2.77
More than one adult? Yes 0.17 039 0.24 028 046 022 0.18 0.50 026 0.26 047
Traveling with kids? Yes 0.04 0.13  0.06 0.03 017 0.05 0.11 0.17 0.10 0.07 0.12
Is it summer season? Yes 043 039 042 0.00 026 036 0.21 0.00 062 098 0.21
Holiday season? Yes 0.00  0.00 0.01 0.06 0.07 0.01 0.00 0.32  0.00 0.00 0.09
Does stay include a weekend? Yes 0.15  0.89 0.99 1.00 097 0.83 1.00 0.99 025 1.00  0.90
Length of stay (only RT) (days) 230 525 563 1477  9.83 3.88 45.67 6.16 281 13.16  7.40
Searching on weekend? Yes 019 021 021 025 024 019 0.26 017 024 027 020
Searching during work hours? Yes 0.52  0.52  0.52 0.51 0.55 054 0.37 0.59 042 043  0.60
Time in advance to buy (days) 23.95 5821 41.18 107.77 81.79 37.34 53.67 111.04 29.07 39.38 92.67

Preferences
Intercept Search: OW Search -0.02 -0.28 0.01 -0.14 0.04 -0.19 0.06 0.09 -0.06 -0.18 -0.16
Intercept Search: RT Outbound -0.22  -0.51 -0.13 -0.70 -0.13 -0.49 -0.10 -0.09 -0.24 -041 -0.45
Intercept Search: RT Inbound -0.03 -0.11 -0.26 -0.18 -0.01 -0.13 -0.11 -0.15  -0.06 -0.10 -0.04
Intercept Click: OW Search -0.81 -0.37 -0.61 0.04 0.08 -0.09 -0.08 -0.09 -0.36 -0.02 -0.03
Intercept Click: RT Outbound -0.28 -0.17 -0.18 -0.14 -0.18 -0.43 -0.31 -0.61 -0.04 -0.21 -0.43
Intercept Click: RT Inbound 0.05 -0.18  0.19 028 035 -0.15 043 0.08 -0.02 015 -0.13
Price -0.19  0.02 -0.37 -0.19 -0.18 0.15 -0.34 -0.15 -0.03 -0.06 0.32
Length of trip (hours) -0.59  -0.54  -0.90 -0.59 -0.85 -0.20 -0.69 -0.46 -0.49 -0.21 -0.09
Number of stops: Non stop 0.11 0.43 0.60 0.31 0.60 0.14 0.35 0.18  -0.02 0.22 0.03
Number of stops: 2+ stops -0.33  -0.15 -0.28 -046 -0.12 -0.06 -040 -0.10 -0.10 -0.25 -0.05
Alliance: Skyteam (Delta) -0.02 -0.12 -0.18 -0.09 -0.14 -0.09 -0.01 -0.06 -0.12  0.03 -0.10
Alliance: Star Alliance (United) -0.10 -0.19 -0.21 0.14 012 -0.16 -0.06 -0.09 0.02 -0.06 -0.06
Alliance: Alaska Airlines -0.06 -0.08 0.01 0.02 -0.10 -0.01 0.13 -0.01  -0.07 -0.01 -0.04
Alliance: Spirit -0.21  -0.02 -0.21 0.01 0.00 0.04 -006 -0.05 -0.01 0.00 0.01
Alliance: JetBlue -0.02 023 -0.01 0.00 0.08 013 -0.13 -0.03 0.04 0.04 0.02
Alliance: Frontier -0.11  0.06 -0.03 -0.03  0.00 0.02 -0.02 0.01 0.06 0.01 0.00
Alliance: Other — No alliance -0.09 -0.05 -0.04 0.05 0.02 -0.03 0.12 0.12 -0.14 -0.06 -0.04
Alliance: Multiple alliances -0.13  -0.07 -0.10 0.02 -0.08 -0.02 -0.09 -0.04 -0.09 0.00 0.03
Outbound dep. time: Early morning (0:00am - 4:59am) -0.16 -0.01  0.07 0.05 0.11 0.01  -0.08 0.01 -0.03 -0.01 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.08 -0.26 -0.09 0.03 0.01 -0.03 -0.14 -0.06 -0.04 -0.10 -0.07
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.27  -0.21  -0.07 -0.07 -0.10 -0.04 -0.11 -0.01  -0.03 -0.07 -0.07
Outbound arr. time: Early morning (0:00am - 4:59am)  -0.11  -0.14  -0.20 0.00 -0.05 -0.04 -0.11  -0.05 -0.03 -0.05 -0.02
Outbound arr. time: Afternoon (12:00pm - 5:59pm) 0.10 0.13 019 -0.11 0.04 -0.11 -0.05 -0.02 -0.09 -0.12 -0.08
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.01  -0.17  0.12 -0.08 -0.12  0.01 -0.14 -0.14  -0.07 -0.01 -0.06
Inbound dep. time: Early morning (0:00am - 4:59am) -0.08 0.11  0.00 0.10 -0.01 0.12 -0.07 -0.15 -0.02 0.11 0.10
Inbound dep. time: Afternoon (12:00pm - 5:59pm) 0.10  0.23  0.35 0.05 0.15 -0.01 0.07 0.09 -0.01 0.00 -0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) 0.06 -0.03  0.06 0.05 -0.04 -0.01 0.12 -0.01 0.01 0.03 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) -0.11  0.05  0.00 0.02 0.05 0.07 -0.13 -0.07  0.00 0.11  0.08
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.01 0.03 014 -0.04 0.09 0.00 0.09 0.03 -0.05 -0.02 -0.06
Inbound arr. time: Evening (6:00pm - 11:59pm) 020 021 044 -0.01 017 -0.01 -0.05 0.09 0.00 0.02 -0.04

