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A Model priors

We detail the specification of the prior distribution for the model parameters.

First, for the population covariance matrix Σ that governs customer heterogeneity in
(9), we choose the standard Wishart prior for the precision matrix Σ´1,

Σ´1
„Wishartpr0,R0q.

Second, we put priors on the Pitman-Yor process discount and strength parameters, d

and a,16 respectively by

d„Betapϕd
0,ϕd

1q

a„Gammapϕa
0,ϕa

1q.

Third, we put priors on the location parameters θc by defining the base distribution of
the Pitman-Yor process, F0. As described in (13), the location parameters are drawn from
θc „ F0pϕ0q. Following the notation in (10), consider θω and θρ the components of θ that
correspond to query parameters ωj and click-purchase parameters ρj, respectively. We define
F0 as a multivariate distribution factorized by each of the components of θ, defined by

F0pθ|ϕ0q“

˜

M
ź

m“1
F ω

0mpθω
m|ϕ0mq

¸

ˆN pθρ
|µ0,V0q,

where we assume Gaussian priors for the location parameter of click and purchase preferences,
and F q

0m is defined accordingly to the support of the parameter that governs the distribution
of each query variable m described in (2). That is,

F ω
0mpθω

m|ϕ0mq“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Betapϕ0ma,ϕ0mbq if qijm is binary

Dirichletpϕ0mq if qijm is categorical

Gammapϕ0ma,ϕ0mbq if qijm is continuous positive-valued

N pϕ0mµ,ϕ0mσq if qijm is continuous.

16We restrict the model to aą0.
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Finally, we put mean-zero Gaussian priors on all other parameters in the model including
η in (3), and α0

ℓ , αw
ℓ and αβ

ℓ in (4)

η „N p0,s2
ηq

α0
„N p0,Sα,0q

αw
ℓ „N p0,Sα,wq,@ℓ

αβ
ℓ „N p0,Sα,βq,@ℓ

B Blocked-Gibbs sampler algorithm

Our Metropolis-within-Gibbs MCMC sampling algorithm is based on Ishwaran and James (2001)
approximation using the stick-breaking representation of the Pitman-Yor (PY) Process, trun-
cating the infinite mixture by setting VC “1 for a large enough integer C. This approximation
allows us to draw context memberships of different journeys in parallel, significantly increasing
our sampling scheme’s speed. We use adaptive Metropolis-Hastings (M-H) steps to update the
PY parameters d and a as these full conditionals do not have a closed form (a has closed form only
if d“0). We use Gibbs steps for all other parameters as their full conditionals have closed form.
Similarly to the click and purchase components, we use data augmentation for the filter decisions
and define uf

ijℓ “α0
ℓ `wijℓ

1 ¨αw
ℓ `βx

ij
1
¨αβ

ℓ `εf
ijℓ, such that εf

ijℓ „N p0,1q and fijℓ “1puf
ijℓ ą0q.

We sequentially update the parameters by,

1. Draw latent click utilities for alternative k PPageijtYtsu using a truncated Gaussian by,

uc
ijtk „

$

’

’

’

&

’

’

’

%

Truncated- N
`

suc
ijtk,1,lower“´8,upper“0

˘

if yc
ijt “e

Truncated- N
`

suc
ijtk,1,lower“maxtuc

ijt´k,0u,upper“8
˘

if yp
ij “k

Truncated- N
`

suc
ijtk,1,lower“´8,upper“maxtuc

ijt´ku
˘

otherwise,

where suc
ijtk “β0c

ij `xc
ijtk

1 ¨βx
ij `log-rankijtk ¨η if k PPageijt, and suc

ijtk “β0s
ij if k “s.

2. Draw latent purchase utilities by,

up
ijk „

$

’

’

’

&

’

’

’

%

Truncated- N
`

sup
ijk,1,lower“´8,upper“0

˘

if yp
ij “NoPurchase

Truncated- N
`

sup
ijk,1,lower“maxtup

ij´k,0u,upper“8
˘

if yp
ij “k

Truncated- N
`

sup
ijk,1,lower“´8,upper“maxtup

ij´ku
˘

otherwise,

where sup
ijk “β0p

ij `xijk
1 ¨βx

ij.
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3. Draw latent filter utilities by,

uf
ijℓ „

$

&

%

Truncated- N
´

α0
ℓ `wijℓ

1 ¨αw
ℓ `βx

ij
1
¨αβ

ℓ ,1,lower“´8,upper“0
¯

if fijℓ “0

Truncated- N
´

α0
ℓ `wijℓ

1 ¨αw
ℓ `βx

ij
1
¨αβ

ℓ ,1,lower“0,upper“8

¯

if fijℓ “1.

4. Draw individual-level stable preferences µi. We define a vector of click, purchase, and
filter latent utilities for journey j,

ruij “

»

—

—

–

“

uc
ijtk ´log-rankijtk ¨η

‰

tk
“

up
ijk

‰

k
”

uf
ijℓ´α0

ℓ ´wijℓ
1 ¨αw

ℓ

ı

ℓ

fi

ffi

ffi

fl

J

,

and rXij the corresponding “stacked” matrix of vectors multiplying βij in equations (3),
(4), and (6). That is,

rXij “

»

—

–

rXc
ij

rXp
ij

rAf
ij

fi

ffi

fl

,

where rXc
ij is the matrix of stacked click covariates. Specifically,

rXc
ij “

»

—

—

—

—

—

—

—

–

rXc
ij1
...

rXc
ijt
...

rXc
ijTij

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rXc
ijt “

»

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0
1 0 0 xc

ijt1
1

... ... ... ...
1 0 0 xc

ijtk
1

... ... ... ...
1 0 0 xc

ijtKijt

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Similarly, rXp
ij is the matrix of stacked purchased covariates,

rXp
ij “

»

—

—

—

—

—

—

—

–

0 0 1 xij1
1

... ... ... ...
0 0 1 xijk

1

... ... ... ...
0 0 1 xijtKij

1,

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

App - 4

WEB APPENDIX



and rAf
ij “

”

αβ
1 ...αβ

ℓ ...αβ
Lij

ı1

.

The columns of each of these matrices multiply βij “
`

β0c
ij ,β0s

ij ,β0p
ij ,βx

ij
1
˘1, respectively;

which yields the terms in (3), (4), and (6).

We further define rXi as

rXi “

»

—

—

—

—

—

—

—

–

rXi1
...
rXij

...
rXiJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and rui as

rui “

»

—

—

—

—

—

—

—

–

rui1´ rXi1 ¨ρ1
...

ruij ´ rXij ¨ρj

...
ruiJi

´ rXiJi
¨ρJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, we draw µi „N prµi,rSiq where

rS´1
i “Σ´1

` rX1
i
rXi

rµi “ rSi

´

Σ´1
¨0` rX1

irui

¯

.

