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Abstract

Westheimer and Levi [(1987) Vision Research, 27, 1361–1368] found that when a few isolated features are viewed foveally, the
perceived depth of a feature depends not only on its own disparity but also on those of its neighbors. The nature of this
interaction is a function of the lateral separation between the features: When the distance is small the features appear to attract
each other in depth but the interaction becomes repulsive at larger distances. Here we introduce a two-dimensional extension of
our recent stereo model based on the physiological studies of Ohzawa, DeAngelis and Freeman [(1990) Science, 249, 1037–1041]
and demonstrate through analyses and simulations that these observations can be naturally explained without introducing ad hoc
assumptions about the connectivity between disparity-tuned units. In particular, our model can explain the distance-dependent
attraction/repulsion phenomena in both the vertical-line configuration used by Westheimer [(1986) Journal for Neurophysiology,
370, 619–629], and the horizontal-line-and-point configuration used by Westheimer and Levi. Thus, the psychophysically observed
disparity interaction may be viewed as a direct consequence of the known physiological organization of the binocular receptive
fields. We also find that the transition distance at which the disparity interaction between features changes from attraction to
repulsion is largely determined by the preferred spatial frequency and orientation distributions of the cells used in the disparity
computation. This result may explain the observed variations of the transition distance among different subjects in the
psychophysical experiments. Finally, our model can also reproduce the observed effect on the perceived disparity when the
disparity magnitude of the neighboring features is changed. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many psychophysical experiments have demon-
strated that nearby visual features interact with each
other in generating our perception. Well-known exam-
ples include color constancy where interactions between
neighboring color patches allow an observer to partially
discount the spectral variations of the illumination
(Land 1977), and motion repulsion where overlapping
motion fields interact to create an exaggerated per-
ceived angle between their directions of motion (Mar-
shak & Sekuler, 1979). Such interactions among nearby
visual features has also been documented in the domain

of binocular disparity. In a series of psychophysical
experiments, Westheimer (1986) and Westheimer and
Levi (1987) showed that when the lateral separations (in
the fronto-parallel plane) between the features are
small, the depth separation between them appears
smaller than the actual, as if the features were attract-
ing each other in depth. As the separation increases,
however, the strength of this attractive interaction de-
creases and finally it reverses sign to become repulsive.
When the distance is very large there is no interaction
between the features, as expected.

Lehky and Sejnowski (1990) have proposed a compu-
tational model to explain the disparity interaction de-
scribed above. They started with a set of disparity
tuning curves similar to those measured physiologically
(Poggio & Fischer, 1977; Poggio & Poggio, 1984), and
encoded disparity by population activities read off from
these curves. The procedure was replicated to cover
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each spatial location. They found that the disparity
attraction/repulsion phenomenon can be explained by
implementing short-range excitatory and long-range in-
hibitory connections between disparity-tuned units at
neighboring locations. We decided to model the same
phenomenon at a lower level by starting with known
binocular receptive field (RF) profiles instead of dispar-
ity tuning curves. This allowed us to consider the
details of the stimulus configurations used by West-
heimer (1986) and Westheimer and Levi (1987), which
would not be possible for models starting with tuning
curves. Specifically, we extended our recent stereo
model for disparity computation (Qian, 1994; Zhu &
Qian, 1996; Qian & Zhu, 1997a; Qian, 1997) to two
spatial dimensions, and analyzed and simulated the
psychophysical stimulus configurations. These models
are based on known RF properties of binocular simple
and complex cells in the cat primary visual cortex
(Ohzawa, DeAngelis & Freeman, 1990; Freeman &
Ohzawa, 1990; DeAngelis, Ohzawa & Freeman, 1991;
Ohzawa, DeAngelis & Freeman, 1996, 1997). The pop-
ulation responses of complex cells at each location are
used to compute the disparity for that location. Our
results indicate that the reported distance-dependent
disparity attraction and repulsion phenomenon can be
naturally explained by our model without introducing
ad hoc assumptions about the connectivity between
disparity-tuned units at different locations. We also
explored the parameters that influence the attraction-
to-repulsion transition distance, and the consequences
of changing the feature disparities at fixed separations.
These results are contingent as to how the disparities
reported by cell populations at different spatial scales
are combined. A simple and plausible averaging scheme
proves sufficient for our purposes. We also made new
predictions that can be tested experimentally. Prelimi-
nary results have been reported previously in abstract
forms (Mikaelian & Qian, 1997; Qian & Zhu, 1997b).

2. Methods

2.1. Stimulus configurations

2.1.1. Vertical-line configuration
We modeled disparity interactions with two very

different stimulus patterns used in previous psycho-
physical experiments: the vertical-line configuration
(Westheimer, 1986) and the horizontal-line-and-point
configuration (Westheimer & Levi, 1987). The vertical-
line pattern, also called the 1D pattern, consisted of
two laterally separated vertical lines of equal luminance
superimposed on a uniform background (Fig. 1a). The
left line acts as the test line and the right line as the
inducing line. The actual disparity of the test line is
kept at zero, and its apparent disparity will be deter-
mined by the responses of the model cells (see below)
centered on the line when the inducing line takes vari-
ous lateral separations d and disparities D. Mathemati-
cally, the left and right images of this stereogram can be
written as

Il(x)=d(x)+d(x−d−D/2)+c and

Ir(x)=d(x)+d(x−d+D/2)+c (1)

where d( ) is the Dirac d-function. Since an overall
scaling factor for the images amounts to an overall
scaling of the cell responses and does not change our
results, we have set the intensity of the two lines to 1
and assigned an arbitrary intensity c to the background.
We will compare the computed apparent disparities
from our model with the perception determined from
the psychophysical experiments (Westheimer, 1986).

Note that the actual experimental configuration used
by Westheimer (1986) is slightly more complicated than
our stimulus, for their practical purposes of making
psychophysical measurements. It contained two sets of
test and inducing lines located symmetrically around a
central reference line. However, since the experimental
results were reported to be similar for various large
separations (\12 min) between the reference and the
test lines, we did not include the reference line in our
simulations to avoid undue mathematical complica-
tions. Eq. (1) also assumes infinite line lengths as a
simplification.

2.1.2. Horizontal-line-and-point configuration
The horizontal-line-and-point configuration, also re-

ferred to as the 2D pattern, used in our simulation is
identical to that used by Westheimer and Levi (1987)
(see Fig. 1b). Although called a line with two points,
the stimulus was actually composed of 13 individual
dots — they used five equally spaced dots to represent
the central horizontal ‘line’, and four dots arranged
into a square to represent each of the two flanking
‘points’ (Fig. 1b). The line has a real disparity of zero
and the flanking points have a real disparity of D. For

Fig. 1. Schematic stimulus configurations used in our analyses and
simulations. (a) The front and top views of the vertical-line configura-
tion containing two horizontally separated vertical lines. The left line
is taken as the test line and right line as the inducing line. (b) The
front and top views of the horizontal-line-and-point configuration
consisting of 13 dots arranged into a horizontal line and two verti-
cally separated points (squares of dots). The labels d in the frontal
views indicate the lateral separations.
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comparison with experimental data, the apparent dis-
parity of the line is computed from the responses of
model cells centered on it when the flanking points are
at different vertical separations d from the line, and
different disparities D. Mathematically, the left and
right retinal images of the stereogram corresponding to
this stimulus can be written as:

Il(x, y)=I0(x, y)+I1l(x, y)+c and

Ir(x, y)=I0(x, y)+I1r(x, y)+c (2)

where

I0(r� )= %
5

i=1

d(r� −Xb i), I1l(r� )=o %
2

i=1

%
4

j=1

d(r� −Da ij
(l)),

I1r(r� )=o %
2

i=1

%
4

j=1

d(r� −Da ij
(r)), (3)

o determines the luminance of the flanking points rela-
tive to the central line, and

r� = (x, y), Xb i
 (xi, 0), Da ij
(l)
 (Di, dj),

Da ij
(r)
 (−Di, dj) (4)

{xi}={−2, −1, 0, 1, 2} for i=1, …, 5 (5)

{dj}={d−0.5, d+0.5, −d−0.5, −d+0.5} for

j=1, …, 4 (6)

{Di}={D/2−0.5, D/2+0.5} for i=1, 2 (7)

The units of all numerical values above are minutes of
visual angle.