Table G.5: Posterior mean of location click and purchase parameters. Contexts 1-11
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Context

Parameter 12 13 14 15 16 17 18 19 20 21 22

Query
Is it roundtrip? Yes 0.09 016 096 031 037 0.27 0.13  0.17 0.09 0.05  0.92
Is it domestic? (within EU is domestic) Yes 0.00 094 019 1.00 097 0.00 0.00 0.18 0.06 1.00 0.71
Flying from international airport? Yes 0.90 100 099 044 1.00 0.94 0.89 0.97 0.88 0.52  1.00
Market: US Domestic 0.00 0.05 0.00 098 0.15 0.00 0.00  0.00 0.00 0.96  0.01
Market: US Overseas 0.87 0.00 0.00 0.00 0.00 0.66 0.79  0.01 0.00 0.00  0.00
Market: Non-US across continent 0.11 0.00 0.06 0.00 0.00 0.30 0.19  0.15 0.06 0.00  0.01
Market: Non-US within continent 0.01 093 029 001 074 0.04 0.01 043 0.36 0.02 097
Market: US North America 0.00 0.02 0.65 0.01 011 0.00 0.00 0.41 0.58 0.02  0.01
Type of location searched: Airport 0.84 0.76 0.83 0.90 0.76 0.85 0.88  0.87 0.79 0.91 0.84
Type of location searched: Both 0.01 0.10 0.08 0.04 0.03 0.04 0.03 0.09 0.16 0.06 0.13
Type of location searched: City 0.15 0.14 0.09 005 022 0.11 0.10 0.04 0.06 0.03  0.03
Trip distance (1000s kms) 981 116 241 050 059 8.70 9.84 237 2.72 239 137
More than one adult? Yes 0.19 040 0.08 0.13 048 0.17 0.29  0.03 0.42 045 041
Traveling with kids? Yes 0.06 0.09 0.01 003 013 0.05 0.02 0.01 0.07 0.11  0.12
Is it summer season? Yes 0.57 056 059 043 037 040 0.01  0.10 0.03 0.02 0.22
Holiday season? Yes 0.00 0.01 0.00 0.00 0.02 0.00 0.15  0.00 0.19 0.37  0.06
Does stay include a weekend? Yes 0.30 025 099 016 041 0.15 0.11  0.23 0.24 0.25  0.90
Length of stay (only RT) (days) 6.53 292 855 156 392  3.09 3.40 3.17 4.03 421  6.96
Searching on weekend? Yes 0.18 0.29 0.14 0.22 0.28 0.26 0.17  0.12 0.22 0.18 0.27
Searching during work hours? Yes 0.34 0.29 0.47 0.58 0.31 0.41 0.48 041 0.30 0.50 0.29
Time in advance to buy (days) 28.34 30.26 2597 14.45 60.45 46.61 121.05 8.12 109.18 116.00 73.98