5. Draw context membership zj as follows

ppzj “c|¨q“
πcPjc

C
ř

c1“1
πc1Pjc1

,

where Pjc “

´

śM
m“1ppqijm|θω

cmq

¯

¨ p
´

ruij ´ rXijµi|rXijθ
ρ
j ,1

¯

, with ppqijm|θω
cmq denoting

the pdf of query variables as defined in (2), and p
´

ruij ´ rXij ¨µi|rXij ¨θρ
j ,1

¯

denoting the
product of elementwise normal pdf evaluated at each components of ruij ´ rXij ¨µi with
mean rXij ¨θρ

j and variance 1.
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6. Draw the query components of context location parameters θω
c for each context c. We

denote J pcq the set of journeys j such that zj “c, and nc “|J pcq| the number of journeys
in that set. For each query variable m, we draw θω

cm depending on the type of query
variable modeled in (2). Specifically,

θω
cm „

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Beta
˜

ϕ0ma`
ř

jPJ pcq

qijm,ϕ0mb`nc´
ř

jPJ pcq
qijm

¸

if qijm is binary

Dirichlet
´

ϕ0m`rnqcm1,...,nqcmNms
J
¯

if qijm is categorical

Gamma
˜

ϕ0ma`nc,ϕ0mb`
ř

jPJ pcq

qijm

¸

if qijm is continuous positive-valued

N pµ̃cm,s̃cmq if qijm is continuous,

where nqcmn “
ř

jPJ pcq
1pqijm “nq, s̃´1

cm “
“

ϕ´1
0mσ `σ´2

m

‰

and µ̃cm “ s̃cm

ř

jPJ pcq
qijm.

7. Draw the click-purchase context location parameters θρ. We define sXc and suc as

sXc “

„

”

rXipjqj

ı

jPJ pcq

ȷ

, and suc “

„

”

ruipjqj ´ rXipjqj ¨µipjq

ı

jPJ pcq

ȷ

,

where ipjq denotes the customer to whom journey j belongs to.

We draw θρ
c „N psµc,sScq, where

sS´1
c “V ´1

0 ` sX1
c
sXc

sµc “ sSc

`

V ´1
0 ¨µ0` sX1

csuc

˘

.

8. Draw ranking effect η. Defining r as the vector of all log-rankijtk values, and the vector
of differences in click utilities ur “

“

tuc
ijtk ´β0c

ij `xc
ijtk

1 ¨βx
ijuijtk

‰

, we draw η by

η „N psµη,ss2
ηq,

where

ss´1
η “s´1

η `r1r

sµη “ssη

`

s´1
η ¨0`r1ur˘.
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9. Draw α0. We define ruf
0 as the vector of residual filter utilities where each component

is an observation pi,j,ℓq defined as

ruf
0ijℓ “uf

ijℓ´wijℓ
1
¨αw

ℓ ´βx
ij

1
¨αβ

ℓ .

We also define a binary matrix that multiplies the vector of intercepts α0 to yield the
respective level for each observation. In other words, this matrix encodes in binary
variables to which level ℓ the observation (row) belongs, such that the entry in each row
that represents the observation pi,j,ℓq takes the value one for column ℓ, and zero for all
others. Consequently, we draw α0 by

α0
„N psµα,0,sSα,0q,

where

sS´1
α,0 “S´1

α,0` rw1
0 rw0

sµα,0 “ sSα,0

´

S´1
α,0 ¨0` rw1

0ru
f
0

¯

.

10. Draw αw
ℓ . We define ruf

w,ℓ “

”

tuf
ijℓ´α0

ℓ ´βx
ij

1
¨αβ

ℓ uij

ı

as the vector of residual filter utilities,
and Wℓ “

“

tw1
ijℓuij

‰

the matrix of filter controls for level ℓ, and draw αw
ℓ by

αw
ℓ „N psµw

ℓ ,sSα,w,ℓq,

where

sS´1
α,w,ℓ “S´1

α,w `W1
ℓWℓ

sµw
ℓ “ sSα,w,ℓ

´

S´1
α,w ¨0`W1

ℓru
f
w,ℓ

¯

.

11. Draw αβ
ℓ . We define rub

w,ℓ “

”

tuf
ijℓ´α0

ℓ ´w1
ijℓ ¨αw

ℓ uij

ı

as the vector of residual filter utilities,
and Bℓ “

“

tβ1
ijuij

‰

the matrix of preferences, where each row of the matrix contains the
vector of preferences corresponding to the respective row in rub

w,ℓ. Draw αβ
ℓ by

αβ
ℓ „N psµβ

ℓ ,sSα,β,ℓq,
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where

sS´1
α,β,ℓ “S´1

α,β `B1
ℓBℓ

sµβ
ℓ “ sSα,β,ℓ

`

S´1
α,β ¨0`B1

ℓrub
w,ℓ

˘

.

12. (M-H step) Draw a proposal aprop „pa´propp¨|aq. Update a“aprop with probability

αpa,aprop
q“min

#

1,
Gammapaprop|ϕa

0,ϕa
1q

Gammapa|ϕa
0,ϕa

1q
¨

śC´1
c“1 BetapVc|1´d,aprop`c¨dq
śC´1

c“1 BetapVc|1´d,a`c¨dq
¨
pa´proppa|apropq

pa´proppaprop|aq

+

.

We use a log-normal pa´propp¨|aq“ logN plogpaq, τ 2
nq, where we use a vanishing adaptation

procedure (Atchadé and Rosenthal, 2005) to adapt the proposal step size to target an
acceptance rate of 0.44 (Gelman et al., 1995) through

τ 2
n “

$

&

%

τ 2
0 nď200,

|τ 2
n´1` ϵ

n
papn´0.44q| ną200,

where apn is the empirical acceptance rate up to iteration n. Note the proposal
distribution is not symmetric and yields a ratio pa´proppa|apropq

pa´proppaprop|aq
“ aprop

a
.

13. (M-H step) Draw a proposal dprop „pd´propp¨|dq. Update d“dprop with probability

αpd,dprop
q“min

#

1,
Beta

`

dprop|ϕd
0,ϕd

1
˘

Beta
`

d|ϕd
0,ϕd

1
˘ ¨

śC´1
c“1 BetapVc|1´dprop ,a`c¨dpropq
śC´1

c“1 BetapVc|1´d,a`c¨dq
¨
1{pd´proppdprop|dq

1{pd´proppd|dpropq

+

.

We use a logit-normal proposal distribution pd´propp¨|dq “ logit´N plogitpdq, s2
nq, where

the logit function is defined by logitpdq “ log
`

d
1´d

˘

, and the logit-normal pdf is defined
by logit´N px|µ,σ2q “ 1

σ
?

2π
1

xp1´xq
exp

!

´
plogitpxq´µq2

2σ2

)

. We adapt s2
n analogously to τ 2

n in
the previous step.

14. Draw context probabilities πc, by drawing the stick parameters Vc from

Vc „Beta
˜

1´d`nc ,a`c¨d`

C
ÿ

c1“c`1
nc1

¸

,

and compute πc according to (14).
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15. Draw population covariance matrix Σ, by

Σ´1
„Wishartpr1,R1q,

where

r1 “r0`I

R1
´1

“R0
´1

`
ÿ

i

µi ¨µi
1
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C Posterior distribution of holdout journey preferences

We outline the procedure to update the posterior distribution of preferences for holdout
journeys, given data on the focal journey and past journeys. (This corresponds to the
right-hand side of (16)). There are several relevant considerations for such a procedure.