Westheimer and Levi (1987) also added a reference
line solely for the purpose of making psychophysical
measurements. We did not include it in our simulations
because it was at a distance where its interaction with
the test line would be negligible.

2.2. Models

We have applied three closely related stereo models
of increasing levels of sophistication to the problem of
disparity interaction. They are a one-dimensional (1D)
stereo model, a primitive two-dimensional (2D) stereo
model, and a fully elaborated 2D stereo model. Al-
though our emphasis will be on the final elaborated
model, we will also present results from the two simpler
precursors because they are much easier to understand
mathematically and help to paint an intuitive picture of
how the models work.

2.2.1. 1D model
The details of the 1D stereo model have been pre-

sented elsewhere (Qian, 1994; Zhu & Qian, 1996; Qian,
1997; Qian & Zhu, 1997a). Briefly, the model is based
on the quantitative physiological studies of Freeman
and coworkers (Freeman & Ohzawa, 1990; Ohzzawa et
al., 1990; DeAngelis et al., 1991), who found that the
left and right RFs of a typical binocular simple cell in

the cat primary visual cortex can be described by two
Gabor functions. When one is only interested in hori-
zontal disparity computation and stimulus intensity
mainly varies along the horizontal dimension, we may,
as a first approximation, ignore the vertical dimension
and use the following 1D Gabor filters to describe the
left and right RF profiles of a binocular simple cell
(centered at x=0):

fl(x)=
1


2ps1
2

exp
�

−
x2

2s1
2

�
cos(v1x+fl) and

fr(x)=
1


2ps1
2

exp
�

−
x2

2s1
2

�
cos(v1x+fr) (8)

where s1 and v1 are the Gaussian width and the
preferred spatial frequency of the RFs, and fl and fr

are the left and right phase parameters, respectively.
The response of such a simple cell to a binocular
stimulus with left and right retinal images Il(x) and
Ir(x) is determined according to (Ohzawa et al., 1990;
Qian, 1994):

rs=
& +�

−�

dx [ fl(x)Il(x)+ fr(x)Ir(x)] (9)

It was found that the binocular simple cell response
defined above is highly sensitive to the Fourier phases
of input stimuli (Qian, 1994; Zhu & Qian, 1996). Simple
cells are, therefore, not reliable disparity detectors
(Ohzawa et al., 1990; Qian, 1994; Zhu & Qian, 1996).
However, it has been shown (Qian, 1994) that an
approximately phase-independent response can be ob-
tained by summing the squared outputs of a quadrature
pair of simple cells:

rq= (rs, 1)2+ (rs, 2)2 (10)

where the two simple cells in the pair (labeled by the
subscripts 1 and 2) have otherwise identical parameters
except that their phases are related by

fl, 2=fl, 1+p/2 and fr,2=fr,1+p/2 (11)

These relations were first used by Freeman and cowork-
ers to model responses of real binocular complex cells
(Ohzawa et al., 1990), and are close relatives of the
motion energy models (Adelson & Bergen, 1985; van
Santen & Sperling, 1985; Watson & Ahumada, 1985).

A family of complex cells centered at a given loca-
tion, all with the same preferred spatial frequency vl

and Gaussian width sl, but with different left–right
phase-parameter differences

f−
fl−fr (12)

covering the range [−p, p), can form a distributed
representation of the stimulus disparity (Qian, 1994;
Qian & Zhu, 1997a). The disparity of the stimulus can
be estimated from this distributed representation ac-
cording to
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D0 = −
f. −

v1

(13)

where f. − is the phase-parameter difference of the most
responsive cell in the family. In our previous studies
(Qian, 1994; Qian & Zhu, 1997a), we considered a
discrete set of cells in each simulation, and f. − was
determined through a parabolic interpolation around
the highest response to reduce the sampling error. In
this study, however, because of the relative simplicity of
the stimuli, we derived the closed-form, analytical ex-
pressions for f. −, for both 1D and 2D models (see
below and Appendix A). This is equivalent to an infi-
nitely dense sampling of the cells and therefore no
interpolation is necessary. Also note that Eq. (13) can
be replaced by a population averaging model (Georgo-
poulos, Schwartz & Kettner, 1986). Very similar results
should be obtained because the population response is
typically well centered around the most responsive cell
without strong skewing.

Thus, for a given stimulus, one can apply a family of
complex cells all with the same preferred frequency vl

and bandwidth b (or equivalently, same vl and sl) but
with different phase-parameter differences, f−, to ob-
tain a disparity estimation D0 (v1,b). Since real cells in
the primary visual cortex have a wide range of pre-
ferred spatial scales (DeValois, Albrecht & Thorell,
1982; Shapley & Lennie, 1985), we will also compute
the averaged estimation from all cell families with
different vl but the same b :

D( (b)=
&�

0

D0 (v1, b)p(v1) dv1 (14)

where p(vl) is the probability density function for cells
with differing vls. We did not average across band-
width because only cells with a relatively narrow band-
width can be involved in disparity computation in the
first place (Sanger, 1988; Qian, 1994; Qian & Zhu,
1997a). (The derivation of the algorithms relies on the
assumption of small bandwidths.) Instead, for most
simulations the bandwidth was fixed at a standard
value of 1.5 octave; other values were also tried as
indicated in Section 3. Since slight variations of p(vl)
do not make qualitative difference in the results, we
assume that it follows a normal distribution,

p(v1)=
1


2psv 1

2
exp

�
−

(v1−v̄1)2

2sv 1

2

n
(15)

where the parameter v̄1 represents the center of the
preferred frequency distribution, and sv 1

determines
the width of the distribution. The numerical values of
these parameters used in our simulations were esti-
mated from the reported macaque physiological data
by DeValois et al. (1982). These investigators measured
the spatial frequency tuning curves for foveal cells in
the macaque striate cortex and determined from these
measurements the distributions of the cells’ preferred

frequencies and frequency tuning bandwidths. Based on
their data, for our standard parameter set we let v̄1 and
sv 1

of the preferred frequency distribution be 3.5 and
1.2 cycle/degree, respectively, and the bandwidth b was
fixed at 1.5 octave. We also varied these parameters for
many of our simulations as will be described in detail in
Section 3.

It should be pointed out that in Eq. (14) we are not
assuming that V1 cells perform frequency averaging.
(Note that Eq. (14) is not an averaging of the cell
responses.) Such an operation would render the cells
insensitive to spatial frequency, contrary to experimen-
tal facts (DeValois et al., 1982). Instead, we propose a
direct correspondence between the population activity
of many families of cells tuned to different frequencies
in the primary visual cortex and an overall percept
given by Eq. (14). Alternatively, the averaging proce-
dure could be explicitly performed at a stage beyond
the striate cortex such as area MT.

We applied the above 1D model to explain the
disparity interaction in the vertical-line configuration
used by Westheimer (1986). This is reasonable because
these patterns are essentially 1D with luminance varia-
tions along the horizontal axis only. However, to ex-
plain the results from the horizontal-line-and-point
patterns used in Westheimer and Levi (1987) we have to
use a 2D stereo model. We extend the 1D model to two
spatial dimensions as follows.

2.2.2. Primiti6e 2D model
As a precursor to the elaborate 2D model, we first

examine a simple extension of the above 1D algorithm.
Specifically, we used the following 2D Gabor filters to
describe the left and right RF profiles of a binocular
simple cell:

fl(x, y)=g(x, y) cos(v1x+v2y+fl) and

fr(x, y)=g(x, y) cos(v1x+v2y+fr) (16)

with

g(x, y)=
1

2ps1s2

exp
�

−
x2

2s1
2−

y2

2s2
2

�
(17)

where the Gaussian widths s1 and s2 determine the RF
dimensions along the x and y directions, and v1 and v2

are the horizontal and vertical components of the pre-
ferred spatial frequency of the cell, respectively. The
ratio of the two preferred frequencies determines the
preferred spatial orientation u of the filters. And the
ratio of the two Gaussian widths is the aspect ratio of
the simple cell RFs. We used an aspect ratio of 1.7 as
the standard parameter in our simulations. The subse-
quent steps of quadrature-pair construction for model-
ing complex cell responses, and of estimating apparent
disparity by locating the maximum response among a
population of complex cells, are identical to the 1D
case. (See Appendix A for a more thorough discussion.)
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However, the apparent disparity at this stage is a
function of both v1 and v2, or equivalently, a function
of total preferred frequency v and orientation u where

v=
v1
2+v2

2 (18)

and

tan u=
v2

v1

(19)

so that u=0° corresponds to a vertical and u=90° to
a horizontal preferred orientation. At this point, we
may add a final pooling of disparities reported at
various spatial scales and orientations. However, since
this primitive version is only meant to provide insight
for understanding the full elaborated version, we will
omit the final pooling step.