Preferences
Intercept Search: OW Search -0.30 012 019 -0.16 -0.15 -0.31 -0.02 -0.15 0.14  -0.01 -0.12
Intercept Search: RT Outbound 0.01 -0.04 -0.17 -0.08 -0.23 -0.30 0.03 -0.22 0.09 -0.02  -0.34
Intercept Search: RT Inbound 0.17 -0.08 -0.05 0.02 0.01 -0.03 -0.02 0.01 0.02 -0.01 0.01
Intercept Click: OW Search -0.31 -0.34 -0.06 -046 -0.35 -0.3¢ -0.28 -0.14 -0.29 -0.32 -0.01
Intercept Click: RT Outbound 0.06 -0.06 -0.52 -0.19 -0.16 -0.24 -0.20  0.02 -0.04 0.02  -0.23
Intercept Click: RT Inbound 0.01 0.00 0.02 0.16 -0.04 -0.04 0.09 -0.03 0.03  -0.04 0.02
Price -0.38 -0.11 -0.08 -0.04 017 013 -0.14 -0.15 -0.13  -0.15 0.13
Length of trip (hours) -045 -0.53 -0.33 -0.23 -0.22 -0.08 -0.35 -0.35 -0.38 -0.29 -0.15
Number of stops: Non stop 0.02 0.05 -0.01 -0.05 -0.11 -0.06 -0.04 0.18 -0.06 -0.13 0.06
Number of stops: 2+ stops -0.15  -0.09 -0.09 -0.09 -0.03 -0.12 -0.30 -0.11 -0.01 -0.07  -0.03
Alliance: Skyteam (Delta) -0.16 -0.05 -0.07 -0.04 -0.16 -0.12  -0.09 -0.05 -0.08 -0.07 -0.03
Alliance: Star Alliance (United) -0.07 002 -0.07 -0.16 -0.13 -0.18 -0.09 -0.01 -0.03  -0.01 -0.04
Alliance: Alaska Airlines 0.02 -0.03 0.04 -0.07 -0.03 -0.02 0.03 -0.05 0.02 -0.06  -0.03
Alliance: Spirit 0.00 -0.03 -0.02 0.00 0.00 0.02 -0.02 0.04 -0.04 0.02  0.02
Alliance: JetBlue 0.10 -0.03 -0.02 -0.01 -0.02 0.02 -0.10 0.12  -0.08 0.03  0.06
Alliance: Frontier 0.06 -0.04 -0.01 -0.02 -0.04 0.00 -0.01 0.03 0.01 -0.03  0.00
Alliance: Other — No alliance 0.10 -0.13 -0.00 0.02 -0.11 -0.03 -0.05 -0.08 -0.01 -0.03  -0.03
Alliance: Multiple alliances -0.09 012 -0.07 0.02 -0.01 0.02 -0.12 0.04 -0.01 -0.03  0.00
Outbound dep. time: Early morning (0:00am - 4:59am)  -0.02 0.02 -0.04 -0.02 0.07 0.04 -0.12  -0.01 -0.10 0.00 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.04 0.00 -0.10 -0.14 -0.08 -0.10 -0.12 -0.09 -0.08 -0.11  -0.01
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.06 -0.17 0.00 -0.16 -0.19 -0.17  -0.06 -0.07 -0.04 -0.12 -0.04
Outbound arr. time: Early morning (0:00am - 4:59am) ~ -0.13  -0.09 -0.06  0.00 -0.04 -0.05 -0.06 -0.01 -0.08  -0.10  0.00
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.03 004 -0.05 -0.23 -0.04 -0.10 -0.26 -0.08 -0.14  -0.01  0.00
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.13 -0.14 -0.18 -0.19 -0.22 -0.12 -0.18  0.05 -0.10 -0.09 -0.02
Inbound dep. time: Early morning (0:00am - 4:59am) 0.15 -0.04 -0.07 -0.06 0.00 0.07 -0.09 0.12 -0.04 0.05  0.06
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.02 0.06 -0.06 0.08 -0.02 -0.02 0.01  0.00 0.02 -0.01 0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.04 0.02 0.03 -0.01 -0.01 -0.01 0.04 -0.03 0.03 -0.02  -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) 0.12 0.04 -0.03 0.00 0.00 0.09 -0.08  0.10 -0.03 0.01  0.02
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.00 -0.01 0.00 0.00 0.00 -0.02 0.01 -0.01 0.04 -0.04 0.01
Inbound arr. time: Evening (6:00pm - 11:59pm) 0.00 0.04 0.02 0.10 0.00 0.00 0.00  0.00 0.00 -0.02  -0.02