First, we leverage the Pitman-Yor process when making inferences on new journeys, by
allowing for a previously unobserved context to be discovered in this focal journey. Second, as
the posterior of global parameters is obtained with a large number of journeys in the training
sample, we approximate the posterior of these parameters given all training data plus focal
journey j, by the posterior without focal journey j. That is, the inference on global parameters
remains largely unchanged by the addition of a single journey (except for discovering a context
that has not been observed before, as mentioned above). This assumption allows us to maintain
computational efficiency by not re-estimating the whole model when updating the inference
on current journey preferences as new data arrives. Third, as commented in Section 3.4, the
context of past journeys is conditionally dependent on the focal journey given past and current
journey data, because stable preferences and contexts both jointly determine the outcomes
in both journeys. Therefore, in the process of drawing preferences for new journeys, we update
the inferences for past journeys of the focal customer as well.

For each customer i, we denote the focal (holdout) journey by j, with j1 referring to
journeys different from the focal one. The set of past journeys (not including j) is denoted
by J piq, the vector of contexts of all past journeys by zi,´j “ tzij1uj1PJ piq, the entire journey
data for a journey j1 by Hi,j1 “tqij1 ,yc

ij11:Tj1
,fij11:L,yp

ij1u, the collection of past journey data by
Hi “

Ť

j1PJ piq

Hi,j1 , the set of global parameters by Φ,17 and all training data by D.

We update the posterior of preferences for focal journey j, βij, by

ppβij|qij,y
c
ij1:t,Lijt,Hi,Dq“

ż

ppβij|qij,y
c
ij1:t,Lijt,Hi,Φq¨ppΦ|D,qij,y

c
ij1:t,LijtqdΦ

«

ż

ppβij|qij,y
c
ij1:t,Lijt,Hi,Φq¨ppΦ|DqdΦ, (19)

where ppΦ|Dq is the posterior distribution of the global parameters given the training data.
We expand the left term in (19), by drawing customer stable preferences, context-specific

17Note that the global parameters are Φ“

”

Σ,η,a,d,tπc,θcuC
c“1,tα0

ℓ ,αw
ℓ ,αβ

ℓ uℓPt1,...,Lu

ı

.
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parameters, focal context membership, and past journeys contexts and marginalizing them,

ppβij|qij,y
c
ij1:t,Lijt,Hi,Φq“
ż

ppβij,µi,γj,γ´j,zij,zi,´j|qij,y
c
ij1:t,Lijt,Hi,Φq¨dµi ¨dγj ¨dγ´j ¨dzij ¨dzi,´j, (20)

where γ´j “tγj1uj1PJ piq. Finally, noting that γj “

˜

ωj

ρj

¸

we can write this posterior as being

proportional to the joint

ppβij,µi,γj,γ´j,zij,zi,´j|qij,y
c
ij1:t,Lijt,Hi,Φq

9 ppβij,µi,γj,γ´j,zij,zi,´j,qij,y
c
ij1:t,Lijt,Hi|,Φq

“ ppqij|ωjq¨ppyc
ij1:t|µi,ρj,ηq¨ppLijt|µi,ρj,α

0,αw,αβ
q¨1tβij “µi`ρju

¨
ź

j1PJ piq

ppHij1 |µi,γ´j,Φq

¨ppµi|Σq¨p
´

zij,γj|a,d,tπc,θcu
rC
c“1

¯

¨
ź

j1PJ piq

p
´

zij1 ,γj1 |a,d,tπc,θcu
rC
c“1

¯

, (21)

where rC is the number of contexts (which is a latent variable, and thus, it is drawn from the
posterior ppΦ|Dq).

We update those parameters using steps 1, 2, 3, and 4 exactly as shown in Web Appendix
B, and we adapt steps 5, 6, and 7 to allow for previously unobserved contexts to be drawn by:

5˚. Draw context membership zj Pt1... rCuYt rC`1u as follows

ppzj “c|¨q9

$

&

%

pnc´dq¨Pjc, if cď rC

pa`d¨ rCq¨P˚
j if c“ rC`1

where Pjc as defined in step 5 in Web Appendix B, and P˚
j “

´

śM
m“1ppqijm|ϕ0mq

¯

¨

p
´

ruij ´ rXijµi|rXij,µ0,V0

¯

the product of posterior predictive likelihoods18 such that

ppqijm|ϕ0mq“

ż

ppqijm|θw
mq¨ppθw

m|ϕ0mqdθw
m

p
´

ruij ´ rXijµi|rXij,µ0,V0

¯

“

ż

p
´

ruij ´ rXijµi|rXijθ
ρ
j

¯

N pθρ
|µ,V0qdθρ.

18As all prior-likelihood pairs are conditionally conjugate, these posterior predictive likelihoods have closed
form.
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6˚. If zij “ rC ` 1, then draw the query components of context location parameters θω
rC`1

following step 6 in Web Appendix B.

7˚. If zij “ rC`1, then draw the click-purchase context location parameters θρ
rC`1 following

step 7 in Web Appendix B.

˚˚: If zij “ rC`1, then update rC “ rC`1, and repeat the same steps for all j1 PJ pcq.
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D Algorithm for computing purchase probabilities

Algorithm 1 Computing purchase probabilities
Input

A vector of preferences βij

A set of products with at least one click Cobs
ij “tk|Dt1 ď t,yc

ijt1 “ku

Number of samples S for the Monte Carlo approximation
Trained predictor function ĝCpx,βq

Output
ppyp

ij |yc
ij1:t,βijq

Procedure
for all sÐ1:S do

Initialize consideration set Cij ÐCobs
ij

for all k RCobs
ij do

Draw u„Up0,1q

if uď ĝCpxijk,βijq then
Cij ÐCij Ytku

end if
end for
Compute ps “ppyp

ij |Cij ,βijq using GLK simulator and Equation (6)
end for
Return ppyp

ij |yc
ij1:t,βijq« 1

S

řS
s“1ps
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E Details on the computation of consideration probabilities
(XGBoost)

We estimate tree-based classifiers (XGBoost and Random Forest) to predict consideration in hold
out journeys. We train such models using the data from the training sample (including clicks as
dependent variable and the product attributes as features) as well as draws from the posterior dis-
tribution of the vector of preferences (which are included as additional features in our classifier).

In our empirical application, consideration is operationalized slightly differently for the two
types of flights one-way and roundtrip. For one-way itineraries, the details page is shown after a
single click on a oneway results page; moment at which we assume the flight is being considered.
For roundtrip itineraries, on the other hand, the customer must click on the outbound component
of the flight (on an outbound results page), and on the inbound (return) component of the flight
in order to see the details page and for the product to be considered. Accordingly, we train three
different models, each aiming at a different prediction task: One that predicts consideration
for oneway flights (ĝow), another one that predicts whether the outbound component of a
roundtrip flight is considered (ĝout), and another one that predicts, conditional on the outbound
component being considered, whether the inbound component is also considered (ĝin).

Following, (18), we compute the consideration probabilities given whether the customer
has clicked on the itinerary, or a portion of the itinerary. That is,

ppk PCij|OneWay,yc
ij1:t,βijq«

$

&

%

1 if flight was clicked on before

ĝowpxijk,βijq if flight has not been clicked on yet,

ppk PCij|Roundtrip,yc
ij1:t,βijq«

$

’

’

’

&

’

’

’

%

1 if both legs were clicked on

1¨ĝinpxijk,βijq if only outbound leg was clicked on

ĝoutpxijk,βijq¨ĝinpxijk,βijq if no leg has been clicked on.