2.2.3. Elaborated 2D model
The primitive 2D model is so called because, accord-

ing to Eq. (16), the principal axes of the Gaussian
envelopes are always along the horizontal and vertical
directions regardless of the preferred orientations of the
RFs. In reality, for simple cells the long axis of the
envelope aligns with the preferred orientation of the cell
(Jones & Palmer, 1987; Ohzawa et al., 1996; Anzai,
Ohzawa & Freeman, 1999). This fact is taken into
account in this fully elaborated 2D stereo model. Spe-
cifically, for the simple cell RFs, we replaced the g(x, y)
function in Eq. (16) by

g(x, y)=

det(S)

2p
exp

�
−

rTSr
2

�
(20)

where rT
 (x y ) and

S

�1/s1

2 1/s12

1/s12 1/s2
2

�
(21)

To ensure that the long axis of the Gaussian envelope
aligns with the preferred orientation u of the cell, we
require that the S matrix be transformed into the
diagonal form

S%

�1/s %1

2 0
0 1/s %2

2

�
(22)

after a rotation of angle u.
We used the same procedure for computing the sim-

ple cell and quadrature-pair responses as for the primi-
tive 2D model. However, for the elaborated version we
added one more step for obtaining complex cell re-
sponses. Previously, we pointed out that in order to
account for the fact that real complex cell RFs are on
average larger than those of simple cells, a spatial
pooling step should be added after the quadrature-pair
construction to simulate complex cell responses:

rc=rq�W (23)

where W is a spatial weighting function, and � denotes
the spatial convolution operation (Qian & Zhu, 1995;
Zhu & Qian, 1996; Qian & Zhu, 1997a). We showed
that the pooling step is computationally important for
certain types of stimuli such as random dot patterns
because it greatly improves the phase-independence of
the complex cell responses and consequently makes
their disparity tuning curves much more reliable (Qian
& Zhu, 1995; Zhu & Qian, 1996; Qian & Zhu, 1997a).
Eq. (23) is the final complex cell response to be used in
our simulations of the elaborated model. We have
ignored the spatial pooling step in the 1D and the
primitive 2D models for simplicity.

The final pooling of apparent disparities reported by
different families of cells are similar to the 1D case,
except that in addition to spatial scales, we now have to
also pool over different orientations:

D( (b)=
& p/2

−p/2

&�
0

D0 (v, u, b)p(v)p %(u) dv du (24)

where p %(u) is the weighting function for the orientation
pooling. Two factors should be considered when choos-
ing the form of p %(u). The first is the fact that more
vertically oriented cells are better suited for horizontal
disparity detection. p %(u) should, therefore, be biased
towards the vertical orientation. The second factor is
that disparity estimations from the more active cell
families should be weighted more in the pooling (Geor-
gopoulos et al., 1986). Therefore, for vertical line pat-
terns that activate vertically oriented cells more
strongly, p %(u) should be biased towards the vertical
orientation; similarly, for horizontal line patterns p %(u)
should be biased towards the horizontal orientation.
We used a Gaussian function centered at an orientation
u0 and with a width su in our simulations. The values
of the parameters were varied as explained in Section 3.
(The broad-band nature of the patterns used in this
paper renders it unnecessary to consider a similar stim-
ulus dependence of p(v).) Detailed derivations of how
various stages of the elaborated model respond to the
vertical-line and the horizontal-line-and-point stimuli
are provided in Appendix A.

3. Results

3.1. 1D model

We first consider the simplest case by applying the
1D stereo model to the vertical-line configuration. We
consider both D0 , the apparent disparity of the test line
estimated from a single family of cells with a given
preferred horizontal spatial frequency v1 whose RFs
are centered on the test line, and D( , the averaged
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Fig. 2. 1D model applied to the vertical-line configuration. The
apparent disparity of the test line, calculated from a single complex
cell family with a given preferred spatial frequency and with RFs
centered on the test line, is plotted as a function of the separation
between the test and the inducing lines. The actual disparities of the
test and the inducing lines are fixed at 0 and 0.5 min, respectively.
Positive apparent disparities indicate attractive interaction while neg-
ative values indicate repulsion between the two lines. The three curves
correspond to three different cell families with the preferred spatial
frequencies equal to 5.6 (curve a), 3.5 (continuous curve) and 2.1
(curve b) cycle/degree. The cells in all three families have the same
frequency bandwidth of 1.5 octave.

That is, the computed apparent disparity of the test line
approaches its actual disparity when the separation
between the test and inducing lines is large, consistent
with the psychophysical experiments. This, of course, is
due to the inducing line leaving the RF centered on the
test line.

To simplify the analysis for the other d values, we
may consider the limits

D�s1 and v1D�1 (26)

This is justified as the experimental value of D was set
at 0.5 min and the cell population we are considering is
centered at v1=3.5 cycle/degree with a bandwidth of
1.5 octave. In this small-D limit, Eq. (40) can be
expanded:

lim
D�0

D0

=
D
v1

e−d2/2s1
2�

e−d2/2s1
2

v1+v1 cos(v1d)−
d

s1
2 sin(v1d)

n
1+e−d2/2s1

2[e−d2/2s1
2+2cos(v1d)]

(27)

At very small separations d, the above expression yields

lim
d,D�0

D0 =
D
2

(28)

Thus, at small separation and inducing disparity, the
apparent disparity of the test line is shifted half way
towards the disparity D of the inducing line, indicating
attractive interaction as observed experimentally. Intu-
itively, when both d and D are small, the images of the
two lines on each retina are very close and consequently
they should fall in the same excitatory/inhibitory subre-
gions of the vertically-oriented simple cell RFs and
contribute equally to the responses. It is thus not
surprising that the disparities of the two lines are
averaged at the complex cell stage which receives input
from the simple cells. On the other hand, for sufficiently
large values of the separation d, the denominator in Eq.
(27) will stay positive while the numerator will oscillate
in sign. There will, therefore, be intermediate regions
where the interaction is repulsive.

To see the overall behavior of the apparent disparity
D0 estimated from a single family of complex cells, Eq.
(40) is plotted in Fig. 2 as a function of the separation
d between the two lines under three different values of
preferred spatial frequency v1, while all other parame-
ters are fixed. In these plots, the inducing disparity D is
equal to 0.5 min of arc. The three curves in Fig. 2
correspond to three cell families which have preferred
spatial frequencies of 2.1, 3.5, and 5.6 cycle/degree
respectively and all have a bandwidth b of 1.5 octave.
The figure clearly shows that for all three cell families,
the interaction is attractive at small distance, and as the
distance increases, the interaction oscillates between
attraction and repulsion. When the separation is very
large the interaction vanishes. The distance at which the

estimation from all cell families tuned to different scales
and centered on the line. Since the actual disparities of
the test and inducing lines are zero and D, respectively,
if D0 or D( has the same sign as D, that means the
apparent disparity of the test line is shifted towards the
disparity of the inducing line indicating attractive inter-
action. On the other hand, an opposite sign between D0
(or D( ) and D indicates repulsive interaction.

For the special case of two equi-luminous lines on a
dark background (c=0), the conditions in the experi-
ments of Westheimer (1986), D0 is given by Eq. (40) in
Appendix A. By averaging D0 across all cells with
differing v1s according to Eq. (14), we can obtain an
expression for D( . This averaging will be performed
numerically below. We now consider the dependence of
the computed apparent disparities (D0 and D( ) of the test
line on the distance d and disparity D of the inducing
line.