Table G.6: Posterior mean of location click and purchase parameters. Contexts 12-22
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G.2 Relative differences across contexts (all variables)

We normalize the location parameters to account for how they vary across contexts and how
much uncertainty their posterior has. First, for each context ¢, we compute the posterior
mean of each location parameter .. Second, we compare these location parameters with the
population mean level of those same parameters, but now we include query parameters as well.
We subtract these two to measure whether contexts are above or below average on each of the
query parameters and click and purchase preferences. Finally, we normalize these differences
by dividing by the square root of the posterior variance across journeys. This variance is
composed by two terms (similar to ANOVA): (1) the within-context posterior variance of
each 0., which measures the posterior uncertainty of each location parameter 6.; and (2) the
across-context variance of all 6. with respect to the population mean, which captures how
much variance is explained by the differences between contexts. By normalizing the location
parameters, we can now compare contexts with respect to whether they score higher or lower

than average on each of the query parameters and preferences.
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Is it roundtrip?
Is it domestic? (within EU is domestic)
Flying from international airport?
Trip distance (kms)
More than one adult?
Traveling with kids?
Is it summer season? .
Holiday season? . .
Does stay include a weekend?
Length of stay (only RT) (days) .
Searching on weekend?
Searching during work hours? k
Time in advance to buy (days) -

Query parameters

Intercept Search: OW Search
Intercept Search: RT Outbound
Intercept Search: RT Inbound
Intercept Click: OW Search
Intercept Click: RT Outbound
Intercept Click: RT Inbound .
Price
Length of trip (hours)
Number of stops: Non stop
Number of stops: 2+ stops
Alliance: Skyteam (Delta)
Alliance: Star Alliance (United)

Alliance: Alaska Airlines

Query and preferences parameters 6.

Alliance: Spirit
Alliance: JetBlue

Alliance: Frontier

Preferences

Alliance: Other ... No alliance

Alliance: Multiple alliances

Outbound dep. time: Early morning (0:00am - 4:59am)
Outbound dep. time: Afternoon (12:00pm - 5:59pm)
Outbound dep. time: Evening (6:00pm - 11:59pm)
Outbound arr. time: Early morning (0:00am — 4:59am)
Outbound arr. time: Afternoon (12:00pm - 5:59pm)
Outbound arr. time: Evening (6:00pm — 11:59pm)
Inbound dep. time: Early morning (0:00am — 4:59am)
Inbound dep. time: Afternoon (12:00pm — 5:59pm)
Inbound dep. time: Evening (6:00pm — 11:59pm)
Inbound arr. time: Early morning (0:00am - 4:59am)