Because the parameters βij are estimated in a Bayesian manner (i.e., we don’t have a
point estimate but a posterior distribution), we draw a sample of 50 draws from the posterior
distribution of βij when training the consideration of each journey. Specifically, for each
product k in a journey, we create 50 observations, each with a feature vector concatenating
the vector of product attributes, xijk, and the drawn preferences rβijd. We sample 1,000,000
observations („1% of total) to train the classifiers. We use oneway observations to train ĝow;
and roundtrip observations to train ĝout. To train ĝin, we only use roundtrip observations
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such that the outbound leg of the corresponding itinerary was clicked on.19 We use as binary
outcomes whether the corresponding product of each observation was clicked on during the
journey,20 and the corresponding cross-entropy loss (i.e., binary logistic) to train the models.

We use a 80%-20% training/test split, and ten-fold cross-validation on the training
sample over a grid to tune the hyperparameters of each classifier (e.g., the learning rate and
the maximum depth of the trees for the XGBoost). Table E.2 shows the performance of both
the XGBoost and the Random Forest on each prediction task. Because the XGBoost overall
accuracy metrics (F1 and AUC) are superior in all tasks, we use the results of the XGBoost
when augmenting consideration sets.

Consideration
Model Balanced accuracy Precision Recall F1 AUC
Oneway (ĝow)

XGBoost 0.2287 0.3893 0.0680 0.1158 0.9064
Random Forest 0.3403 0.6486 0.0320 0.0610 0.6898

Outbound (ĝout)
XGBoost 0.9598 0.9406 0.9789 0.9594 0.9958
Random Forest 0.8027 0.8304 0.7749 0.8017 0.9593

Inbound (ĝin)
XGBoost 0.3488 0.5482 0.1494 0.2348 0.9233
Random Forest 0.3928 0.6879 0.0977 0.1711 0.7737

Table E.2: Performance of XGBoost consideration predictors.

19Arguably, there could be selection bias affecting our sample, as we would make predictions for those
not clicked on yet based only on those clicked on the outbound leg. However, we argue that this approach
is the most sensible given the task at hand. First, any potential selection bias should hurt the out-of-sample
performance, and, thus, be captured by the out-of-sample performance of the predictions of the whole model.
Second, those predictions should only be relevant for products that their outbound leg was clicked on, or that
the outbound model predicts will be clicked on. Therefore, even if predictions are off for products that are
unlikely to be clicked on, these are captured already by pgout.

20For the outbound leg model, we use as an outcome whether that product has the same exact outbound
leg as any product that was clicked on during the journey, that is, if an outbound leg is clicked on within a
results page, all returning flights displayed on the next page (which share the same already-clicked outbound
leg) are defined as positive labels for the predictive model.
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F Empirical application: Additional figures and summary statistics

F.1 Example of purchase journey steps

F.2 Product attributes

App - 16

WEB APPENDIX



(a) Example of query page

(b) Example of outbound page results (c) Example of inbound page results

(d) Example of flight details results

  

Figure F.2: Purchase journey steps
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Product attribute Mean SD Quantiles
5% 50% 95%

Product level attributes
Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117

Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42 28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07 17.08
Number of stops: Non stop 0.20 . 0 0 1
Number of stops: One stop 0.59 . 0 1 1
Number of stops: 2+ stops 0.21 . 0 0 1
Alliance: Alaska Airlines 0.04 . 0 0 0
Alliance: Frontier 0.01 . 0 0 0
Alliance: JetBlue 0.03 . 0 0 0
Alliance: Multiple alliances 0.07 . 0 0 1
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.27 . 0 0 1
Alliance: Skyteam (Delta) 0.27 . 0 0 1
Alliance: Spirit 0.02 . 0 0 0
Alliance: Star Alliance (United) 0.23 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.47 . 0 0 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.31 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.18 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.05 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.24 . 0 0 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.34 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.37 . 0 0 1

Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 4.27 17.75
Number of stops: Non stop 0.19 . 0 0 1
Number of stops: One stop 0.70 . 0 1 1
Number of stops: 2+ stops 0.11 . 0 0 1
Alliance: Alaska Airlines 0.02 . 0 0 0
Alliance: Frontier 0.02 . 0 0 0
Alliance: JetBlue 0.02 . 0 0 0
Alliance: Multiple alliances 0.02 . 0 0 0
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.51 . 0 1 1
Alliance: Skyteam (Delta) 0.13 . 0 0 1
Alliance: Spirit 0.05 . 0 0 1
Alliance: Star Alliance (United) 0.15 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.65 . 0 1 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.18 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.14 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.55 . 0 1 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.19 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.23 . 0 0 1

Table F.3: Summary statistics of product attributes in page results
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F.3 Filters construction and summary statistics

As mentioned in the main manuscript, the focal company did not collect the action of “filtering”
directly. Rather, we infer such a behavior from the flight results we observe in the data.
Specifically, we construct filter data conservatively in the following manner: (1) We infer that a
filter was applied if all product results on a page have the same level on a product attribute (e.g.,
non-stop) and this does not occur in the first page of results.21 (2) We allow multiple filters
on a page as long as they belong to different attributes (e.g., American Airlines and non-stop).

Similar to the click and purchase data, airline data in filters is equally sparse, so we
aggregate them into filters at the alliance level. That said, we still infer whether a filter was
applied on a page using the airline data, as customers could only apply filters at the airline
level and not at the alliance level during the observation window. For example, if a page
contains results from multiple OneWorld airlines (e.g., American Airlines and British Airways
results), we do not define those results as resulting from a filter, as the platform did not allow
customers to filter specifically on alliances. However, we define a filter on the OneWorld
alliance if all flights belong to a single airline that belongs to the OneWorld alliance (e.g., all
flights American Airlines or all flights British Airways).

Table F.4 shows, per attribute and level, the percentage of first-party journeys where
a filter was applied.

21Because the website does not filter by default, a constant attribute on the first page reflects limited supply,
not a filtering constraint.
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Attribute Level Proportion journeys filtered

Mean s.e.