The most prominent aspect of the disparity interac-
tion revealed by Westheimer’s experiments is the exis-
tence of attraction and repulsion zones as the distance
d between the test and inducing lines is varied (West-
heimer, 1986). First we examine whether the apparent
disparity D0 estimated from a single cell family can
explain this experimental result. In the limit of large
separation d�s1, the right hand side of Eq. (40)
vanishes:

lim
d��

D0 =0. (25)
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transition between attraction and repulsion occurs in-
creases as the preferred spatial frequency of the cell
family decreases.

These results reveal that the apparent disparity D0
obtained from a single family of complex cells at a
certain spatial scale exhibits distance-dependent dispar-
ity attraction and repulsion phenomenon. However, D0
reverses its sign many times before it decays to zero
while our perception reverses sign only once according
to the experiments (Westheimer, 1986). (The multiple
sign reversals are not specific to the particular choice of
the Gabor filters, but rather, are a consequence of the
multiple excitatory and inhibitory subregions in the
underlying simple cells’ RFs.) We now show that this
discrepancy can be resolved by assuming that our per-
ception corresponds to D( of Eq. (14), the averaged
estimation over all scales at a given location. It is easy
to see that the behavior of D( in the limiting cases of
d�� and d=0 are exactly same as that for D0 shown
in Eqs. (25) and (28) since under these two extremes, D0
is not a function of v1.

To see the overall pattern of D( , we numerically
integrated Eq. (14) and plotted the results in Fig. 3. The
three curves in the figure correspond to preferred spa-
tial frequency distributions centered at 2.1, 3.5, and 5.6
cycle/degree, from right to left respectively. The Gaus-
sian widths of these frequency distributions are equal to
1.0, 1.2, and 1.9 cycle/degree, respectively. The continu-
ous curve in the figure corresponds to the standard set

of parameters based on the physiological data of De-
Valois et al. (1982) (see Section 2). It is clear from Fig.
3 that with the averaging across the whole cell popula-
tion there is only one transition from attraction to
repulsion, closely resembling the main features of the
psychophysical results (Westheimer, 1986).

Similar to Fig. 2, Fig. 3 shows that the distance at
which this single transition occurs (the transition dis-
tance) increases with a decrease of the population’s
spatial-frequency distribution, characterized by the cen-
ter of the distribution v̄1. This feature provides a
possible explanation of the experimental observation
that different subjects in the psychophysical experi-
ments have different transition distances (see Section 4).
Varying the other parameter of the 1D model, the
Gaussian width of the frequency distribution, can ac-
count for variations in the strength of the repulsion
effect among the subjects, as demonstrated in curve b of
Fig. 3. We also found that in contrast to the above
frequency pooling closely based on the physiologically
obtained distribution (DeValois et al., 1982), a uniform
pooling across all frequencies essentially wipes out the
repulsion zones in the curves.

In the above simulations, we performed frequency
pooling across cell families at different scales after
extracting the apparent disparity at each scale. Alterna-
tively one could first average complex cells’ responses
from different scales and then extract the apparent
disparity (Fleet, Wagner & Heeger, 1996). The result
using the standard set of parameter is shown as the
continuous curve in Fig. 4. It does not fit the experi-
mental data well because the repulsion occurred over
too narrow a range of separation and the attractive tail
at large distances was not observed. The curves labeled
a, b and c were obtained by increasing the bandwidth,
spatial frequency, and spatial frequency pooling width,
respectively, from the standard set of parameters, as
described in the caption. Like the continuous curve,
none of these curves fit the psychophysical observations
very well. It is possible to get a curve similar to the
experimental observations by choosing parameter val-
ues significantly away from the standard set (curve d in
the figure). However, those parameter values do not
allow accurate disparity estimations when the input
stimulus has a single, uniform disparity because the
cells’ bandwidth is too large.

3.2. Primiti6e 2D model

As mentioned earlier, since the horizontal-line-and-
point patterns used by Westheimer and Levi (1987) are
2D, it can only be studied with a 2D model. In this
subsection we demonstrate that the primitive 2D model
described in Section 2 can be used to explain the
illusion. We will take advantage of this simple model to
provide a mathematically intuitive understanding of the

Fig. 3. 1D model applied to the vertical-line configuration with
spatial-frequency pooling. The apparent disparity of the test line,
averaged across complex cell families with different preferred spatial
frequencies and with RFs centered on the test line, is plotted as a
function of the separation between the test and the inducing lines.
The actual disparities of the test and the inducing lines are fixed at 0
and 0.5 min, respectively. The bandwidth is 1.5 octave in all cases.
The three curves were obtained from three different preferred spatial-
frequency distributions of the cell population, with the distribution
centers located at 5.6 (curve a), 3.5 (continuous curve) and 2.1 (curve
b) cycle/degree, and corresponding Gaussian widths of 1.9, 1.2 and
1.0 cycle/degree.
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Fig. 4. 1D model applied to the vertical-line configuration using the
frequency pooling at the level of complex cell responses (Fleet et al.,
1996). The apparent disparity of the test line, calculated from spatial-
frequency-averaged responses of cells centered on the test line, is
plotted as a function of the separation between the test and the
inducing lines. The actual disparities of the test and the inducing lines
are fixed at 0 and 0.5 min, respectively. For the continuous curve, the
central value and Gaussian width of the spatial-frequency pooling are
3.5 and 1.2 cycle/degree, respectively, and the bandwidth of all cells is
1.5 octave. For curves a–c, one (or a few) of the above parameters is
changed while others are held constant, as follows. (a) The bandwidth
is increased to 2.0 octave. (b) The central spatial frequency is in-
creased to 5.0 cycle/degree. (c) The Gaussian width is increased to 1.9
cycle/degree. (d) The central spatial frequency is lowered to 2.0
cycle/degree, the Gaussian width raised to 1.4 cycle/degree and the
bandwidth increased to 2.0 octave.

Eq. (41) of Appendix A describes the behavior of the
estimated disparity D0 from a single family of cells for
the horizontal-line-and-point configuration. The term
proportional to c in the expression for k defined by Eq.
(42) is the contribution of the uniform background
whereas the other terms in that expression are contribu-
tions of the zero-disparity middle line. As with the 1D
case, the apparent disparity D0 of the test line ap-
proaches zero, its true disparity, with increasing separa-
tion from the inducing points. The transition points
from the attraction to the repulsion zone can be iden-
tified from the zeroes of Eq. (41). The main configura-
tion used by Westheimer and Levi (1987) can be
simulated with the choices

D=0.5 min, c=0 and o=1 (30)

for the stimuli. For separations d that are larger than a
couple of minutes and with our standard choice of
v=3.5 cycle/degree, the zeroes of Eq. (41) are approx-
imately given by:

cos(v2d):0 [ d]
p

2v2

\
p

2v
=4 (min). (31)

Just as in the case of the vertical-line pattern, the
estimated disparity D0 oscillates between attraction and
repulsion several times and the separation d corre-
sponding to the first transition distance increases with
decreasing v. Here, though, the transition distance is
inversely related to v2, whereas for the vertical-line
case, it is inversely related to v1. This difference is
caused by the fact that the lateral separations between
elements of different disparities are along the vertical
and horizontal dimensions, respectively, for the two
cases. Moreover, Eq. (31) implies that the transition
points are to a good approximation independent of the
RF sizes, s1 and s2, in contrast to the case of the 1D
pattern in Eq. (29). Results of pooling across cell
families at different spatial scales would be very similar
to the 1D case but we will leave the pooling steps to the
fully elaborated model to be described next.

3.3. Elaborated 2D model

While the above primitive 2D model provides analyt-
ical insights into how disparity attraction and repulsion
can arise in both the vertical-line and the horizontal-
line-and-point configurations, we performed most of
the simulations with the fully elaborated model because
it is closest to physiological data (see Section 2). Eqs.
(50) and (51) in Appendix A describe the estimated
disparity D0 from a single family of cells with a given
preferred spatial frequency and preferred orientation
for the horizontal-line-and-point configuration, accord-
ing to the elaborated model. Simulation results based
on these equations are shown in Fig. 5. Similarly to
Fig. 2, although the curves show the basic attraction/re-

explanation. A more detailed explanation with a fully
elaborated 2D model will be presented in the next
subsection.