Inbound arr. time: Afternoon (12:00pm — 5:59pm)

Inbound arr. time: Evening (6:00pm — 11:59pm) .
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Contexts
.
Lower than mean = _, o N 4

Figure (3.3: Posterior mean of all context location parameters 6., relative to the average
in the population. The top figure shows how each context deviates from the
average with respect to the query variables. The bottom figure shows deviations
with respect to the preference parameters. Blue (red) boxes mean positive
(negative) deviation from the average in the population.
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G.3 Benchmark models

We describe in detail how the benchmark models are trained and how the binary prediction
scores are normalized per journey. As both benchmark models are built for binary classification
tasks (or multi-class classification tasks with a fixed set of classes across observations), we
create a series of binary classifications and use normalization to convert these to a multinomial

choice task (or varying choice sizes, depending on the consideration set of each journey).

Consider customer 4, in journey j and the set K; that contains the products customer
i can buy in journey j (we also include k=0, an additional “no-purchase product” in this set).
We assemble the set of all observations O ={(i,j,k)|i=1,....I,j=1....J;, ke K;}, where each
observation (“row” in our dataset) represents a product in a journey. We create a single training
dataset using the clickstream data of the entire journey of each customer in the training data

to estimate the benchmark models, which mimic the information seen by the proposed model.

To compute predictions in the test set (i.e., in journeys that have not been observed yet),
we create a dataset that changes as information comes in. When making predictions after 5
steps, we use all the information in the journey available within the first 5 steps of the journey.
To avoid selection bias and to be able to compare quantities across the different stages of the
journey, we hold constant the set of journeys across the two test conditions: after query and
after 5 steps (columns of Table 4). Specifically, for journeys shorter than 5 steps, we use the

entire journey when making 5-step predictions.

For each observation, we create the binary outcome Yj;;, which equals one if customer
i purchased product k during journey j, and zero otherwise (Yo =1 if the customer ends the
journey without a purchase); and a set of features X;;;, (“columns” in our dataset) that contain
the information for each customer, journey, and product. Specifically, we include five types

of features in Xy
(1) the set of query variables for journey j (same as those in the query model),

(2) summary statistics of the attributes of all the products shown in the first page of journey

Jj (same as those in the main model),

(3) the clicks and filters (during the focal journey) up to the moment when the prediction

is made (capturing what the customer has been clicking so far),

(4) the queries, product attributes, clicks, filters, and purchases from past journeys

(capturing the customer’s past behavior), and

(5) the attributes of product k.
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We now provide details about each of these sets of variables:

(1)

(2)

We use the same set of query variables as in the main model. We encode all categorical

variables as binary (leaving one level out to avoid multicollinearity).

We use the same set of attributes as in the main model, with the exception that we
encode categorical variables in full one-hot encoding, such that each level in a categorical
variable has a corresponding binary feature. We summarize these features across all
products shown on the first page of journey 7, and compute the average, minimum, and

maximum shown on the first page.

We categorize "clicks’ in two primary ways. Firstly, at the product level, we represent using
a binary feature whether the focal product £ has been selected or not. In the training data,
clicks throughout the entire journey are used to formulate this binary feature since the
model undergoes a one-time training. In the test data, this feature is set to one if product
k has been clicked on by that point in the journey. If the product remains unclicked, this
feature corresponds to the percentage of products clicked in the training data; essentially,

in the absence of the feature, we resort to the mean value from the training data.

Secondly, at the journey level, we aggregate the features of all clicked products within
the focal journey, utilizing averages for continuous data and counts for binary data.
Mirroring the process mentioned earlier, the training data summary is computed at the
end of the journey, whereas the test data incorporates information accessible up to that
specific step. Furthermore, we document the total count of clicked products within the

focal journey. Filters are integrated in a similar fashion.

We compute the average of variables (1) —(3) plus the attributes of purchased products
and the number of past purchases, across all past journeys of customer . In the training
data, for focal journey 7, these summaries are computed across journeys 1 through j—1;
whereas in the test data, we use the summarized across all journeys of customer i in
the training data. We also include the number of past journeys (such that a non-linear

model can recreate counts).