OneWorld 0.020 0.001
Skyteam 0.016 0.001
Star Alliance 0.017 0.001
Alaska Airlines 0.003 0.000
Frontier 0.001 0.000
JetBlue 0.006 0.000
Spirit 0.001 0.000

Alliance

OTHER_NO_ALLIANCE 0.008 0.001

Non-stop 0.138 0.002Stops
One stop 0.038 0.001

Early morning (0:00am - 4:59am) 0.004 0.000
Morning (5:00am - 11:59am) 0.032 0.001
Afternoon (12:00pm - 5:59pm) 0.027 0.001

Departure time

Evening (6:00pm - 11:59pm) 0.028 0.001

Early morning (0:00am - 4:59am) 0.002 0.000
Morning (5:00am - 11:59am) 0.018 0.001
Afternoon (12:00pm - 5:59pm) 0.019 0.001

Arrival time

Evening (6:00pm - 11:59pm) 0.021 0.001

Table F.4: Percentage of journeys with filters in attributes.
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G Additional results

G.1 Context-specific parameter estimates

Context

Parameter 1 2 3 4 5 6 7 8 9 10 11

Query
Is it roundtrip? Yes 0.24 0.91 0.90 0.99 0.97 0.93 0.95 0.99 0.20 0.96 0.97
Is it domestic? (within EU is domestic) Yes 1.00 1.00 1.00 0.00 0.02 1.00 0.00 1.00 0.08 0.00 0.03
Flying from international airport? Yes 0.55 0.74 0.48 0.87 0.74 0.50 0.94 0.62 0.90 0.90 0.90
Market: US Domestic 0.98 0.95 0.97 0.00 0.00 0.97 0.00 0.93 0.00 0.00 0.00
Market: US Overseas 0.00 0.00 0.00 0.83 0.01 0.00 0.72 0.00 0.00 0.78 0.01
Market: Non-US across continent 0.00 0.00 0.00 0.15 0.05 0.00 0.26 0.00 0.09 0.20 0.08
Market: Non-US within continent 0.00 0.02 0.00 0.01 0.07 0.00 0.01 0.04 0.19 0.01 0.10
Market: US North America 0.02 0.02 0.03 0.00 0.88 0.02 0.00 0.03 0.72 0.00 0.81
Type of location searched: Airport 0.92 0.89 0.93 0.88 0.90 0.88 0.89 0.91 0.90 0.85 0.81
Type of location searched: Both 0.02 0.01 0.02 0.02 0.06 0.04 0.04 0.02 0.07 0.04 0.07
Type of location searched: City 0.05 0.10 0.05 0.10 0.04 0.08 0.07 0.07 0.03 0.12 0.12
Trip distance (1000s kms) 1.87 2.53 1.84 9.72 2.71 0.80 9.71 2.36 2.53 8.96 2.77
More than one adult? Yes 0.17 0.39 0.24 0.28 0.46 0.22 0.18 0.50 0.26 0.26 0.47
Traveling with kids? Yes 0.04 0.13 0.06 0.03 0.17 0.05 0.11 0.17 0.10 0.07 0.12
Is it summer season? Yes 0.43 0.39 0.42 0.00 0.26 0.36 0.21 0.00 0.62 0.98 0.21
Holiday season? Yes 0.00 0.00 0.01 0.06 0.07 0.01 0.00 0.32 0.00 0.00 0.09
Does stay include a weekend? Yes 0.15 0.89 0.99 1.00 0.97 0.83 1.00 0.99 0.25 1.00 0.90
Length of stay (only RT) (days) 2.30 5.25 5.63 14.77 9.83 3.88 45.67 6.16 2.81 13.16 7.40
Searching on weekend? Yes 0.19 0.21 0.21 0.25 0.24 0.19 0.26 0.17 0.24 0.27 0.20
Searching during work hours? Yes 0.52 0.52 0.52 0.51 0.55 0.54 0.37 0.59 0.42 0.43 0.60
Time in advance to buy (days) 23.95 58.21 41.18 107.77 81.79 37.34 53.67 111.04 29.07 39.38 92.67

Preferences
Intercept Search: OW Search -0.02 -0.28 0.01 -0.14 0.04 -0.19 0.06 0.09 -0.06 -0.18 -0.16
Intercept Search: RT Outbound -0.22 -0.51 -0.13 -0.70 -0.13 -0.49 -0.10 -0.09 -0.24 -0.41 -0.45
Intercept Search: RT Inbound -0.03 -0.11 -0.26 -0.18 -0.01 -0.13 -0.11 -0.15 -0.06 -0.10 -0.04
Intercept Click: OW Search -0.81 -0.37 -0.61 0.04 0.08 -0.09 -0.08 -0.09 -0.36 -0.02 -0.03
Intercept Click: RT Outbound -0.28 -0.17 -0.18 -0.14 -0.18 -0.43 -0.31 -0.61 -0.04 -0.21 -0.43
Intercept Click: RT Inbound 0.05 -0.18 0.19 0.28 0.35 -0.15 0.43 0.08 -0.02 0.15 -0.13
Price -0.19 0.02 -0.37 -0.19 -0.18 0.15 -0.34 -0.15 -0.03 -0.06 0.32
Length of trip (hours) -0.59 -0.54 -0.90 -0.59 -0.85 -0.20 -0.69 -0.46 -0.49 -0.21 -0.09
Number of stops: Non stop 0.11 0.43 0.60 0.31 0.60 0.14 0.35 0.18 -0.02 0.22 0.03
Number of stops: 2+ stops -0.33 -0.15 -0.28 -0.46 -0.12 -0.06 -0.40 -0.10 -0.10 -0.25 -0.05
Alliance: Skyteam (Delta) -0.02 -0.12 -0.18 -0.09 -0.14 -0.09 -0.01 -0.06 -0.12 0.03 -0.10
Alliance: Star Alliance (United) -0.10 -0.19 -0.21 0.14 0.12 -0.16 -0.06 -0.09 0.02 -0.06 -0.06
Alliance: Alaska Airlines -0.06 -0.08 0.01 0.02 -0.10 -0.01 0.13 -0.01 -0.07 -0.01 -0.04
Alliance: Spirit -0.21 -0.02 -0.21 0.01 0.00 0.04 -0.06 -0.05 -0.01 0.00 0.01
Alliance: JetBlue -0.02 0.23 -0.01 0.00 0.08 0.13 -0.13 -0.03 0.04 0.04 0.02
Alliance: Frontier -0.11 0.06 -0.03 -0.03 0.00 0.02 -0.02 0.01 0.06 0.01 0.00
Alliance: Other – No alliance -0.09 -0.05 -0.04 0.05 0.02 -0.03 0.12 0.12 -0.14 -0.06 -0.04
Alliance: Multiple alliances -0.13 -0.07 -0.10 0.02 -0.08 -0.02 -0.09 -0.04 -0.09 0.00 0.03
Outbound dep. time: Early morning (0:00am - 4:59am) -0.16 -0.01 0.07 0.05 0.11 0.01 -0.08 0.01 -0.03 -0.01 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.08 -0.26 -0.09 0.03 0.01 -0.03 -0.14 -0.06 -0.04 -0.10 -0.07
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.27 -0.21 -0.07 -0.07 -0.10 -0.04 -0.11 -0.01 -0.03 -0.07 -0.07
Outbound arr. time: Early morning (0:00am - 4:59am) -0.11 -0.14 -0.20 0.00 -0.05 -0.04 -0.11 -0.05 -0.03 -0.05 -0.02
Outbound arr. time: Afternoon (12:00pm - 5:59pm) 0.10 0.13 0.19 -0.11 0.04 -0.11 -0.05 -0.02 -0.09 -0.12 -0.08
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.01 -0.17 0.12 -0.08 -0.12 0.01 -0.14 -0.14 -0.07 -0.01 -0.06
Inbound dep. time: Early morning (0:00am - 4:59am) -0.08 0.11 0.00 0.10 -0.01 0.12 -0.07 -0.15 -0.02 0.11 0.10
Inbound dep. time: Afternoon (12:00pm - 5:59pm) 0.10 0.23 0.35 0.05 0.15 -0.01 0.07 0.09 -0.01 0.00 -0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) 0.06 -0.03 0.06 0.05 -0.04 -0.01 0.12 -0.01 0.01 0.03 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) -0.11 0.05 0.00 0.02 0.05 0.07 -0.13 -0.07 0.00 0.11 0.08
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.01 0.03 0.14 -0.04 0.09 0.00 0.09 0.03 -0.05 -0.02 -0.06
Inbound arr. time: Evening (6:00pm - 11:59pm) 0.20 0.21 0.44 -0.01 0.17 -0.01 -0.05 0.09 0.00 0.02 -0.04