The primitive 2D model contains two new parame-
ters, the RF Gaussian width s2 and the preferred
spatial frequency v2 along the vertical dimension. The
Appendix A shows that for the vertical-line configura-
tion, the primitive 2D model yields a D0 that is indepen-
dent of s2 and v2. Hence, the results obtained for D0 in
the 1D model carry over to this primitive 2D model. As
this model applied to the vertical-line configuration is a
special case of the elaborated model (see the last section
of the Appendix A), the effect of pooling D0 across
orientations as well as frequencies can be deduced from
the results of the elaborated model. We would like to
note the behavior of D0 at very large RF sizes. For the
1D pattern, Eq. (40) gives

lim
s 1��

D0 (v1)=
D
2

(29)

independent of other parameters including d. This
means that there will be a constant attraction at all d if
infinitely large RFs are used. Therefore, for large
enough RF size, the transition distance must increase
with the size. As shown below, for the 2D pattern the
behavior is different.
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pulsion effect, they do not fit with the experimental
data too well because of the exaggerated repulsion
strength and the tail attraction at large separations. The
strong repulsion is governed by our choice of preferred
orientation, u=45° in this case. As indicated by Eq.
(31) for the primitive model, for more horizontally-ori-
ented filters the transition occurs at a smaller separa-
tion d, where the Gaussian falloff of the RF is not as
significant as at larger separations, resulting in a more
pronounced repulsion. As before, the exaggerated-re-
pulsion and the attractive-tail problems are alleviated
by pooling over populations of cells tuned to different
spatial frequencies, and additionally, different orienta-
tions. (Here, as with the 1D and primitive 2D models,
a non-physiological uniform pooling over spatial fre-
quencies will not yield the correct behavior.) The repul-
sion is particularly reduced by considering an
orientation distribution broadly centered around the
vertical because vertically oriented cells should con-
tribute more to horizontal disparity computation
(DeAngelis et al., 1991). The results are shown in Fig.
6 where spatial pooling of quadrature pairs is imple-
mented as well (see Eq. (23)). The continuous curve, in
good agreement with psychophysical data, corresponds
to the standard set of parameters.

The four dashed curves in the figure were obtained
by changing one parameter at a time from the continu-
ous curve while keeping all other parameters the same

Fig. 6. Elaborated model applied to the horizontal-line-and-point
configuration with pooling. The apparent disparity of the middle line,
averaged across all cell families with different preferred spatial fre-
quencies and orientations and with RFs centered at the middle of the
line, is plotted as a function of the vertical separation between the line
and the flanking points. The actual disparities of the line and the
flanking points are fixed at 0 and 0.5 min, respectively. The continu-
ous curve corresponds to the standard parameter set defined as
follows: the spatial pooling of the quadrature pairs is centered on the
middle of the line with the Gaussian width along each cell axis (h %1
and h %2 in Eq. (46)) equal to 0.25 times the corresponding Gaussian
width of the underlying simple cells, the preferred spatial frequency
distribution is centered at 3.5 cycle/degree with a Gaussian width of
1.2 cycle/degree, the preferred orientation distribution covers the
range [−90°, 90°) and is centered at the vertical (0°) with a Gaussian
width of 45°, the frequency bandwidth is 1.5 octave and the aspect
ratio is 1.7 for all cells. Each dashed curve is obtained by varying one
of the above parameters from the standard value while holding all the
others fixed, as follows. (a) The central value of the spatial-frequency
distribution is decreased to 2.5 cycle/degree. (b) No pooling of
disparities across spatial frequency is performed. (c) A uniform
distribution of the preferred orientations is assumed here. (d) The
Gaussian width of the spatial pooling along each cell axis is increased
to 0.5 times the corresponding Gaussian width of the underlying
simple cells.

Fig. 5. Elaborated model applied to the horizontal-line-and-point
configuration. The apparent disparity of the middle line, calculated
from a single complex cell family with a given preferred spatial
frequency and orientation and with RFs centered on the test line, is
plotted as a function of the vertical separation between the line and
the flanking points. No pooling is applied. The actual disparities of
the line and the flanking points are fixed at 0 and 0.5 min, respec-
tively. The three curves correspond to three different cell families with
preferred spatial frequencies equal to 5.6 (curve a), 3.5 (continuous
curve) and 2.1 (curve b) cycle/degree. The cells in all three families
have the same frequency bandwidth of 1.5 octave, preferred orienta-
tion of 45° and RF aspect ratio of 1.7.

(see figure caption), for demonstrating the robustness of
the results. Curve a is obtained by shifting the central
value of the frequency distribution from the standard
value of 3.5 to 2.5 cycle/degree. The rightward shift of
the transition point is in agreement with Eq. (31) for
the primitive 2D model, and the trend in Fig. 5. The
remaining three curves show the effects of the various
pooling schemes employed in the model. Curve b is
obtained by turning off spatial frequency pooling. Since
now only the orientation of the cells in the pool is
varied, all cells have the same RF size and preferred
spatial frequency. The repulsion is stronger under this
condition because of the reduced spread of D0 from
individual cell families. Curve c is obtained by broaden-
ing the orientation pooling to a uniform distribution.
The resulting leftward shift of the transition distance
and strengthening of the repulsion are caused primarily
by the involvement of more horizontally tilted filters.
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Curve d corresponds to increasing the extent of spatial
pooling. Consequently, the flanking points tend to be
weighted more in computing complex cell responses,
biasing apparent disparities towards the disparity of
these points.

In order to check the consistency of our model, we
also applied the elaborated 2D model to the vertical-
line configuration. The simulation results are presented
in Fig. 7, based on the expressions derived in Appendix
A (Eqs. (52) and (53)). As expected, the 2D model
works well on the 1D pattern, as demonstrated by the
continuous curve, corresponding to the standard
parameter values. Notice that the asymptotic approach
of this curve to zero at large separations is slower than
the continuous curve in Fig. 3 and, therefore, more in
accord with the results of Westheimer (1986). The
dashed curves exhibit the effects of varying parameters
from the standard values as detailed in the figure
caption. Curve a implements the orientation pooling
with the Gaussian width halved, i.e. with RFs more
narrowly centered around the vertical. Including more
vertically oriented filters at a fixed spatial frequency
effectively increases the horizontal component of the
frequency, v1, thereby shifting the curve to the left.
Unlike the horizontal-line-and-point configuration in
Fig. 6, the repulsion for the vertical-line configuration

increases with more vertically oriented cells in the popu-
lation because the two lines are separated horizontally,
and thus their interactions can be better sensed by cells
oriented more vertically. Curve b is obtained by reduc-
ing the Gaussian width of the frequency pooling by
half, resulting mainly in stronger repulsion. This is
because of the reduced spread of D0 from individual cell
families, similar to curve b in Fig. 6. The rightward
shift of the transition distance in curve c is expected as
it is obtained by decreasing the central value of the
spatial frequency used to generate curve b. Curve d
corresponds to a reduction of the aspect ratio to 1. This
effectively increases vo per Eq. (53) and thus decreases
the resulting transition distance.

The above discussions concentrate on the distance (d)
dependence of disparity interaction while the inducing
disparity (D) is kept constant. We now investigate the
dependence of disparity interaction on the inducing
disparity at fixed distances. This is interesting because
Westheimer and Levi (1987) have done the correspond-
ing psychophysical experiments using the horizontal-
line-and-point pattern. Specifically, they fixed
separation distance d at three different values in the
attraction, repulsion, and transition zones, respectively.
They found that when the distance is chosen to be in
the attraction or repulsion zones, increasing the induc-
ing disparity D increases the attraction or repulsion,
respectively. However, if the separation is picked in the
transition zone but on the attraction side, increasing the
inducing disparity D first increases the attraction but
then the curve turns around to show strong repulsion.
We have picked three separations accordingly in our
simulations and the results shown in Fig. 8 are similar
to the psychophysical observations. When D is very
large (not shown in the figure), the model predicts no
interaction. The parameter values for this figure (see
caption) deviate slightly from the standard ones for the
continuous curve in Fig. 6, but are within the physio-
logical range. When the standard parameter set is used,
the two left-panel curves in Fig. 8 remain similar but
the transition-zone curve in the right panel will have the
zero-crossing point shifted further to the right. The
zero-crossing location appears to be very sensitive to
the model parameters. As we mentioned before, the
basic d-dependent attraction and repulsion phe-
nomenon for both the vertical-line and the horizontal-
line-and-point configurations is highly robust and can
be readily reproduced with the parameter set in Fig. 8
(results not shown).