We include the features of product k as done in the proposed model, and we use a binary

feature to distinguish between actual products and the No-Purchase product.

In sum, we generated a training dataset of 258,588 observations and 454 features. We

train both binary classifiers, Random Forest (RF) and XGBoost, using a cross-entropy loss

(i.e., binary logistic). For the RF, we use honest splitting estimation, where the sample is

split in two: one to construct the trees and another to evaluate the predictions. We use a
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sample fraction of 0.5, a number of variable tries per split of 41 (y/#features+20), an honesty
fraction of 0.5, and 2000 trees. For XGBoost, we use 100 rounds with a learning rate of 1 and

a maximum depth of trees of 4.

After the models are trained, we compute predictions on the test data, ];l\/ in multiple

ijk»
steps. First, we normalize the predictive scores from the benchmarks per journey, such that

they sum to one by

-~~~ norm ];}\/Z ]C
PYip =<,
Z pyijkz’
k'ek ()

as these binary predictions are generated independently for all observations. Note that this
normalization is not needed for the proposed model as the model provides a probability

measure directly. The next steps apply to both benchmark models and our proposed model.

Second, for the incidence predictive task, we label a journey as a purchase if the

normalized score for the no-purchase product is lower than 0.5, that is,

-~ norm

f/iijncidence =1 {pYZ.jO < 0.5}.

We compute balanced accuracy, precision, and recall from these predicted labels.

Third, for the product choice given purchase predictive task, we first compute choice

given purchase scores per product by

—~norm
—~ choice P ijk
b ijk = —~~norm
2. pyz‘jk’
k'ek(j):k#0

and label the predicted chosen alternative as the product with the maximum score per journey

?choice _ /}\/ choice
i —argmax<{pY . .
kel (5)

We use the predicted labels }A/igh"ice to compute hitrate (percentage of journeys where predicted
choice equals actual chosen product). In order to provide information on how the model

—~ choice

predicts at the product level (what the models were trained for), we use pY’ to compute

ijk
balanced accuracy by labeling as one the product with the highest score and computing the
confusion matrix using the data at the journey-product level. Note that in such case, precision,
recall, and balanced accuracy are all equal, as there is only one chosen product per journey

(actual), and only one product is predicted to be chosen.
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G.4 Additional predictive validity results

G.4.1 Prediction of proposed vs. benchmark models with 2 clicks

Incidence Product choice given purchase

Model After query After 2 steps Model After query After 2 steps
Balanced accuracy Hitrate

Proposed model 0.62 0.64 Proposed model 0.16 0.27

Random forest 0.60 0.67 Random forest 0.16 0.18

XGBoost 0.50 0.53 XGBoost 0.03 0.27
Precision Balanced accuracy

Proposed model 0.21 0.22 Proposed model 0.58 0.63

Random forest 0.28 0.31 Random forest 0.58 0.59

XGBoost . 0.60 XGBoost 0.51 0.63
Recall . .

broposedmodel 03 o7 (%) Cllce siven purchasoof proposed vs

Random forest 0.40 0.57 '

XGBoost 0.00 0.06

(a) Purchase incidence of proposed vs. bench-
mark models.

Table G.7: Prediction of proposed vs. benchmark models after query and 2 clicks.
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G.4.2 Additional prediction measures

We complement the results presented in Table 4 of the main manuscript by adding the F1

measure (harmonic mean of precision and recall) and the Jaccard index (ratio of true positives

over the union of true and predicted positive outcomes). We also report precision and recall for

choice. We remark that in the choice given purchase prediction task, precision and recall are

equal since there is a single positive label per journey (for both true and predicted labels, as there

is one product purchased per journey, and only one product is predicted to be chosen per journey).

Consequently, both balanced accuracy and the F1 measure are equal to precision and recall.