Table G.5: Posterior mean of location click and purchase parameters. Contexts 1-11
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Context

Parameter 12 13 14 15 16 17 18 19 20 21 22

Query
Is it roundtrip? Yes 0.09 0.16 0.96 0.31 0.37 0.27 0.13 0.17 0.09 0.05 0.92
Is it domestic? (within EU is domestic) Yes 0.00 0.94 0.19 1.00 0.97 0.00 0.00 0.18 0.06 1.00 0.71
Flying from international airport? Yes 0.90 1.00 0.99 0.44 1.00 0.94 0.89 0.97 0.88 0.52 1.00
Market: US Domestic 0.00 0.05 0.00 0.98 0.15 0.00 0.00 0.00 0.00 0.96 0.01
Market: US Overseas 0.87 0.00 0.00 0.00 0.00 0.66 0.79 0.01 0.00 0.00 0.00
Market: Non-US across continent 0.11 0.00 0.06 0.00 0.00 0.30 0.19 0.15 0.06 0.00 0.01
Market: Non-US within continent 0.01 0.93 0.29 0.01 0.74 0.04 0.01 0.43 0.36 0.02 0.97
Market: US North America 0.00 0.02 0.65 0.01 0.11 0.00 0.00 0.41 0.58 0.02 0.01
Type of location searched: Airport 0.84 0.76 0.83 0.90 0.76 0.85 0.88 0.87 0.79 0.91 0.84
Type of location searched: Both 0.01 0.10 0.08 0.04 0.03 0.04 0.03 0.09 0.16 0.06 0.13
Type of location searched: City 0.15 0.14 0.09 0.05 0.22 0.11 0.10 0.04 0.06 0.03 0.03
Trip distance (1000s kms) 9.81 1.16 2.41 0.50 0.59 8.70 9.84 2.37 2.72 2.39 1.37
More than one adult? Yes 0.19 0.40 0.08 0.13 0.48 0.17 0.29 0.03 0.42 0.45 0.41
Traveling with kids? Yes 0.06 0.09 0.01 0.03 0.13 0.05 0.02 0.01 0.07 0.11 0.12
Is it summer season? Yes 0.57 0.56 0.59 0.43 0.37 0.40 0.01 0.10 0.03 0.02 0.22
Holiday season? Yes 0.00 0.01 0.00 0.00 0.02 0.00 0.15 0.00 0.19 0.37 0.06
Does stay include a weekend? Yes 0.30 0.25 0.99 0.16 0.41 0.15 0.11 0.23 0.24 0.25 0.90
Length of stay (only RT) (days) 6.53 2.92 8.55 1.56 3.92 3.09 3.40 3.17 4.03 4.21 6.96
Searching on weekend? Yes 0.18 0.29 0.14 0.22 0.28 0.26 0.17 0.12 0.22 0.18 0.27
Searching during work hours? Yes 0.34 0.29 0.47 0.58 0.31 0.41 0.48 0.41 0.30 0.50 0.29
Time in advance to buy (days) 28.34 30.26 25.97 14.45 60.45 46.61 121.05 8.12 109.18 116.00 73.98

Preferences
Intercept Search: OW Search -0.30 0.12 0.19 -0.16 -0.15 -0.31 -0.02 -0.15 0.14 -0.01 -0.12
Intercept Search: RT Outbound 0.01 -0.04 -0.17 -0.08 -0.23 -0.30 0.03 -0.22 0.09 -0.02 -0.34
Intercept Search: RT Inbound 0.17 -0.08 -0.05 0.02 0.01 -0.03 -0.02 0.01 0.02 -0.01 0.01
Intercept Click: OW Search -0.31 -0.34 -0.06 -0.46 -0.35 -0.34 -0.28 -0.14 -0.29 -0.32 -0.01
Intercept Click: RT Outbound 0.06 -0.06 -0.52 -0.19 -0.16 -0.24 -0.20 0.02 -0.04 0.02 -0.23
Intercept Click: RT Inbound 0.01 0.00 0.02 0.16 -0.04 -0.04 0.09 -0.03 0.03 -0.04 0.02
Price -0.38 -0.11 -0.08 -0.04 0.17 0.13 -0.14 -0.15 -0.13 -0.15 0.13
Length of trip (hours) -0.45 -0.53 -0.33 -0.23 -0.22 -0.08 -0.35 -0.35 -0.38 -0.29 -0.15
Number of stops: Non stop 0.02 0.05 -0.01 -0.05 -0.11 -0.06 -0.04 0.18 -0.06 -0.13 0.06
Number of stops: 2+ stops -0.15 -0.09 -0.09 -0.09 -0.03 -0.12 -0.30 -0.11 -0.01 -0.07 -0.03
Alliance: Skyteam (Delta) -0.16 -0.05 -0.07 -0.04 -0.16 -0.12 -0.09 -0.05 -0.08 -0.07 -0.03
Alliance: Star Alliance (United) -0.07 0.02 -0.07 -0.16 -0.13 -0.18 -0.09 -0.01 -0.03 -0.01 -0.04
Alliance: Alaska Airlines 0.02 -0.03 0.04 -0.07 -0.03 -0.02 0.03 -0.05 0.02 -0.06 -0.03
Alliance: Spirit 0.00 -0.03 -0.02 0.00 0.00 0.02 -0.02 0.04 -0.04 0.02 0.02
Alliance: JetBlue 0.10 -0.03 -0.02 -0.01 -0.02 0.02 -0.10 0.12 -0.08 0.03 0.06
Alliance: Frontier 0.06 -0.04 -0.01 -0.02 -0.04 0.00 -0.01 0.03 0.01 -0.03 0.00
Alliance: Other – No alliance 0.10 -0.13 -0.01 0.02 -0.11 -0.03 -0.05 -0.08 -0.01 -0.03 -0.03
Alliance: Multiple alliances -0.09 0.12 -0.07 0.02 -0.01 0.02 -0.12 0.04 -0.01 -0.03 0.00
Outbound dep. time: Early morning (0:00am - 4:59am) -0.02 0.02 -0.04 -0.02 0.07 0.04 -0.12 -0.01 -0.10 0.00 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.04 0.00 -0.10 -0.14 -0.08 -0.10 -0.12 -0.09 -0.08 -0.11 -0.01
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.06 -0.17 0.00 -0.16 -0.19 -0.17 -0.06 -0.07 -0.04 -0.12 -0.04
Outbound arr. time: Early morning (0:00am - 4:59am) -0.13 -0.09 -0.06 0.00 -0.04 -0.05 -0.06 -0.01 -0.08 -0.10 0.00
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.03 0.04 -0.05 -0.23 -0.04 -0.10 -0.26 -0.08 -0.14 -0.01 0.00
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.13 -0.14 -0.18 -0.19 -0.22 -0.12 -0.18 0.05 -0.10 -0.09 -0.02
Inbound dep. time: Early morning (0:00am - 4:59am) 0.15 -0.04 -0.07 -0.06 0.00 0.07 -0.09 0.12 -0.04 0.05 0.06
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.02 0.06 -0.06 0.08 -0.02 -0.02 0.01 0.00 0.02 -0.01 0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.04 0.02 0.03 -0.01 -0.01 -0.01 0.04 -0.03 0.03 -0.02 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) 0.12 0.04 -0.03 0.00 0.00 0.09 -0.08 0.10 -0.03 0.01 0.02
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.00 -0.01 0.00 0.00 0.00 -0.02 0.01 -0.01 0.04 -0.04 0.01
Inbound arr. time: Evening (6:00pm - 11:59pm) 0.00 0.04 0.02 0.10 0.00 0.00 0.00 0.00 0.00 -0.02 -0.02