We would also like to mention that we made several
simulations with a log normal distribution of the pre-
ferred frequency for the elaborated 2D model, in order
to consider the effects of a positively skewed distribu-
tion. The zero-crossing in Fig. 8 becomes much less
sensitive to the parameters, while the transition dis-
tances for the attraction/repulsion curves are somewhat

Fig. 7. Elaborated model applied to the vertical-line configuration
with pooling. The apparent disparity of the test line, averaged across
all cell families with different preferred spatial frequencies and orien-
tations and with RFs centered on the test line, is plotted as a function
of the separation between the test and the inducing lines. The actual
disparities of the test and the inducing lines are fixed at 0 and 0.5 min,
respectively. The continuous curve corresponds to standard parame-
ter values as given for Fig. 6. The dashed curves are obtained by
changing one or two parameter values from the standard ones, as
follows. (a) The Gaussian width of the orientation pooling is reduced
to 22.9°. (b) The Gaussian width of the frequency pooling is reduced
to 0.6 cycle/degree. (c) The center of the spatial-frequency distribu-
tion is reduced to 2.5 cycle/degree and the corresponding Gaussian
width is reduced to 0.6 cycle/degree. (d) The aspect ratio is reduced to
1.0.
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Fig. 8. Elaborated model applied to the horizontal-line-and-point
configuration for inducing-disparity dependence. The apparent dis-
parity of the middle line, averaged across all cell families with
different preferred spatial frequencies and orientations and with RFs
centered at the middle of the line, is plotted as a function of the
disparity of the flanking points at three fixed separations between the
line and the points. The actual disparity of the line is fixed at zero.
The parameter values are only slightly modified from the standard
set. Spatial pooling is centered at the middle of the line with the
Gaussian width along each cell axis equal to 0.43 times the corre-
sponding Gaussian width of the underlying simple cells; the preferred
spatial frequency distribution is centered at 4.0 cycle/degree with a
Gaussian width of 1.2 cycle/degree; the preferred orientation distribu-
tion is centered at the vertical with a Gaussian width of 57°; the
frequency bandwidth is 1.3 octave and the simple-cell aspect ratio is
1.7 for all cells. The left-panel graphs correspond to line-to-point
separations of 2.0 (attraction zone) and 9.0 (repulsion zone) min. The
right-panel graph is plotted for a line-to-point separation of 5.5 min.

shifted towards a smaller separation d due to the inclu-
sion of higher frequency cells (results not shown).

For the horizontal-line-and-point stimulus configura-
tion, we have been using RFs centered at the center of
the horizontal line, thus determining the disparity of
that point in our simulations. How much variation
would ensue from estimating the disparity of other
points along the line? Fig. 9 addresses this concern by
repeating the simulations corresponding to the continu-
ous curve in Fig. 6 for RFs centered at the center (as
before) and at one end of the line. The spatial pooling
step has been turned off in generating these two curves
in order to estimate the maximum variation of the
apparent disparity along the line; the presence of spatial
pooling helps reduce the variation by averaging over a
larger area. As evident in Fig. 9, the discrepancy be-
tween the two curves is not significant. This is not
particularly surprising given that for our choice of
bandwidth and population preferred spatial frequency,
a filter size is typically more than five times larger than
the length of the middle line (4 min).

As a prediction of the model, we varied the ratio of
the contrast magnitudes of the middle line to the flank-
ing points in the horizontal-line-and-point configura-
tion. As expected, increasing this ratio pulls the curves
towards zero disparity for all separations d (results not
shown). The effect of decreasing the ratio from 1 is
displayed in Fig. 10. If the ratio is small the apparent
disparity of the line moves towards the disparity of the
points over a range of separations d, as in curves b and
c, which correspond to 70 and 50% contrast ratios,
respectively, and standard cell parameters. In fact, there
is no repulsion zone for a small enough contrast ratio.
What is a ‘small enough’ contrast ratio to observe such
behavior is mainly dependent on the extent of spatial
pooling in the model. Curves a and d demonstrate that
dependence; both curves correspond to an 80% contrast
ratio, but curve d was obtained with a spatial-pooling
width twice that for curve a, which uses the standard
value. (Indeed, in the absence of spatial pooling, at 80%
contrast ratio the repulsion can be significantly more
pronounced than at equal contrasts.)

We also suggest a physiological test of the model by
examining disparity tuning curves for a long vertical
line stimulus (the test line) in the presence of another
long vertical line (the inducing line) in the RF. We
consider a complex cell whose preferred orientation
matches that of the stimulus orientation, with a pre-
ferred spatial frequency of v=3.5 cycle/degree, a
bandwidth of 1.5 octave, and a phase-parameter differ-
ence of f− = −0.37 rad. Such a cell has a preferred
disparity of (−f−/v)=1.0 min (Qian, 1994). The
expressions for the cell’s response, as a function of the
test-line disparity D %, the inducing-line disparity D, and
the lateral separation between them d, are derived at
the end of the Appendix A. The disparity tuning curves

Fig. 9. Elaborated model applied to the horizontal-line-and-point
configuration at different points on the line. The apparent disparity of
the middle line, averaged across all cell families with different pre-
ferred spatial frequencies and orientations, is plotted as a function of
the separation between the line and the flanking points. The actual
disparities of the line and the flanking points are fixed at 0 and 0.5
min, respectively. Both curves correspond to the standard parameter
values used for generating the continuous curve in Fig. 6, but without
the spatial pooling step. The continuous curve is the result from filters
centered at the middle of the line, while the dashed curve is from
filters centered at one end of the line.
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of the cell (its response plotted against D %) under vari-
ous conditions are shown in Fig. 11. The continuous
curve in the figure is the tuning curve for the test line

alone. As expected, the main peak is at D %=1.0 min,
with two smaller ‘side peaks’ (Zhu & Qian, 1996). (The
number of noticeable peaks on each side of the main
one depends on the cell parameters.) The dashed curves
are the tuning curves when the inducing line is intro-
duced at a fixed disparity of D=3 min and various
lateral separations d. Curves a, b and c correspond to
separations of 0, 5 and 8 min, respectively. Although
the peak at D %=1.0 min remains in the presence of the
inducing line, it is no longer an absolute maximum for
certain choices of d. As d increases, the main peak
shrinks while the side peaks grow and eventually be-
come more prominent. Although we only present here
the results from one set of arbitrary stimulus parame-
ters, we have performed many other simulations to
reach the general prediction that the main peak in the
disparity tuning curve for the test line alone may not
remain so with the introduction of the inducing line.
The main-peak location with the inducing line present
is always at either the main- or one of the side-peak
locations of the tuning curve for the test line alone.
Note that it is the smooth variation of the peak loca-
tions (with d) among a population of cells that under-
lies our explanation of disparity attraction and
repulsion.