Incidence Product choice given purchase

Model After query After 5 steps Model After query After 5 steps
Balanced accuracy Hitrate

Proposed model 0.62 0.65 Proposed model 0.16 0.62

Random forest 0.60 0.70 Random forest 0.16 0.19

XGBoost 0.50 0.59 XGBoost 0.03 0.62
F1 Balanced accuracy

Proposed model 0.34 0.35 Proposed model 0.58 0.81

Random forest 0.33 0.44 Random forest 0.58 0.59

XGBoost 0.30 XGBoost 0.51 0.81
Jaccard index F1

Proposed model 0.20 0.21 Proposed model 0.16 0.62

Random forest 0.19 0.28 Random forest 0.16 0.19

XGBoost 0.00 0.18 XGBoost 0.03 0.62
Precision Jaccard index

Proposed model 0.21 0.22 Proposed model 0.09 0.45

Random forest 0.28 0.33 Random forest 0.09 0.11

XGBoost 0.60 XGBoost 0.02 0.45
Recall Precision / recall

Proposed model 0.83 0.91 Proposed model 0.16 0.62

Random forest 0.40 0.67 Random forest 0.16 0.19

XGBoost 0.00 0.20 XGBoost 0.03 0.62

(a) Purchase incidence of proposed vs. bench-
mark models. (Extended set of measures of

fit.)

Table .8: Prediction of proposed vs. benchmark models.
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G.5 Details on predictions for computing the value of first-party data.

Similarly to the analysis presented in Section 5.4, we compute the choice probabilities for all
models at each stage of the journey. We consistently employ all journeys across all stages,
ensuring a constant set of journeys when conducting comparisons throughout the journey. For
instance, when forecasting after 5 steps (or 2 steps), we consider the initial five (or two) steps
for journeys with at least 5 (or 2) steps, while accommodating all available steps for journeys
shorter than 5 (or 2) steps. This methodology enables us to assess the journey’s value with
a conservative lens, as performance on the held-out set would notably enhance if we were to

observe a uniform 5 steps across all journeys.

We compute hitrates at the product level, analogous to the approach described in
Section 5.4. When exploring the ability of the model to predict what attributes the customer
will choose, we compute the probabilities of choosing each level by aggregating the choice
probabilities across all products with such a level. For categorical variables, we compute

hitrates, and for continuous variables, we utilize the Root Mean Square Error (RMSE).

For example, let us consider a categorical attribute such as number of stops. For each
level — Non-stop, One stop, and 2+ stops— we compute the probability that a customer,
conditional on making a purchase, will opt for a specific stop level. This is done by aggregating
the choice probabilities associated with the ‘stop’ attribute. For instance, the probability that
a customer will select a non-stop flight corresponds to the cumulative choice probabilities of
all non-stop flights. Subsequently, the predicted number of stops is identified as the level with
the highest choice probability. We then contrast these predicted labels with the actual labels
to compute hit rates, which represent the proportion of journeys where we accurately predict
the number of stops for the chosen flight. A similar methodology is applied when considering

airline alliances, which is also categorical.

For a continuous attribute such as price, we first calculate the square errors between
the price of each alternative and the price of the purchased alternative, and then compute
the weighted average of those square errors (by journey) using the purchase probabilities as
weights, by

M*S”EZ-P;-’rice = Z p(yi; = k|Datag;,) - (Priceg;, — Price;jp )2,
kek(5)
where p(y;; = k|Datag;;) are the purchase probabilities and k* is the true purchased alternative.
First, note that the square errors are independent from the predictions, but the weighted
average is not. Second, note that if the model predicts with probability one on alternatives

with the same price as the purchased one, then this expectation is zero. Finally, we average
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those expected square errors and compute the square root

. 1 .
RMSEPre = > MSEErice,
ij

Joos

where J°% is the number of heldout journeys. We follow the same procedure for the length of the
trip. We compute these scores on the normalized prices and lengths to weigh all journeys equally

and to avoid searches with more expensive and longer destinations to dominate the score.
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