Table G.6: Posterior mean of location click and purchase parameters. Contexts 12-22
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G.2 Relative differences across contexts (all variables)

We normalize the location parameters to account for how they vary across contexts and how
much uncertainty their posterior has. First, for each context c, we compute the posterior
mean of each location parameter θc. Second, we compare these location parameters with the
population mean level of those same parameters, but now we include query parameters as well.
We subtract these two to measure whether contexts are above or below average on each of the
query parameters and click and purchase preferences. Finally, we normalize these differences
by dividing by the square root of the posterior variance across journeys. This variance is
composed by two terms (similar to ANOVA): (1) the within-context posterior variance of
each θc, which measures the posterior uncertainty of each location parameter θc; and (2) the
across-context variance of all θc with respect to the population mean, which captures how
much variance is explained by the differences between contexts. By normalizing the location
parameters, we can now compare contexts with respect to whether they score higher or lower
than average on each of the query parameters and preferences.
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Time in advance to buy (days)

Searching during work hours?

Searching on weekend?

Length of stay (only RT) (days)

Does stay include a weekend?

Holiday season?

Is it summer season?

Traveling with kids?

More than one adult?

Trip distance (kms)

Flying from international airport?

Is it domestic? (within EU is domestic)

Is it roundtrip?

Inbound arr. time: Evening (6:00pm − 11:59pm)

Inbound arr. time: Afternoon (12:00pm − 5:59pm)
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Inbound dep. time: Afternoon (12:00pm − 5:59pm)

Inbound dep. time: Early morning (0:00am − 4:59am)
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Outbound arr. time: Afternoon (12:00pm − 5:59pm)

Outbound arr. time: Early morning (0:00am − 4:59am)
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Figure G.3: Posterior mean of all context location parameters θc, relative to the average
in the population. The top figure shows how each context deviates from the
average with respect to the query variables. The bottom figure shows deviations
with respect to the preference parameters. Blue (red) boxes mean positive
(negative) deviation from the average in the population.
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G.3 Benchmark models

We describe in detail how the benchmark models are trained and how the binary prediction
scores are normalized per journey. As both benchmark models are built for binary classification
tasks (or multi-class classification tasks with a fixed set of classes across observations), we
create a series of binary classifications and use normalization to convert these to a multinomial
choice task (or varying choice sizes, depending on the consideration set of each journey).

Consider customer i, in journey j and the set Kj that contains the products customer
i can buy in journey j (we also include k “0, an additional “no-purchase product” in this set).
We assemble the set of all observations O “ tpi,j,kq| i “ 1,...,I, j “ 1...,Ji, k P Kju, where each
observation (“row” in our dataset) represents a product in a journey. We create a single training
dataset using the clickstream data of the entire journey of each customer in the training data
to estimate the benchmark models, which mimic the information seen by the proposed model.

To compute predictions in the test set (i.e., in journeys that have not been observed yet),
we create a dataset that changes as information comes in. When making predictions after 5
steps, we use all the information in the journey available within the first 5 steps of the journey.
To avoid selection bias and to be able to compare quantities across the different stages of the
journey, we hold constant the set of journeys across the two test conditions: after query and
after 5 steps (columns of Table 4). Specifically, for journeys shorter than 5 steps, we use the
entire journey when making 5-step predictions.

For each observation, we create the binary outcome Yijk, which equals one if customer
i purchased product k during journey j, and zero otherwise (Yij0 “1 if the customer ends the
journey without a purchase); and a set of features Xijk (“columns” in our dataset) that contain
the information for each customer, journey, and product. Specifically, we include five types
of features in Xijk:

(1) the set of query variables for journey j (same as those in the query model),

(2) summary statistics of the attributes of all the products shown in the first page of journey
j (same as those in the main model),

(3) the clicks and filters (during the focal journey) up to the moment when the prediction
is made (capturing what the customer has been clicking so far),

(4) the queries, product attributes, clicks, filters, and purchases from past journeys
(capturing the customer’s past behavior), and

(5) the attributes of product k.
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We now provide details about each of these sets of variables:

(1) We use the same set of query variables as in the main model. We encode all categorical
variables as binary (leaving one level out to avoid multicollinearity).

(2) We use the same set of attributes as in the main model, with the exception that we
encode categorical variables in full one-hot encoding, such that each level in a categorical
variable has a corresponding binary feature. We summarize these features across all
products shown on the first page of journey j, and compute the average, minimum, and
maximum shown on the first page.

(3) We categorize ’clicks’ in two primary ways. Firstly, at the product level, we represent using
a binary feature whether the focal product k has been selected or not. In the training data,
clicks throughout the entire journey are used to formulate this binary feature since the
model undergoes a one-time training. In the test data, this feature is set to one if product
k has been clicked on by that point in the journey. If the product remains unclicked, this
feature corresponds to the percentage of products clicked in the training data; essentially,
in the absence of the feature, we resort to the mean value from the training data.

Secondly, at the journey level, we aggregate the features of all clicked products within
the focal journey, utilizing averages for continuous data and counts for binary data.
Mirroring the process mentioned earlier, the training data summary is computed at the
end of the journey, whereas the test data incorporates information accessible up to that
specific step. Furthermore, we document the total count of clicked products within the
focal journey. Filters are integrated in a similar fashion.

(4) We compute the average of variables (1) – (3) plus the attributes of purchased products
and the number of past purchases, across all past journeys of customer i. In the training
data, for focal journey j, these summaries are computed across journeys 1 through j´1;
whereas in the test data, we use the summarized across all journeys of customer i in
the training data. We also include the number of past journeys (such that a non-linear
model can recreate counts).

(5) We include the features of product k as done in the proposed model, and we use a binary
feature to distinguish between actual products and the No-Purchase product.

In sum, we generated a training dataset of 258,588 observations and 454 features. We
train both binary classifiers, Random Forest (RF) and XGBoost, using a cross-entropy loss
(i.e., binary logistic). For the RF, we use honest splitting estimation, where the sample is
split in two: one to construct the trees and another to evaluate the predictions. We use a

App - 26

WEB APPENDIX



sample fraction of 0.5, a number of variable tries per split of 41 (
?

#features`20), an honesty
fraction of 0.5, and 2000 trees. For XGBoost, we use 100 rounds with a learning rate of 1 and
a maximum depth of trees of 4.