4. Discussion

In this paper we applied our previous stereo model
(Qian, 1994; Qian & Zhu, 1997a) and its 2D extensions
to the stimulus configurations used by Westheimer
(1986) and Westheimer and Levi (1987), and demon-
strated that the psychophysically observed distance-de-
pendent disparity attraction/repulsion phenomenon can
be naturally explained by the known physiological
properties of binocular cells in the primary visual cor-
tex. Although intuitively one may speculate that the
attractive and repulsive disparity interactions between
nearby visual features may have something to do with
the excitatory and inhibitory subregions of simple cells’
binocular RFs, a clear understanding of the phe-
nomenon cannot be obtained without quantitative
modeling. In fact, as we have shown elsewhere (Qian,
1994; Zhu & Qian, 1996; Qian & Zhu, 1997a), simple
cells do not always have reliable disparity tuning curves
and therefore cannot be directly used to compute dis-
parity and explain the illusion. Although the disparity
interaction in our models originates from the simulta-
neous presence of stimulus features in simple cells’
excitatory and inhibitory subfields, the final explanation
comes from the responses of complex cells that are
non-linear functions of simple cell responses and do not
have separate excitatory and inhibitory subregions
within their RFs. Furthermore, without the quantita-
tive modeling shown here, it would not be possible to

Fig. 10. Elaborated model applied to the horizontal-line-and-point
configuration with variations in relative contrast between the line and
points. The apparent disparity of the test line, averaged across all cell
families with different preferred spatial frequencies and orientations
and with RFs centered on the test line, is plotted as a function of the
separation between the middle line and the flanking points. The
continuous curve is the same as in Fig. 6. The dashed curves are
obtained by varying parameters as follows. For curves a, b and c the
line-to-point contrast ratios are 0.8, 0.7 and 0.5, respectively, with all
other parameters same as for the continuous curve. For curve d this
contrast ratio is 0.8 and the Gaussian width of the spatial pooling
along each cell axis is increased to 0.5 times the corresponding
Gaussian width of the underlying simple cells.

Fig. 11. Disparity tuning curves for a complex cell of the elaborate
model applied to vertical-line configurations. Instantaneous firing rate
is plotted as a function of the disparity of the test line. The complex
cell is vertically oriented with a preferred spatial frequency of 3.5
cycle/degree, bandwidth of 1.5 octave and a binocular phase-parame-
ter difference of −0.37 rad. The continuous curve is obtained by
having a single long vertical line as the stimulus. The dashed curves
are obtained by adding another long vertical line (the inducing line)
at a fixed disparity of 3.0 min as part of the stimulus. For curves a,
b and c the lateral separations of the two lines in the fronto-parallel
plane are 0, 5.0 and 8.0 min, respectively.
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assert that the disparity interactions in the vertical-line
configuration and the horizontal-line-and-point configu-
ration can both be explained by the 2D RF structure of
binocular cells in the brain. Our results suggest that it
may not be necessary to propose explicit excitatory and
inhibitory connections between disparity-tuned units
(Lehky & Sejnowski, 1990) to explain the observed
disparity attraction and repulsion. However, they are
not against such proposals either. It is possible that
both the RF organization and the explicit connections
contribute to the disparity interaction.

The simulation results indicate that the transition
distance at which disparity interaction changes from
attraction to repulsion strongly depends on the orienta-
tion pooling distribution and the spatial-frequency
pooling distribution functions for the cell population.
The dependence on the spatial-frequency distribution is
particularly strong with the effect that when the distri-
bution is shifted towards the high frequency, the transi-
tion distance becomes smaller. Interestingly, in the
psychophysical experiments by Westheimer (1986), it
was found that different individual subjects have differ-
ent transition distances ranging from 3 to 8 min of arc.
One possible explanation of this experimental result is
therefore that different subjects may have different
preferred spatial-frequency and/or orientation distribu-
tions for the cells in their visual cortex. In addition,
even for subjects with identical pooling distributions,
those with less perfect front-end focusing system may
pre-filter out more high frequency components in the
stimulus and obtain an effectively different preferred
frequency distribution among the activated cells in the
brain. A prediction based on this argument is that those
subjects with higher visual acuity should have smaller
transition distances.

We used the phase-difference RF description pro-
posed by Freeman and coworkers (Freeman & Ohzawa,
1990; Ohzawa et al., 1990, 1996, 1997; DeAngelis et al.,
1991) for modeling binocular simple cells in this paper.
An alternative RF model is the traditional position-
shift model (Bishop, Henry & Smith, 1971; Maske,
Yamane & Bishop, 1984). We have previously investi-
gated the similarities and differences between these two
RF models (Zhu & Qian, 1996; Qian & Andersen, 1997;
Qian & Zhu, 1997a) and found that when stimulus
disparities are considerably smaller than RF sizes these
two models and their hybrid often produce similar
results except under some special cases such as narrow-
band stimulation. Since both types of RF models have
alternating excitatory and inhibitory subfields and since
the origin of disparity interaction is the simultaneous
presence of stimulus features in these subfields, both
models should produce similar attraction/repulsion
phenomena. We have verified this conclusion by repeat-
ing the simulation shown in Fig. 3 but with the posi-
tion-shift RFs for the front-end simple cells. The results

(not shown) are nearly identical to those shown in Fig.
3 except that at small separations the attraction in-
creases slightly before turning around towards
repulsion.

Despite the success of our model in explaining the
basic findings of the distance (d) dependence and the
inducing disparity (D) dependence of the disparity in-
teractions in both the vertical-line (Westheimer, 1986)
and the horizontal-line-and-point configurations (West-
heimer & Levi, 1987), an unresolved issue is how the
model should be modified to explain the results ob-
served when the horizontal line and the flanking points
had opposite signs of contrast and when the horizontal-
line length was varied over a wide range (Westheimer &
Levi, 1987). In the case of opposite contrast signs, our
simulation results differ from the actual observations in
that the simulated curves do not cross over to the
attraction side early enough and the attraction is not as
strong. In the case of line-length variations, the attrac-
tive interactions in our simulations do not decay with
the line length as fast as in the actual experiment.
Nevertheless, it should be emphasized that the most
robust feature of the observed disparity interaction is
the distance-dependent attraction and repulsion phe-
nomenon since it has been demonstrated in two sepa-
rate experiments with two very different stimulus
configurations (Westheimer, 1986; Westheimer & Levi,
1987). Our model is similarly robust in explaining this
phenomenon: the simulated attraction and repulsion
effects under the two different stimulus configurations
correspond closely to the observations even under large
variations in the key parameters of the model. To our
knowledge, previous models have neither taken into
account the details of these configurations nor provided
as quantitative an explanation of the observed disparity
interaction.

A different, but closely related disparity attraction
and repulsion phenomenon has been reported by
Stevenson, Cormack and Schor (1991). Using transpar-
ent random dots stereograms with two completely over-
lapping surfaces, these authors found that when the
separation between the two surfaces in depth (instead
of laterally) is small, the two surfaces attract each other
while when the separation in depth is large, they repel
each other. We currently are unable to model any
phenomena involving transparent stereograms because
our present models cannot solve the problem of stereo
transparency. Indeed, to our knowledge, no physiologi-
cally realistic model of stereo transparency has been
proposed although there are several computationally or
psychophysically inspired algorithms available
(Prazdny, 1985; Pollard, Mayhew & Frisby, 1985;
Nishihara, 1987; Qian & Sejnowski, 1989; Marshall,
Kalarickal & Graves, 1996). We hope to extend our
physiological models to solve stereo transparency and
then apply them to this experimental observation in the
future.
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A distinctive feature of our models is that they are
based on physiological properties of binocular cells in
the brain while at the same time they allow a significant
degree of mathematical analysis to be carried out to
gain insights into the problem. Our results suggest that
the perceived interaction in the disparity domain may
be viewed as a direct consequence of the underlying
organization of the binocular RFs. The work therefore
provides a link between physiology and perception, and
between seemingly unrelated experimental data. It
would be interesting to investigate whether similar ap-
proaches can be used to explain the attraction and
repulsion phenomena in motion perception (Marshak &
Sekuler, 1979; Qian & Geesaman, 1995) and orientation
discrimination (Blakemore, Carpenter & Georgeson,
1970; Bouma & Andriessen, 1970; Carandini &
Ringach, 1997). It would also be worthwhile to examine
whether the model could explain the related phe-
nomenon of disparity interpolation (Wurger & Landy,
1989), which could be viewed as another form of dis-
parity interaction.
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Appendix A. Complex-cell response and disparity
estimation

In general, for a given RF envelope function g(r� )
centered at r� =0 the quadrature-pair response at the
location r� 0 is given by

rq(r� 0)=
)&�

−�

g(r� −r� 0){cos[v� ·(r� −r� 0)+fl] Il(r� )

+cos[v� ·(r� −r� 0)+fr] Ir(r� )}d2r
)2

+
)&�
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g(r� −r� 0){sin[v� ·(r� −r� 0)+fl] Il(r� )

+sin[v� ·(r� −r� 0)+fr] Ir(r� )}d2r
)2

(32)

where r� = (x, y), and d2r
dx dy. The complex–cell
response is generated through spatial pooling of the
above quadrature-pair response with a weighting func-
tion W(r� 0), and in complex notation is given by

rc=
&�

−�

)&�
−8

g(r� −r� 0)eiv� ·r� [eif− Il(r� )+Ir(r� )] d2r
)2

W(r� 0) d2r0 (33)

where

f−
fl−fr (34)

As only the cross term in Eq. (33) will depend on f−,
maximizing the complex-cell response is equivalent to
maximizing

Ilr

&�

−�

g(r� −r� 0)g(s� −r� 0)Il(r� )Ir(s� )cos[v� ·(r� −s� )+f−]

× W(r� 0) d2r d2s d2r0 (35)

The primitive and elaborate versions of the model are
defined by specific choices of the envelope and weight-
ing functions g(r� ) and W(r� ), as described in the follow-
ing sections.