After the models are trained, we compute predictions on the test data, xpY ijk, in multiple
steps. First, we normalize the predictive scores from the benchmarks per journey, such that
they sum to one by

xpY
norm
ijk “

xpY ijk
ř

k1PKpjq

xpY ijk1

,

as these binary predictions are generated independently for all observations. Note that this
normalization is not needed for the proposed model as the model provides a probability
measure directly. The next steps apply to both benchmark models and our proposed model.

Second, for the incidence predictive task, we label a journey as a purchase if the
normalized score for the no-purchase product is lower than 0.5, that is,

pY incidence
ij “1

!

xpY
norm
ij0 ď0.5

)

.

We compute balanced accuracy, precision, and recall from these predicted labels.

Third, for the product choice given purchase predictive task, we first compute choice
given purchase scores per product by

xpY
choice
ijk “

xpY
norm
ijk

ř

k1PKpjq:k‰0
xpY

norm
ijk1

,

and label the predicted chosen alternative as the product with the maximum score per journey

pY choice
ij “argmax

kPKpjq

!

xpY
choice
ijk

)

.

We use the predicted labels pY choice
ij to compute hitrate (percentage of journeys where predicted

choice equals actual chosen product). In order to provide information on how the model
predicts at the product level (what the models were trained for), we use xpY

choice
ijk to compute

balanced accuracy by labeling as one the product with the highest score and computing the
confusion matrix using the data at the journey-product level. Note that in such case, precision,
recall, and balanced accuracy are all equal, as there is only one chosen product per journey
(actual), and only one product is predicted to be chosen.
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G.4 Additional predictive validity results

G.4.1 Prediction of proposed vs. benchmark models with 2 clicks

Incidence
Model After query After 2 steps
Balanced accuracy

Proposed model 0.62 0.64
Random forest 0.60 0.67
XGBoost 0.50 0.53

Precision
Proposed model 0.21 0.22
Random forest 0.28 0.31
XGBoost . 0.60

Recall
Proposed model 0.83 0.87
Random forest 0.40 0.57
XGBoost 0.00 0.06

(a) Purchase incidence of proposed vs. bench-
mark models.

Product choice given purchase
Model After query After 2 steps
Hitrate

Proposed model 0.16 0.27
Random forest 0.16 0.18
XGBoost 0.03 0.27

Balanced accuracy
Proposed model 0.58 0.63
Random forest 0.58 0.59
XGBoost 0.51 0.63

(b) Choice given purchase of proposed vs.
benchmark models.

Table G.7: Prediction of proposed vs. benchmark models after query and 2 clicks.
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G.4.2 Additional prediction measures

We complement the results presented in Table 4 of the main manuscript by adding the F1
measure (harmonic mean of precision and recall) and the Jaccard index (ratio of true positives
over the union of true and predicted positive outcomes). We also report precision and recall for
choice. We remark that in the choice given purchase prediction task, precision and recall are
equal since there is a single positive label per journey (for both true and predicted labels, as there
is one product purchased per journey, and only one product is predicted to be chosen per journey).
Consequently, both balanced accuracy and the F1 measure are equal to precision and recall.

Incidence
Model After query After 5 steps
Balanced accuracy

Proposed model 0.62 0.65
Random forest 0.60 0.70
XGBoost 0.50 0.59

F1
Proposed model 0.34 0.35
Random forest 0.33 0.44
XGBoost . 0.30

Jaccard index
Proposed model 0.20 0.21
Random forest 0.19 0.28
XGBoost 0.00 0.18

Precision
Proposed model 0.21 0.22
Random forest 0.28 0.33
XGBoost . 0.60

Recall
Proposed model 0.83 0.91
Random forest 0.40 0.67
XGBoost 0.00 0.20

(a) Purchase incidence of proposed vs. bench-
mark models. (Extended set of measures of
fit.)

Product choice given purchase
Model After query After 5 steps
Hitrate

Proposed model 0.16 0.62
Random forest 0.16 0.19
XGBoost 0.03 0.62

Balanced accuracy
Proposed model 0.58 0.81
Random forest 0.58 0.59
XGBoost 0.51 0.81

F1
Proposed model 0.16 0.62
Random forest 0.16 0.19
XGBoost 0.03 0.62

Jaccard index
Proposed model 0.09 0.45
Random forest 0.09 0.11
XGBoost 0.02 0.45

Precision / recall
Proposed model 0.16 0.62
Random forest 0.16 0.19
XGBoost 0.03 0.62

(b) Choice given purchase of proposed vs.
benchmark models.

Table G.8: Prediction of proposed vs. benchmark models.
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G.5 Details on predictions for computing the value of first-party data.

Similarly to the analysis presented in Section 5.4, we compute the choice probabilities for all
models at each stage of the journey. We consistently employ all journeys across all stages,
ensuring a constant set of journeys when conducting comparisons throughout the journey. For
instance, when forecasting after 5 steps (or 2 steps), we consider the initial five (or two) steps
for journeys with at least 5 (or 2) steps, while accommodating all available steps for journeys
shorter than 5 (or 2) steps. This methodology enables us to assess the journey’s value with
a conservative lens, as performance on the held-out set would notably enhance if we were to
observe a uniform 5 steps across all journeys.

We compute hitrates at the product level, analogous to the approach described in
Section 5.4. When exploring the ability of the model to predict what attributes the customer
will choose, we compute the probabilities of choosing each level by aggregating the choice
probabilities across all products with such a level. For categorical variables, we compute
hitrates, and for continuous variables, we utilize the Root Mean Square Error (RMSE).

For example, let us consider a categorical attribute such as number of stops. For each
level — Non-stop, One stop, and 2+ stops — we compute the probability that a customer,
conditional on making a purchase, will opt for a specific stop level. This is done by aggregating
the choice probabilities associated with the ‘stop’ attribute. For instance, the probability that
a customer will select a non-stop flight corresponds to the cumulative choice probabilities of
all non-stop flights. Subsequently, the predicted number of stops is identified as the level with
the highest choice probability. We then contrast these predicted labels with the actual labels
to compute hit rates, which represent the proportion of journeys where we accurately predict
the number of stops for the chosen flight. A similar methodology is applied when considering
airline alliances, which is also categorical.

For a continuous attribute such as price, we first calculate the square errors between
the price of each alternative and the price of the purchased alternative, and then compute
the weighted average of those square errors (by journey) using the purchase probabilities as
weights, by

MSEPrice
ij “

ÿ

kPKpjq

ppyp
ij “k|Dataijtq¨pPriceijk ´Priceijk˚q

2,

where ppyp
ij “k|Dataijtq are the purchase probabilities and k˚ is the true purchased alternative.

First, note that the square errors are independent from the predictions, but the weighted
average is not. Second, note that if the model predicts with probability one on alternatives
with the same price as the purchased one, then this expectation is zero. Finally, we average
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those expected square errors and compute the square root

RMSEPrice
“

d

1
Joos

ÿ

ij

MSEPrice
ij ,

where Joos is the number of heldout journeys. We follow the same procedure for the length of the
trip. We compute these scores on the normalized prices and lengths to weigh all journeys equally
and to avoid searches with more expensive and longer destinations to dominate the score.
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