When the left and right images have same contrast
polarity, the maximum response of Eq. (35) is obtained
when f− is given by

The disparity D0 estimated from a family of complex
cells all with the same parameter values but covering
the full range of f− is taken to be (Qian, 1994)

D0 = −
f. −

v1

(37)

A.1. Primiti6e 2D model

This version of the model is defined by choosing
W(r� 0)=d(r� 0), i.e. no spatial pooling, and the envelope
functions of Eq. (17), when evaluating Eqs. (33) and
(36). From Eq. (33):

rc=
)
eif−

&�
−�

g(r� ) Il(r� ) eiv� ·r� d2r
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+
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g(r� ) Ir(r� ) eiv� ·r� d2r
)2
= �eif−rl eiul+rr eiur�2 (38)

where r and u signify the magnitude and phase of each
integral. The maximum of rc now corresponds to the
choice
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Eqs. (36) and (39) are equivalent in this case, though the
latter is computationally more convenient. Note that ur

and ul are simply the Fourier phases of the envelope-
weighted right and left retinal images.

A.1.1. 1D and primiti6e 2D models applied to the
6ertical-line configuration

For the vertical-line pattern, it is shown here that the
1D and primitive 2D models result in identical expres-
sions for the estimated disparity by a given cell family.
For the latter model, substituting from Eqs. (1), (17) and
(39) into Eq. (37), yields
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1

v1

!
arctan

�
R
�
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D
2
��n
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2
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2
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2ps1

2 e−a1
2/2

and

a1
s1v1 (40)

This expression for D0 does not depend on the vertical
component of the parameters, v2 and s2. Hence, for fixed
v1 and s1, the apparent disparity is independent of the
orientation of the subfield and the vertical extent of the
envelope. Essentially, this expression for D0 is that of a
1D filter, as the contribution of the other dimension to
the complex-cell response factors out as an overall scaling
of that response. This amplitude scaling does not affect
the peak locations of the disparity tuning curves.

A.1.2. Primiti6e 2D model applied to the
horizontal-line-and-point configuration

The estimated disparity is obtained from Eqs. (37) and

(39) after substitutions from Eqs. (2)–(7) and (17):
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where
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2pcs1s2 exp
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1
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2
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+2 %
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exp
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62
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In evaluating Eq. (39) in this case, the Fourier phases of
the two weighted retinal images, ul and ur, turn out equal
and opposite in sign. Hence, the transition between the
attraction and repulsion zones, i.e. D0 =0, occurs when
these Fourier phases vanish.

A.2. Elaborated 2D model

For this model, the computed disparity is best ex-
pressed in terms of the parameters in two coordinate
systems. One coordinate system (the unprimed) is iden-
tical to the one used above, with its origin at the center
of the RFs (the location where disparity is being com-
puted) and its horizontal axis along the interocular axis.
We refer to this system as the ‘standard coordinates’. The
other coordinate system (the primed) is rotated relative
to the standard one such that its horizontal axis is
perpendicular to the preferred orientation of the cell
under consideration, and is dubbed the ‘cell coordinates’.
They are related to each other by

r%=Rr with R=
� cos u sin u

−sin u cos u

�
(43)

(u=0° for vertically and u=90° for horizontally ori-
ented cells). By definition, in the cell coordinates the
components of the preferred spatial frequency are given
by

(v %1, v %2)= (v, 0) (44)

so that in the standard coordinates they become

(v1, v2)=v(cos u, sin u) (45)

The elaborated model is defined by a correctly aligned
envelope function shown in Eqs. (20)–(22), so that
S=RTS%R, and by the choice
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W(r� 0)=

det(N)

2p
exp

�
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2
�

with

N
RT�1/h %1
2 0

0 1/h %2
2

�
R (46)

Here N is taken to be diagonal in the cell coordinates
so that W is oriented along the preferred orientation of
the cells. Two relations that connect our parameter
values to physiological data are

s %1v=
2 ln 2
2b+1
2b−1

and s %2=qs %1 (47)

where b and q are the bandwidth and aspect ratio of the
simple cell, respectively.

With these parameterizations we can perform the
spatial pooling in Eq. (36) to obtain
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As expected, Eqs. (48) and (49) indicate that spatial
pooling has broadened the Gaussian weighting of the
images.

A.2.1. Elaborated 2D model applied to
horizontal-line-and-point configuration

The complete expression of the computed disparity,
Eq. (37), for this stimulus configuration is derived by
substituting Eqs. (2)–(7) in Eq. (48), to arrive at
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with the definitions

I1ii%jj %
o2 exp
�

−
1
2
Dij

(l)TSDij
(l)−

1
2
Di%j %

(r)TSDi%j %
(r)

+
1
2

(Dij
(l)+Di%j %

(r) )TB(Dij
(l)+Di%j %

(r) )
n

I2ijk
(l) 
o exp

�
−

1
2

Xk
TSXk−

1
2
Dij

(l)TSDij
(l)

+
1
2

(Xk+Dij
(l))TB(Xk+Dij

(l))
n

I2ijk
(r) 
o exp

�
−

1
2

Xk
TSXk−

1
2
Dij

(r)TSDij
(r)

+
1
2

(Xk+Dij
(r))TB(Xk+Dij

(r))
n

I3ij
(l)
2pcoa %1a %2 e−v2a%1

2/2 exp
�

−
1
2

Dij
(l)T(S−L)Dij

(l)n
I3ij

(r)
2pcoa %1a %2 e−v2a%1
2/2 exp

�
−

1
2

Dij
(r)T(S−L)Dij

(r)n
g %n

−2

1
2

s %n
−2−b %n

−2 and a %n
−2
s %n

−2−b %n
−2

for n=1,2

L
RT�(b %12−s %1
2)−1 0

0 (b %22−s %2
2)−1

�
R (51)



S. Mikaelian, N. Qian / Vision Research 40 (2000) 2999–3016 3015

A.2.2. Elaborated 2D model applied to 6ertical-line
configuration

To simplify expressions, we take c=0 in Eq. (1) as
there was no background illumination in the experi-
ments of Westheimer (1986). The result for the com-
puted disparity is
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In the absence of spatial pooling (W(r� 0)=d(r� 0)), B=0
and g2=2a2. It can then be shown from Eqs. (52) and
(53) that D0 satisfies the same expression as that for the
primitive 2D model, Eq. (40), with the substitutions

v1�vo and s1
2�a2 (54)

in the latter equation. With circular RFs, i.e. q=1 in
Eq. (47), v1=vo and s1

2=a2. In that case, the elabo-
rated model without spatial pooling and the primitive
2D model yield identical results for the vertical-line
configuration.

Finally, we present the expressions used to generate
the disparity tuning curves of a vertically oriented
model complex cell in response to a vertical-line stimu-
lus, the test line, presented either by itself or with
another vertical line, the inducing line, in the RF. The
stimuli are given by

Il(x)=d(x−D %/2)+Ad(x−d−D/2)

Ir(x)=d(x+D %/2)+Ad(x−d+D/2) (55)

where A=1 when the inducing line is present and
A=0 when it is absent, D % and D are the disparities of
the test and inducing lines, respectively, and d is the
lateral separation between the two lines. The complex–

cell response Eq. (33) can now be reduced to
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